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Slide 1 First of all, has anybody done this?

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 2

Where this originated

• We are trying to do motion planning for a difficult to control hovercraft.

• We have open-loop trajectory generation schemes that perform very

poorly.

• We need feedback; linearisation about open-loop trajectories is

controllable Use standard linearisation techniques.
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• The hovercraft system is a mechanical system with special structure.

• Its linearisation has associated with it some nice geometry (related to

the Jacobi equation of geodesic variation).

• The nice geometry appears to be less well-developed for general

control-affine systems.
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Some questions concerning the usual technique

• On U⊂◦ Rn consider the control-affine system

γ̇(t) = f0(γ(t)) +

m
∑

a=1

ua(t)fa(γ(t))

with reference trajectory (γref,uref).

• Linearise in the usual manner:

ξ̇(t) = A(t)ξ(t) +Bv(t),

where

A(t) = Df0(γref(t)) +

m
∑

a=1

ua
ref(t)fa(γref(t))

B(t) =
[

f1(γref(t)) · · · fm(γref(t))
]

.
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• Now consider a control-affine system on a manifold M:

γ′(t) = f0(γ(t)) +

m
∑

a=1

ua(t)fa(γ(t))

with reference trajectory (γref, uref).

• How do you linearise this in a coordinate-independent manner?

(There is a problem here since the families of linear maps {A(t)} and

{B(t)} defined above are not coordinate-independent.)
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• Some questions:

1. What replaces the Jacobian?

2. Where does the linearisation live? It does not live on a vector space

(at least not a finite-dimensional one), as in the usual case.

3. How do you check, or even define, the controllability of the

linearisation? The controllability Gramian no longer makes sense.

4. How is the stability of the linearisation defined?

5. How is the linearisation stabilised by linear feedback?

6. If one stabilises the linearisation, how can the resulting linear

feedback be implemented on the nonlinear system?

7. If the closed-loop system is suitably stable, does this imply

closed-loop stability for the nonlinear system?
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Formulation of problem

• The objective is to strip away all unnecessary structure, so that one can

introduce what is needed at the appropriate time.

• This leads to “removing” control from the control problem.

Definition 1 Let M be a manifold.

(i) An affine subbundle of TM is a subset A ⊂ TM with the

property that for each x ∈ M there exists a neighbourhood U of x

and vector fields X0, X1, . . . , Xk defined on U for which

Ax , A ∩ TxM =
{

X0(x) +
∑k

a=1 u
aXa(x)

∣

∣

∣
u ∈ Rk

}

, x ∈ U.

(ii) An affine system in an affine subbundle A is an assignment to

each x ∈ M a subset A (x) ⊂ Ax.

(iii) A trajectory of an affine system A is a locally absolutely

continuous γ : I → M satisfying γ′(t) ∈ A (γ(t)), a.e. t ∈ I. •
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A-variations

• For simplicity, take A (x) = Ax for each x ∈ M.

• Given a reference trajectory γref, what should define the linearisation?

Definition 2 Let γref : I → M be a trajectory for an affine system A.

An A-variation of γref is a map σ : I × J → M with

(i) some regularity properties,

(ii) for which t 7→ σ(t, s) is a trajectory of A for each s ∈ J , and for

which

(iii) σ(t, 0) = γref(t) for each t ∈ I. •

• For a variation σ define a vector field Vσ along γref by

Vσ(t) =
d
ds

∣

∣

s=0
σ(s, t).
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The geometry of A-variations

• We wish to characterise variations geometrically. Suppose that γref is an

integral curve of some time-varying A-valued vector field Xref on M (as

will be the case in practice).

• Given a vector field X on M, the complete lift of X , denoted by XT , is

the vector field on TM defined by XT (vx) =
d
ds

∣

∣

s=0
TxΦ

X
0,s(vx).

• Given X ∈ TxM, the vertical lift of X through vx ∈ TxM, denoted

vlftvx(X) ∈ TvxTM, is the image of X under the natural isomorphism

between TxM and Tvx(TxM) ⊂ TvxTM.

• Define an affine subbundle on TM by

A
T
ref,vx

= {XT
ref(vx) + vlftvx(X) | X ∈ L(A)x},

where L(A) is the linear part of A.
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Proposition 3 For a reference trajectory γref an integral curve of Xref,

and a vector field Υ along γref, the following are equivalent:

(i) Υ is a trajectory for the affine system AT
ref;

(ii) there exists an A-variation σ of γref for which Υ(t) = Vσ(t).

• Punchline: The linearisation of an affine system on M is a “linear” affine

system on TM. (One can generally talk about linear systems defined on

vector bundles.)

• This answers the question, “Where does the linearisation live?”

• It also makes not so obvious the answers to all the other questions we

asked that follow this.
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Controllability

• Define reachable sets: let Traj(A) denote the set of trajectories for A

and let Traj(AT
ref) denote the set of trajectories of AT

ref.

• Suppose that γref(t0) = x0.

• Then write

RA(x0, t, t0) = {γ(t) | γ ∈ Traj(A), γ(t0) = x0}

RAT
ref
(vx0 , t, t0) = {Υ(t) | Υ ∈ Traj(AT

ref), Υ(t0) = vx0}.

Tγref(t0)M Tγref(t)
M

γref(t0) γref(t)

vx0 Υ(t)
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Definition 4 A is

(i) controllable at t0 along γref if γref(t) ∈ int(RA(x0, t, t0)) for each

t > t0, and is

(ii) linearly controllable at t0 along γref if

RAT
ref
(0x0 , t, t0) = Tγref(t)M for each t > t0. •

γref(t0) γref(t)

Tγref(t0)M Tγref(t)
M

γref(t0) γref(t)

Controllable Linearly controllable
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Geometric characterisation of controllability

• Want the analogue of “smallest A-invariant subspace containing

image(B).”

• Define an operator L Xref,γref on the set of vector fields along γref by

L
Xref,γref(Vγref

)(t) = [Xref,t, V ](γref(t)), a.e. t ∈ I,

where V is a vector field on M and Vγref
is the section of TM along γref

defined by Vγref
(t) = V (γref(t)).

• Denote by 〈L Xref,γref , L(A)t0〉 the smallest L Xref,γref-invariant

distribution along γref that agrees with L(A) at γref(t0).
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Theorem 5 Let γref : I → M be a differentiable reference trajectory

that is an integral curve for Xref. For t0 ∈ I and t > t0, the following

sets are equal:

(i) RAT
ref
(0x0 , t, t0);

(ii) span
R

(

⋃

τ∈[t0,t]
vτ∈L(A)γref(τ)

Φ
XT

ref
τ,t (vτ )

)

;

(iii) 〈L Xref,γref , L(A)t0〉γref(t).
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Future work

• Stability and stabilisation.

• Quadratic optimal control; what is the geometric analogue of the Riccati

equation?

• Go back to the mechanical setup and understand the special geometry

there.
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