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The problem

• Roughly speaking: Using feedback, turn a mechanical system into

another mechanical system with desired properties, e.g., stability.

• Less roughly:

Given: An open-loop simple mechanical control system

Σol = (Q,Gol, Vol,F = {F 1, . . . , Fm}) with control equations

Gol

∇γ′(t)γ
′(t) = −G♯

ol
◦ dVol(γ(t)) +

m∑

a=1

ua(t)G♯
ol

◦ F a(γ(t))

i.e.,

(

q̈i +
Gol

Γ i
jk q̇

j q̇k = −G
ij

ol

∂Vol

∂qj
+

m
∑

a=1

ua
G

ij

ol
F a
j

)

.

Find: Feedback controls ushp : TQ → Rm such that the closed-loop

system is a forced simple mechanical system Σcl = (Q,Gcl, Vcl, Fcl) with

governing equations

Gcl

∇γ′(t)γ
′(t) = −G♯

cl
◦ dVcl(γ(t)) +G

♯
cl

◦ Fcl(γ
′(t)).
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• Form of Fcl: Fcl = Fcl,diss + Fcl,gyr,1 + Fcl,gyr,2 where

1. Fcl,diss is a dissipative force,

2. Fcl,gyr,1 is a linear gyroscopic force, and

3. Fcl,gyr,2 is a quadratic gyroscopic force.

• Recall:

1. A linear gyroscopic force is of the form Fgyr,1(vq) = −B♭
gyr,1(vq)

where Bgyr,1 is a skew-symmetric (0, 2)-tensor field.

2. A quadratic gyroscopic force is of the form

〈Fgyr,2(vq);wq〉 = Bgyr,2(wq, vq, vq) where Bgyr,2 is a (0, 3)-tensor

field satisfying Bgyr,2(uq, vq, wq) = −Bgyr,2(vq, uq, wq) (denote

Fgyr,2(vq) = B♭
gyr,2(vq)).
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• Assumed procedure:

1. Find closed-loop kinetic energy/quadratic gyroscopic force:

G
♯
ol

◦ Fkin(γ
′(t)) =

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl,gyr,2(γ
′(t))−

Gol

∇γ′(t)γ
′(t)

2. Find closed-loop potential energy:

Fpot(γ(t)) = G
♭
ol

◦G
♯
cl

︸ ︷︷ ︸

Λcl

◦dVcl(γ(t))− dVol(γ(t)).

3. Find closed-loop control:

m∑

a=1

ua
shp(vq)G

♯
ol

◦ F a(q) = −Fkin(vq)− Fpot(q).

• Today: Ignore dissipative and linear gyroscopic forces.
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Main problem

What are the possible closed loop energies,

Ecl(vq) =
1

2
Gcl(vq) + Vcl(q)?
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• Hamiltonian approach (IDA-PBC):

4. R. Ortega, M. W. Spong, F. Gómez-Estern, and G. Blankenstein,

“Stabilization of a class of underactuated mechanical systems via

interconnection and damping assignment,” IEEE Trans. Automat.

Control, vol. 47, no. 8, pp. 1218–1233, 2002.

• Lagrangian approach with symmetry:

5. A. M. Bloch, N. E. Leonard, and J. E. Marsden, “Controlled

Lagrangians and the stabilization of mechanical systems. I. The first

matching theorem,” IEEE Trans. Automat. Control, vol. 45, no. 12,

pp. 2253–2270, 2000.

6. A. M. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden,

“Controlled Lagrangians and the stabilization of mechanical

systems. II. Potential shaping,” IEEE Trans. Automat. Control,
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• Equivalence of Lagrangian and Hamiltonian setting:
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• Geometric formulation and integrability:
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• Extension to general Lagrangians:

11. J. Hamberg, “General matching conditions in the theory of controlled

Lagrangians,” in Proceedings of the 38th IEEE CDC. Phoenix, AZ:

IEEE, Dec. 1999, pp. 2519–2523.

12. J. Hamberg, “Simplified conditions for matching and for generalized

matching in the theory of controlled Lagrangians,” in Proceedings of

the 2000 American Control Conference, Chicago, IL, June 2000, pp.
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• Extension to nonholonomic systems:

13. D. V. Zenkov, “Matching and stabilization of the unicycle with

rider,” in Proc. IFAC Workshop on Lagrangian and Hamiltonian

Methods in Nonlinear Control , Princeton, NJ, March 2000, pp.

187–188.

• Linear systems:

14. D. V. Zenkov, “Matching and stabilization of linear mechanical

systems,” in Proceedings of MTNS 2002, South Bend, IN, Aug.

2002.
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• Major limitation of applicability: For stabilization, only works for

systems that are linearly stabilizable, i.e., doesn’t work for “hard”

systems (i.e., requiring discontinuous feedback).

• Advantages of ideas:

1. Allows user to employ mechanical intuition concerning the

closed-loop design.

2. Increased performance (particularly basic of attraction) over some

other techniques.
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Notes on potential energy shaping

• Assume that the closed-loop kinetic energy/quadratic gyroscopic force

have been determined.

• Let F be the codistribution generated by the input forces {F 1, . . . , Fm}.

• Let Fcl = Λ−1
cl (F).

• Let F
(∞)
cl be the largest integrable codistribution contained in Fcl.

• Assume that Fcl and F
(∞)
cl have constant rank.

• C
∞(Q): set of C∞-functions on Q

C
∞(Q)

F
(∞)
cl

: subset of C∞(Q) for which df(q) ∈ F
(∞)
cl,q

(same as subset of C∞(Q) for which df(q) ∈ Fcl,q)

Proposition 1 The set of closed-loop potentials is an affine subspace,

possibly empty, of C∞(Q) whose linear part is C
∞(Q)

F
(∞)
cl

.
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• Discussion:

1. The set of closed-loop potentials could be empty, even if C∞(Q)
F

(∞)
cl

is big (think Ax = b). The testing of this involves an integrability

condition that seems to have not been explored yet.

2. Generically we expect F
(∞)
cl,q = 0q.

Punchline: Even if F(∞) (the codistribution for classical potential

shaping) is big, the set of closed-loop potentials could be small

(empty, or consisting of one solution).

3. Many of the examples in the literature have codim(Fq) = 1. In these

cases, F
(∞)
cl = Fcl, meaning that there are lots of closed-loop

potentials, if there is one.
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An affine connection formulation of kinetic energy

shaping + quadratic gyroscopic force

• For a general affine connection ∇ and Riemannian metric G with its

Levi-Civita connection
G

∇, define a (0, 3)-tensor field D∇,G by

G(∇XY, Z) = G(
G

∇XY, Z) +D∇,G(Z,X, Y ).

• For a (0, k)-tensor A on V, define a symmetric (0, k)-tensor Sym(A) by

Sym(A)(v1, . . . , vk) =
1

k!

∑

σ∈Sk

A(vσ(1), . . . , vσ(k)).

• Similarly define a skew-symmetric (0, k)-tensor Alt(A) by

Alt(A)(v1, . . . , vk) =
1

k!

∑

σ∈Sk

(−1)sgn(σ)A(vσ(1), . . . , vσ(k)).

• Think of Sym and Alt as linear maps from T0
k(V) to T0

k(V).
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• A (0, 3)-tensor A is gyroscopic if A(u, v, w) = −A(v, u, w)

is torsional if A(u, v, w) = −A(u,w, v)

Gyr(V): gyroscopic tensors

Tor(V): torsional tensors

• For a Riemannian metric G, define KEG : TQ → R by

KEG(vq) =
1
2G(vq , vq).

• An affine connection ∇ is G-energy-preserving if

Lγ′′(t)KEG(γ
′(t)) = 0 for every geodesic γ of ∇.
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Proposition 2 The following are equivalent:

(i) ∇ is G-energy preserving;

(ii) ∇G ∈ Γ∞(ker(Sym));

(iii) D∇,G ∈ Γ∞(ker(Sym));

(iv) there exists tensor fields Ω∇,G ∈ Γ∞(T
∧3(TQ)),

B∇,G ∈ Γ∞((Gyr(TQ) ∩ ker(Alt))), and

T̂∇,G ∈ Γ∞((Tor(TQ) ∩ ker(Alt))) such that

G(∇XY, Z) = G(
G

∇XY, Z) +B∇,G(Z,X, Y )

+ T̂∇,G(Z,X, Y ) + Ω∇,G(Z,X, Y ),

for all X,Y, Z ∈ Γ∞(TQ).
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• Discussion:

1. If B is a gyroscopic tensor field, then there exists a unique

torsion-free affine connection ∇ such that

G(∇XX,Y ) = G(
G

∇XX,Y ) +B(Y,X,X)

for all X,Y ∈ Γ∞(TQ).

Explicitly, ∇ is defined by

G(∇XY, Z) = G(
G

∇XY, Z) + B∇,G(Z,X, Y ),

where B∇,G = B −Alt(B).

2. Changes the kinetic energy/quadratic gyroscopic force determination

into a purely affine connection problem:

Find a Riemannian metric Gcl and a Gcl-energy preserving

connection
cl

∇ such that
cl

∇γ′(t)γ
′(t)−

Gol

∇γ′(t)γ
′(t) ∈ G♯

ol(Fγ(t)).
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Other results in the paper

• Put the energy shaping problem in a framework where the integrability

theory of Spencer, Goldschmidt, Quillen, Serre, et al. can be applied.

• Define

PPS(Vol)q = {j1Fcl(q)|d1(j
1Fcl(q)) = −d(Λcl ◦ dVol)(q)}.

Proposition 3 Suppose that H1(Q) = 0. Then a function Vcl is a

possible closed-loop potential function if and only if

dVcl = Fcl + Λcl ◦ dVol where Fcl is a section of Fcl having the property

that j1Fcl takes values in PPS(Vol).
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• Define

ES(Q) = Σ+
2 (TQ)× (Gyr(TQ) ∩ ker(Alt))

and

PKS(Gol)q =
{
(j1G(q), j1B(q)) ∈ J1(ES(Q))

∣
∣

(LC(j1G(q)) − LC(j1Gol(q)) +G
♯B ∈ G♯

ol(F ⊗ TS2(TQ))}.

Proposition 4 A Riemannian metric Gcl and a gyroscopic tensor field

Bcl solve the kinetic energy/quadratic gyroscopic problem if and only if

the 1-jet of the section q 7→ (Gcl(q), Bcl(q)) takes values in PKS(Gol).
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Things remaining undone in the energy shaping problem

• Almost everything. For example:

1. integrability for energy-preserving affine connection problem—what is

the form of the set of closed-loop metrics?

2. integrability for potential shaping problem—sufficient/necessary

conditions for closed-loop metric that ensure solution to potential

shaping problem.

3. Is this method implementable, or just interesting?
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