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Motivation

• Usually in control theory we study control-affine systems of the form

ẋ = f0(x) +

m
∑

a=1

uafa(x),

with f0 the drift vector field and f1, . . . , fm the control vector fields.

• The choice of f0 and f1, . . . , fm is much like a choice of coordinates for

a manifold:

1. in a given example, there is often a natural choice;

2. to do general theoretical developments, it is advantageous to develop

a theory that is coordinate-independent.

• A “coordinate-independent” theory for control-affine systems is not fully,

or even really initially, developed. In this talk, we indicate the first steps

concerning how to do this.
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• Note that the “change of coordinates” for a control-affine system looks

like

f0 7→ f̃0 = f0 + λafa,

(f1, . . . , fm) 7→ (f̃1, . . . , f̃m̃), f̃α = Λa
αfa

• We also note that the essential geometric object here is the affine

subbundle A defined by

Ax =
{

f0(x) +
m
∑

a=1

uafa(x)
∣

∣

∣
u ∈ Rm

}

.
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Affine subbundles and affine systems

• We let M be an analytic manifold. A subset A is an affine subbundle

if, for each x ∈ M, there exists a neighbourhood N of x and vector fields

X0, X1, . . . , Xk on N such that

Ax = A ∩ TxM =
{

X0(x) +

k
∑

j=1

ujXj(x)
∣

∣

∣
u ∈ Rk

}

.

• Denote by L(A) the distribution defined by L(A)x being the linear part

of the affine subspace Ax.

• An affine system A in A assigns to each x ∈ M a subset A (x) ⊂ Ax

such that

1. aff(A (x)) = Ax and

2. some regularity conditions are satisfied on the manner in which the

sets A (x) change as x changes (e.g., to ensure nice properties for

the trajectories as defined below).
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• Some control theoretic concepts:

1. A trajectory for A is a locally absolutely continuous curve

ξ : I → M such that ξ′(t) ∈ A (ξ(t)) for a.e. t ∈ I. Let TrajT (A )

denote the trajectories for A for which I = [0, T ].

2. A state feedback for A is a vector field X such that X(x) ∈ A (x)

for each x ∈ M.

• Note that “control” has disappeared, as promised in the title. After all,

controls are nothing more than “coordinates” for a specific choice of

generators for A.

• Big objective: Using only the geometry of A, do control theory:

controllability, stabilisability and stabilisation, optimal control, etc.

• We shall think a little about controllability and stabilisability. How does

one even define these concepts only in terms of A?
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Controllability and stabilisability definitions

• RA (x0, T ) = {ξ(T ) | ξ ∈ TrajT (A ), ξ(0) = x0} and

RA (x0,≤ T ) = ∪t∈[0,T ]RA (x0, t).

• An affine system A in A is proper at x0 if 0x0
∈ int(conv(A (x0))).

Definition 1 Let A be an affine subbundle on M and let x0 ∈ M.

(i) An affine system A in A is small-time locally controllable (STLC)

from x0 if there exists T > 0 such that x0 ∈ int(RA (x0,≤ t)) for each

t ∈ ]0, T ].

(ii) A is properly small-time locally controllable (PSTLC) from x0 if an

affine system A in A is STLC from x0 whenever A is proper at x0.

(iii) A is small-time locally uncontrollable (STLCUC) from x0 if an affine

system A in A is not STLC from x0 whenever A (x0) is compact.

(iv) A is conditionally small-time locally controllable (CSTLC) from x0

if it is not PSTLC from x0, but there exists an affine system A in A, with

A (x0) compact, that is STLC from x0. •
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• It is not obvious why these are the right definitions, so let us make some

comments on them.

1. First of all, the notions of PSTLC, STLCUC, and CSTLC are applied

to affine subbundles (not affine systems) as desired.

2. It seems reasonable (and is true) that if 0x0
6∈ conv(A (x0)), then A

is not STLC. Therefore, the definition of PSTLC roughly says that,

“If an affine system in A has a chance to be STLC (i.e., A is proper

at x0), then it is.”

3. The reason for compactness in the definitions for STLCUC and

CSTLC is the following. If A (x0) = Ax0
then A is STLC from x0 if

the involutive closure of L(A) has maximal rank at x0. (In more

common language, this means that the involutive closure of the

control vector fields is full rank.) Typically systems achieving

controllability in this way require “large” inputs to overcome the

effects of drift. We do not wish to call such systems PSTLC, but

they will fall into the CSTLC category.
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• For stabilisability, the smoothness of the state feedback is critical.

Definition 2 Let r ∈ Z+ ∪ {∞} ∪ {ω}, let A be an affine subbundle on

M, and let x0 ∈ M.

(i) An affine system A in A is Cr-locally asymptotically

stabilisable (LAS
r) to x0 if there exists a neighbourhood N of x0

and a Cr-state feedback X such that x0 is an asymptotically stable

equilibrium point for X |N.

(ii) A is Cr-properly locally asymptotically stabilisable (PLAS
r)

to x0 if an affine system A in A is LASr whenever A is proper

at x0.

(iii) A is Cr-locally asymptotically unstabilisable (LAUS
r) to x0 if

an affine system A in A is not LASr to x0 whenever A (x0) is

compact.

(iv) A is Cr-conditionally locally asymptotically stabilisable

(CLAS
r) to x0 if it is not PLASr to x0, but there exists an affine

system A in A, with A (x0) compact, that is LASr to x0. •
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• These definitions can be, and probably should be, refined further by additionally

considering “almost Cr-state feedback” (meaning that the feedback is of class

Cr on a punctured neighbourhood of x0).

• When talking about C0-local asymptotic stabilisability, one must be careful

about matters concerning uniqueness of solutions.

• The motivation for these definitions is much like that for the controllability

definitions.

• Here’s an example of a system that is CLASω: ẋ = x+ xu; x, u ∈ R.

• The matter of stabilisability to x0 is known to be closely tied to that of the

ability to steer, in an open-loop manner, points in a neighbourhood of x0 to

x0.
12 This is called “asymptotic controllability.”

• A little more precisely, what can be shown is that if a system is asymptotically

controllable to x0, then it is locally asymptotically stabilisable, possibly using

feedback that is discontinuous.

• This leads us to be careful about defining asymptotic controllability for affine

subbundles. The definitions take a by now familiar form.
1Clarke, Ledyaev, Sontag, and Subotin, IEEE Trans. Automat. Control , 42(10), 1394–

1407, 1997
2Ancona and Bressan, ESAIM Control Optim. Calc. Var., 4, 445–471, 1999
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Definition 3 Let A be an affine subbundle on M and let x0 ∈ M.

(i) An affine system A in A is locally asymptotically controllable

(LAC) to x0 if there exists a neighbourhood N of x0 such that, for

each x ∈ N, there exists a trajectory ξ : [0,∞[→ M for A such that

ξ(0) = x and limt→∞ ξ(t) = x0.

(ii) A is properly locally asymptotically controllable (PLAC) to

x0 if an affine system A in A is LAC whenever A is proper at x0.

(iii) A is locally asymptotically uncontrollable (LAUC) to x0 if an

affine system A in A is not LAC whenever A (x0) is compact.

(iv) A is conditionally locally asymptotically controllable

(CLAC) to x0 if it is not PLAC to x0, but there exists an affine

system A , with A (x0) compact, that is LAC to x0. •
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The big job ahead

Characterise all these notions of controllability and

stabilisability, and the relationships between them.

Almost nothing has been done in this area.

Slide 11

Some “simple” controllability theorems

• The first result is a “zeroth-order” condition.1

Theorem 1 Let A be an affine subbundle on M and let x0 ∈ M.

(i) If Ax0
= Tx0

M, then A is PSTLC from x0.

(ii) If 0x0
6∈ Ax0

, or equivalently if L(A)x0
6= Ax0

, then A is STLUC

from x0.

• This result is “obvious,” on a moment’s thought.

1Sussmann, SIAM J. Control Optim., 16(5), 790–802, 1978
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• Our next result needs some notation.

1. Zx0
(A) = {X ∈ Γ(A) | X(x0) = 0x0

}.

2. For L ⊂ End(Tx0
M) and Sx0

a subspace of Tx0
M, 〈L , Sx0

〉

denotes the smallest subspace of Tx0
M that (a) contains Sx0

and (b) is invariant under each element of L .

3. For k ∈N, let Lie(k)(A) be the distribution generated by A-valued

vector fields and their brackets of degree up to k. Thus

Lie(1)(A)x = span
R
(X(x)| X ∈ Γ(A)),

Lie(2)(A)x = Lie(1)(A)x + span
R
([X1, X2](x)| X1, X2 ∈ Γ(A)).

• If X ∈ Zx0
(A), then define LX ∈ End(Tx0

M) by LX(v) = [X,V ](x0).

This gives an inclusion of Zx0
(A) in End(Tx0

M).
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• The next condition is a “first-order” condition.1

Theorem 2 Let A be an affine subbundle on M and let x0 ∈ M. If

〈

Zx0
(A),Lie(2)(A)x0

〉

= Tx0
M,

then A is PSTLC from x0.

1Bianchini and Stefani, Internat. J. Control , 39(4), 701–714, 1984
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Two second-order results

• As motivation, consider the following system:

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2
1 + αx2

2.

It is intuitively clear that this system is STLC from (0, 0, 0) if and only if

α < 0.

• We wish to generalise this example.
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Vector-valued quadratic forms

• TS2(V;W): set of symmetric bilinear maps from vector space V to

vector space W.

• For λ ∈ W∗, define λB ∈ TS2(V;R) by λB(v1, v2) = 〈λ;B(v1, v2)〉.

Definition 4 B ∈ TS2(V;W) is

(i) definite if there exists λ ∈ W∗ such that λB is positive-definite,

and is

(ii) essentially indefinite if, for each λ ∈ W ∗, λB is either zero or

neither positive nor negative semidefinite. •
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Vector-valued quadratic forms for affine subbundles

• Assume that x0 is a regular point for L(A). It is possible, although

complicated, to proceed without this assumption.

• Given an affine subbundle A on M, a point x0 ∈ M for which 0x0
∈ Ax0

,

and a subspace Sx0
⊂ Tx0

M, define

BA(Sx0
) ∈ TS2(L(A)x0

;Tx0
M/Sx0

) by

BA(Sx0
)(v1, v2) = πSx0

([V1, [X,V2]](x0)),

where

1. X ∈ Zx0
(A),

2. πSx0
: Tx0

M → Tx0
M/Sx0

is the canonical projection, and

3. V1 and V2 are vector fields extending v1, v2 ∈ L(A)x0
.
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• It is not at all clear that BA(Sx0
) is well-defined, and indeed it is only

defined if Sx0
has certain properties (that will hold in the theorem

statements below) and if our assumption on the regularity of L(A) at x0

holds.

Controllability theorems

• Our first theorem gives conditions for A to be PSTLC.

Theorem 3 Let A be an affine subbundle on M, let x0 ∈ M, and let

Sx0
=

〈

Zx0
(A),Lie(2)(A)x0

〉

. If

(i) 0x0
∈ Ax0

,

(ii)
〈

Zx0
(A),Lie(3)(A)x0

〉

, and

(iii) BA(Sx0
) is essentially indefinite,

then A is PSTLC.
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• The next result gives conditions for A to be STLCUC.

Theorem 4 Let A be an affine subbundle on M, let x0 ∈ M, and let

Sx0
= 〈Zx0

(A), L(A)x0
〉+ Lie(∞)(L(A))x0

. If

(i) 0x0
∈ Ax0

,

(ii) x0 is a regular point for Lie(∞)(L(A))x0
, and

(iii) BA(Sx0
) is definite,

then A is STLCUC.

• Not only are these theorems difficult to prove, they are not obvious. For

example, the matter of the choices of Sx0
in each case is crucial.
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Open problems

• There are many, and at this point they are very general.

1. Higher-order conditions for controllability.

2. Relationship between controllability from a point with stabilisability

to a point.

3. Other parts of control theory:

(a) linearisation;

(b) optimal control;

(c) design of feedback control laws;

(d) etc.
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