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The problem
e Roughly speaking: Using feedback, turn a mechanical system into
another mechanical system with desired properties, e.g., stability.
e [ess roughly:
Given: An open-loop simple mechanical control system
Yol = (Q,Gol, Voi, & = {F*,..., F™}) with control equations
Gol , ﬁ U ﬁ
Slide 1 Vo () = =G o dVa(y(1) + > u®(t)GE o F*(y(t))
a=1
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i.e., (q + ijq q° = -G g7 + Zu Gole).
a=1

Find: Feedback controls ushp: TQ — IR™ such that the closed-loop
system is a forced simple mechanical system X = (Q, Gq, Va, Fy) with
governing equations

Gl

Vo (t) = =Gl o dVa(y(t) + G o Fu(+ (1))
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o Form of Iy: Fy = Fo diss + Fcl,gyr,l + Fcl,gyr,2 where
1. Fq diss is a dissipative force,
2. Fygyr1 is a linear gyroscopic force, and

3. Fygyr2 is a quadratic gyroscopic force.

e Recall:
Slide 2 . . . B b
1. A linear gyroscopic force is of the form Fyy,1(vy) = — By, 1(vg)
where By, 1 is a skew-symmetric (0, 2)-tensor field.
2. A quadratic gyroscopic force is of the form
(Fgyr2(vq); wq) = Bgyr2(wg, Vg, vq) Where Bgyr s is a (0, 3)-tensor
field satisfying Bgyr2(ugq, Vg, Wq) = —Bgyr.2(vq, g, wq) (denote
ngr,2 (Uq) = Bgyr,Q (Uq))-
e Assumed procedure:
1. Find closed-loop kinetic energy/quadratic gyroscopic force:
f / g / # b / © /
Ggi o Fin(7' (1)) = V)7 (8) + G © Bl gyr 2 (V' (1)) = Vo 1)7' (1)
2. Find closed-loop potential energy:
Slide 3 Foor(1(1)) = Gy © G odVa (7(1) — dVer(3(1)).
———

AcI
3. Find closed-loop control:

Zughp(UQ)Ggl o F(q) = —Fiin(vq) — Fpot(q)-

=1
e Today: Ignore (éiissipative and linear gyroscopic forces.
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Main problem

Slide 4 What are the possible closed loop energies,
Ecl ('Uq) - %Gcl ('Uq) + ‘/cl(q)?
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e Extension to general Lagrangians:

11. J. Hamberg, “General matching conditions in the theory of controlled
Lagrangians,” in Proceedings of the 38th IEEE CDC. Phoenix, AZ:
IEEE, Dec. 1999, pp. 2519-2523.

12. J. Hamberg, “Simplified conditions for matching and for generalized
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Slide 8 e Extension to nonholonomic systems:

13. D. V. Zenkov, “Matching and stabilization of the unicycle with
rider,” in Proc. IFAC Workshop on Lagrangian and Hamiltonian
Methods in Nonlinear Control, Princeton, NJ, March 2000, pp.
187-188.

e Linear systems:

14. D. V. Zenkov, “Matching and stabilization of linear mechanical
systems,” in Proceedings of MTNS 2002, South Bend, IN, Aug.
2002.

e Major limitation of applicability: For stabilization, only works for
systems that are linearly stabilizable, i.e., doesn't work for “hard”
systems (i.e., requiring discontinuous feedback).

e Advantages of ideas:

Slide 9 o .
1. Allows user to employ mechanical intuition concerning the

closed-loop design.

2. Increased performance (particularly basic of attraction) over some
other techniques.
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Notes on potential energy shaping

e Assume that the closed-loop kinetic energy/quadratic gyroscopic force
have been determined.

e Let F be the codistribution generated by the input forces {F*,..., F™}.
o Let Fu = AN (F).

o Let 3"5,00) be the largest integrable codistribution contained in J.
Slide 10 (00)
e Assume that & and F; 7’ have constant rank.
e C(Q): set of C*-functions on Q
CN(Q)?C(,""): subset of C*(Q) for which df(q) € S"EEZ)

(same as subset of C**(Q) for which df(q) € Feiq)

Proposition 1 The set of closed-loop potentials is an affine subspace,
possibly empty, of C~(Q) whose linear part is C™(Q) goe) -
cl

e Discussion:

1. The set of closed-loop potentials could be empty, even if C°°(Q)3,<m)
cl
is big (think Ax = b). The testing of this involves an integrability
condition that seems to have not been explored yet.

2. Generically we expect .’fifz) =0,.
Slide 11 Punchline: Even if F(>) (the codistribution for classical potential
shaping) is big, the set of closed-loop potentials could be small

(empty, or consisting of one solution).

3. Many of the examples in the literature have codim(%F,) = 1. In these
cases, 5"&00) = F, meaning that there are lots of closed-loop
potentials, if there is one.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



An affine connection formulation of kinetic energy
shaping + quadratic gyroscopic force

e For a general affine connection V and Riemannian metric G with its

G
Levi-Civita connection V, define a (0, 3)-tensor field Dy ¢ by
G
Slide 12 e For a (0, k)-tensor A on V, define a symmetric (0, k)-tensor Sym(A) by

1
Sym(A)(Ulv ) Uk) = y Z A(UU(l)v SRR vo’(k))'
: oESk

e Similarly define a skew-symmetric (0, k)-tensor Alt(A) by

1
Al(A) (v, v0) = > (=)D Ao 1y Vo(r))-

" oESE

e Think of Sym and Alt as linear maps from T9(V) to T% (V).

e A (0,3)-tensor A is gyroscopic if A(u,v,w) = —A(v, u, w)
is torsional if A(u,v,w) = —A(u,w,v)
Gyr(V): gyroscopic tensors
Tor(V): torsional tensors

Slide 13 £ 5 Riemannian metric G, define KEg: TQ — R by

KEg(vq) = %G(Uqa vg).

e An affine connection V is G-energy-preserving if
ZyntyKEg(7'(t)) = 0 for every geodesic v of V.
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Proposition 2 The following are equivalent:

(i) V is G-energy preserving;
(1)) VG € I (ker(Sym));
(i1i) Dy g € I'(ker(Sym));
(iv) there exists tensor fields Qv g € I=(TA*(TQ)),

Slide 14 fFV,G e I'"((Gyr(TQ) Nker(Alt))), and
Ty.g € I ((Tor(TQ) Nker(Alt))) such that

G
G(VxY,Z) = G(VxY,Z) + Bvo(Z X.Y)
+ TV,G(Zu Xu Y) + QV,G(Zu Xu Y)7

for all X,Y,Z € T=(TQ).

e Discussion:

1. If B is a gyroscopic tensor field, then there exists a unique
torsion-free affine connection V such that

G

for all X,Y e I'°(TQ).
Explicitly, V is defined by

Slide 15 .
G(VxY,Z) =G(VxY,Z) + By g(Z, X,Y),

where By ¢ = B — Alt(B).
2. Changes the kinetic energy/quadratic gyroscopic force determination

into a purely affine connection problem:

Find a Riemannian metric Gy and a Gg-energy preserving

Gol

cl cl
connection V such that V.Y (t) = V. )y'(t) € Ggl(ff,y(t)).
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Other results in the paper

e Put the energy shaping problem in a framework where the integrability
theory of Spencer, Goldschmidt, Quillen, Serre, et al. can be applied.

o Define
Pos(Voi)q = {1 Fa(q)|d1(j" Fu(q)) = —d(Ad ° dVe)(q)}-

Proposition 3 Suppose that H'(Q) = 0. Then a function Ve is a
possible closed-loop potential function if and only if

dVy = Fy + A o dVy) where Fy is a section of Fe having the property
that j1F. takes values in Pps(Vo).

e Define
ES(Q) = 23 (TQ) x (Gyr(TQ) Nker(Alt))

and

Pus(Go)g = {(7'G(q), j' B(q)) € J'(ES(Q))]
(LC(j'G(q)) — LC(*Gai(q)) + G*B € G, (F © TS*(TQ))}-

Proposition 4 A Riemannian metric G and a gyroscopic tensor field
Bg solve the kinetic energy/quadratic gyroscopic problem if and only if
the 1-jet of the section q — (Ga(q), Ba(q)) takes values in Pks(Gor).
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Things remaining undone in the energy shaping problem

e Almost everything. For example:

1. integrability for energy-preserving affine connection problem—what is
Slide 18 the form of the set of closed-loop metrics?

2. integrability for potential shaping problem—sufficient/necessary
conditions for closed-loop metric that ensure solution to potential
shaping problem.

3. Is this method implementable, or just interesting?
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