Jacobian linearisation in a geometric setting

Andrew D. Lewis* David R. Tyner[†]

12/12/2003

Slide 0

* DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY EMAIL: ANDREW.LEWIS@QUEENSU.CA

Slide 1

First of all, has anybody done this?

URL: http://penelope.queensu.ca/~andrew/

[†]Department of Mathematics and Statistics, Queen's University Email: dtyner@mast.queensu.ca

Where this originated

• We are trying to do motion planning for a difficult to control hovercraft.

Slide 2

- We have open-loop trajectory generation schemes that perform very poorly.
- We need feedback; linearisation about open-loop trajectories is controllable —> Use standard linearisation techniques.

- The hovercraft system is a mechanical system with special structure.
- Its linearisation has associated with it some nice geometry (related to the Jacobi equation of geodesic variation).
- Slide 3
- The nice geometry appears to be less well-developed for general control-affine systems.

Some questions concerning the usual technique

• On $\mathfrak{U} @ \mathbb{R}^n$ consider the control-affine system

$$\dot{\boldsymbol{\gamma}}(t) = \boldsymbol{f}_0(\boldsymbol{\gamma}(t)) + \sum_{a=1}^m u^a(t) \boldsymbol{f}_a(\boldsymbol{\gamma}(t))$$

with reference trajectory $(oldsymbol{\gamma}_{\mathsf{ref}}, oldsymbol{u}_{\mathsf{ref}}).$

Slide 4 • Linearise in the usual manner:

$$\dot{\boldsymbol{\xi}}(t) = \boldsymbol{A}(t)\boldsymbol{\xi}(t) + \boldsymbol{B}\boldsymbol{v}(t),$$

where

$$\begin{split} \boldsymbol{A}(t) &= \boldsymbol{D}\boldsymbol{f}_0(\boldsymbol{\gamma}_{\mathsf{ref}}(t)) + \sum_{a=1}^m u_{\mathsf{ref}}^a(t)\boldsymbol{f}_a(\boldsymbol{\gamma}_{\mathsf{ref}}(t)) \\ \boldsymbol{B}(t) &= \left[\begin{array}{c} \boldsymbol{f}_1(\boldsymbol{\gamma}_{\mathsf{ref}}(t)) \end{array} \right| \cdots \right| \boldsymbol{f}_m(\boldsymbol{\gamma}_{\mathsf{ref}}(t)) \end{array} \right]. \end{split}$$

• Now consider a control-affine system on a manifold M:

$$\gamma'(t) = f_0(\gamma(t)) + \sum_{a=1}^m u^a(t) f_a(\gamma(t))$$

Slide 5

with reference trajectory (γ_{ref}, u_{ref}) .

• How do you linearise this *in a coordinate-independent manner*? (There *is* a problem here since the families of linear maps $\{A(t)\}$ and $\{B(t)\}$ defined above are *not* coordinate-independent.)

- Some questions:
 - 1. What replaces the Jacobian?
 - 2. Where does the linearisation live? It does not live on a vector space (at least not a finite-dimensional one), as in the usual case.
 - 3. How do you check, or even define, the controllability of the linearisation? The controllability Gramian no longer makes sense.

Slide 6

- 4. How is the stability of the linearisation defined?
- 5. How is the linearisation stabilised by linear feedback?
- 6. If one stabilises the linearisation, how can the resulting linear feedback be implemented on the nonlinear system?
- 7. If the closed-loop system is suitably stable, does this imply closed-loop stability for the nonlinear system?

Formulation of problem

- The objective is to strip away all unnecessary structure, so that one can introduce what is needed at the appropriate time.
- This leads to "removing" control from the control problem.

Definition 1 Let M be a manifold.

- (i) An *affine subbundle* of TM is a subset $\mathcal{A} \subset \mathsf{TM}$ with the
- property that for each $x \in M$ there exists a neighbourhood \mathcal{U} of xand vector fields X_0, X_1, \ldots, X_k defined on \mathcal{U} for which

$$\mathcal{A}_x \triangleq \mathcal{A} \cap \mathsf{T}_x \mathsf{M} = \Big\{ X_0(x) + \sum_{a=1}^k u^a X_a(x) \ \Big| \ u \in \mathbb{R}^k \Big\}, \qquad x \in \mathcal{U}.$$

- (ii) An *affine system* in an affine subbundle \mathcal{A} is an assignment to each $x \in \mathsf{M}$ a subset $\mathscr{A}(x) \subset \mathcal{A}_x$.
- (iii) A *trajectory* of an affine system \mathscr{A} is a locally absolutely continuous $\gamma: I \to \mathsf{M}$ satisfying $\gamma'(t) \in \mathscr{A}(\gamma(t))$, a.e. $t \in I$.

Slide 7

$\mathcal{A}\text{-variations}$

- For simplicity, take $\mathscr{A}(x) = \mathcal{A}_x$ for each $x \in \mathsf{M}$.
- Given a reference trajectory γ_{ref} , what should define the linearisation?

Definition 2 Let $\gamma_{\text{ref}} \colon I \to \mathsf{M}$ be a trajectory for an affine system \mathcal{A} . An \mathcal{A} -variation of γ_{ref} is a map $\sigma \colon I \times J \to \mathsf{M}$ with

Slide 8 (i) some regularity properties,

- (ii) for which $t \mapsto \sigma(t, s)$ is a trajectory of \mathcal{A} for each $s \in J$, and for which
- (iii) $\sigma(t,0) = \gamma_{\text{ref}}(t)$ for each $t \in I$.
- For a variation σ define a vector field V_σ along $\gamma_{\rm ref}$ by

$$V_{\sigma}(t) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \sigma(s, t).$$

The geometry of \mathcal{A} -variations

- We wish to characterise variations geometrically. Suppose that γ_{ref} is an integral curve of some time-varying A-valued vector field X_{ref} on M (as will be the case in practice).
- Given a vector field X on M, the complete lift of X, denoted by X^T , is the vector field on TM defined by $X^T(v_x) = \frac{d}{ds}\Big|_{s=0} T_x \Phi^X_{0,s}(v_x)$.

Slide 9

- Given $X \in T_xM$, the vertical lift of X through $v_x \in T_xM$, denoted $\operatorname{vlft}_{v_x}(X) \in \mathsf{T}_{v_x}\mathsf{T}M$, is the image of X under the natural isomorphism between $\mathsf{T}_x\mathsf{M}$ and $\mathsf{T}_{v_x}(\mathsf{T}_x\mathsf{M}) \subset \mathsf{T}_{v_x}\mathsf{T}M$.
 - Define an affine subbundle on TM by

$$\mathcal{A}_{\mathsf{ref},v_x}^T = \{ X_{\mathsf{ref}}^T(v_x) + \mathrm{vlft}_{v_x}(X) \mid X \in L(\mathcal{A})_x \},\$$

where $L(\mathcal{A})$ is the linear part of \mathcal{A} .

Proposition 3 For a reference trajectory γ_{ref} an integral curve of X_{ref} , and a vector field Υ along γ_{ref} , the following are equivalent:

- (i) Υ is a trajectory for the affine system $\mathcal{A}_{\mathrm{ref}}^T$;
- (ii) there exists an A-variation σ of γ_{ref} for which $\Upsilon(t) = V_{\sigma}(t)$.

Slide 10

- *Punchline:* The linearisation of an affine system on M is a "linear" affine system on TM. (One can generally talk about linear systems defined on vector bundles.)
- This answers the question, "Where does the linearisation live?"
- It also makes not so obvious the answers to all the other questions we asked that follow this.

Controllability

- Define reachable sets: let $\operatorname{Traj}(\mathcal{A})$ denote the set of trajectories for \mathcal{A} and let $\operatorname{Traj}(\mathcal{A}_{\operatorname{ref}}^T)$ denote the set of trajectories of $\mathcal{A}_{\operatorname{ref}}^T$.
- Suppose that $\gamma_{ref}(t_0) = x_0$.
- Then write

$$\begin{aligned} \mathcal{R}_{\mathcal{A}}(x_0,t,t_0) &= \{\gamma(t) \mid \ \gamma \in \mathrm{Traj}(\mathcal{A}), \ \gamma(t_0) = x_0 \} \\ \mathcal{R}_{\mathcal{A}_{\mathrm{ref}}^T}(v_{x_0},t,t_0) &= \{\Upsilon(t) \mid \ \Upsilon \in \mathrm{Traj}(\mathcal{A}_{\mathrm{ref}}^T), \ \Upsilon(t_0) = v_{x_0} \}. \end{aligned}$$

Slide 11

Definition 4 $\,\mathcal{A}\,\,\mathrm{is}$

- (i) controllable at \mathbf{t}_0 along γ_{ref} if $\gamma_{\text{ref}}(t) \in \text{int}(\mathcal{R}_{\mathcal{A}}(x_0, t, t_0))$ for each $t > t_0$, and is
- (ii) *linearly controllable at* \mathbf{t}_0 along γ_{ref} if $\mathcal{R}_{\mathcal{A}_{\text{ref}}^T}(0_{x_0}, t, t_0) = \mathsf{T}_{\gamma_{\text{ref}}(t)}M$ for each $t > t_0$.

Geometric characterisation of controllability

- Want the analogue of "smallest A-invariant subspace containing image(B)."
- Define an operator $\mathscr{L}^{X_{\mathsf{ref}},\gamma_{\mathsf{ref}}}$ on the set of vector fields along γ_{ref} by

$$\mathscr{L}^{X_{\mathsf{ref}},\gamma_{\mathsf{ref}}}(V_{\gamma_{\mathsf{ref}}})(t) = [X_{\mathsf{ref},t},V](\gamma_{\mathsf{ref}}(t)), \text{ a.e. } t \in I,$$

where V is a vector field on M and $V_{\gamma_{\text{ref}}}$ is the section of TM along γ_{ref} defined by $V_{\gamma_{\text{ref}}}(t) = V(\gamma_{\text{ref}}(t))$.

• Denote by $\langle \mathscr{L}^{X_{\text{ref}},\gamma_{\text{ref}}}, L(\mathcal{A})_{t_0} \rangle$ the smallest $\mathscr{L}^{X_{\text{ref}},\gamma_{\text{ref}}}$ -invariant distribution along γ_{ref} that agrees with $L(\mathcal{A})$ at $\gamma_{\text{ref}}(t_0)$.

Slide 13

Slide 12

Andrew D. Lewis

Theorem 5 Let $\gamma_{ref} \colon I \to M$ be a differentiable reference trajectory that is an integral curve for X_{ref} . For $t_0 \in I$ and $t > t_0$, the following sets are equal:

Slide 14

(i)
$$\mathcal{R}_{\mathcal{A}_{\mathrm{ref}}^{T}}(0_{x_{0}}, t, t_{0});$$

(ii) $\operatorname{span}_{\mathbb{R}}\Big(\bigcup_{\substack{\tau \in [t_{0}, t] \\ v_{\tau} \in L(\mathcal{A})_{\gamma_{\mathrm{ref}}(\tau)}}} \Phi_{\tau, t}^{X_{\mathrm{ref}}^{T}}(v_{\tau})\Big);$
(iii) $\langle \mathscr{L}^{X_{\mathrm{ref}}, \gamma_{\mathrm{ref}}}, L(\mathcal{A})_{t_{0}} \rangle_{\gamma_{\mathrm{ref}}(t)}.$

Future work

- Stability and stabilisation.
- Slide 15
- Quadratic optimal control; what is the geometric analogue of the Riccati equation?
 - Go back to the mechanical setup and understand the special geometry there.