Problems and Challenges in Control Theory (for Mechanical Systems)

Andrew D. Lewis*

16/03/2005

*Professor, DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVER-SITY, KINGSTON, ON K7L 3N6, CANADA Email: andrew.lewis@queensu.ca, URL: http://www.mast.queensu.ca/~andrew/

What is control theory?

- Control theory is the study of the manipulation of dynamical processes to achieve desired objectives.
- There are many sorts of models considered in control theory. Let us fix one:

$$\dot{x}(t) = f(x(t), u(t)),$$

 $y(t) = g(x(t), u(t)).$

- 1. The variable $x \in \mathbb{R}^n$ is the *state* whose behaviour is being controlled.
- 2. The variable $u \in \mathbb{R}^m$ is the *control* or *input* which we can specify as we like.
- 3. The variable $y \in \mathbb{R}^p$ is the *output*, and might represent what can be measured.

Simple examples

• Servo-motor:

- 1. State: Angular position and velocity of flywheel (and possibly armature current in motor, for accurate model).
- 2. Input: Voltage V(t).
- 3. Output: Angular velocity of flywheel.
- 4. Typical control objective: Design V(t) so that a desired flywheel angular velocity $\omega(t)$ is achieved and maintained.
- Coupled tanks:

- 1. States: Heights $h_1(t)$ and $h_2(t)$ of water in tanks.
- **2**. Input: Input flow $F_{in}(t)$.
- 3. Output: One or both tank heights.
- 4. Typical control objective: Design $F_{in}(t)$ so that desired heights $h_1(t)$ and $h_2(t)$ are achieved and maintained.

Typical control problems

1. **Stabilisation:** Design the control u_{des} (as a function of state, or time, or possibly both) so that a desired state x_0 is a stable equilibrium for the differential equation

$$\dot{x}(t) = f(x(t), \underbrace{u_{\mathsf{des}}(x, t)}_{\substack{\text{or } u_{\mathsf{des}}(t)\\ \text{or } u_{\mathsf{des}}(x)}}.$$

- 2. Output tracking: Obtain u_{des} so that the output follows a specified trajectory $y_{des}(t)$.
- **3**. *Motion planning:* Steer the state from x_1 to x_2 .
- 4. *Optimal control:* Do any of the above while minimising some cost function, e.g., time, or "control energy."

Typical approaches

• Linear systems:

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t).$$

- 1. Much—a huge amount—has been done using tools from linear algebra and functional analysis.
- 2. This is what is typically used in practice.
- Nonlinear systems:
 - 1. Linearise—this works sometimes.
 - 2. In general, nonlinear control theory is very difficult.
 - 3. Need to focus on structure to gain understanding.

Geometric control theory

• Let us specialise a little to systems that are *control-affine*:

$$\dot{x}(t) = f_0(x(t)) + \sum_{a=1}^m u_a(t) f_a(x(t)),$$
(1)

where f_0 is the *drift vector field* and f_1, \ldots, f_m are the *control vector fields*.

- Forget about outputs to keep things simple.
- In *geometric control theory* we are interested in understanding the properties of system (1) from the point of view of differential geometry.
- I will not assume you know any differential geometry...

• Also define $\Re(x_0, \leq T) = \bigcup_{t \in [0,T]} \Re(x_0, t) =$ states reachable in time at most T.

- *Question:* Why is the reachable set important?
- Answer:
 - 1. It gives some idea of what is possible as far as control objectives. For example, maybe the reachable set can tell you that it is not possible to steer between states x_1 and x_2 .
 - 2. Properties of the reachable set appear (although often are hidden) as hypotheses in many design procedures.
 - 3. There are non-obvious and important connections between the reachable set and optimal control theory.
 - 4. There should be (as yet unexplored) relationships between the reachable set and the stabilisation problem.

Exploring the reachable set

- The definition of the reachable set is not useful, because to define it requires computing solutions to differential equations—this is impossible in general.
- *Question:* Are there *computable* ways of characterising the reachable set?
- Consider the following simple control system:

$$\dot{x} = u_1 f_1(x) + u_2 f_2(x).$$

• Apply the control

$$u(t) = \begin{cases} (1,0), & 0 \le t < T, \\ (0,1), & T \le t < 2T, \\ (-1,0), & 2T \le t < 3T, \\ (0,-1), & 3T \le t \le 4T. \end{cases}$$

- Where does x(4T) end up? (Note that x(4T) is clearly in the reachable set.)
- We determine (e.g., by Taylor expansion) that

$$x(4T) = x(0) + T^{2}[f_{1}, f_{2}](x(0)) + \dots, \qquad [f_{1}, f_{2}] = \frac{\partial f_{2}}{\partial x} f_{1} - \frac{\partial f_{1}}{\partial x} f_{2}.$$

- $[f_1, f_2]$ is the *Lie bracket* of f_1 and f_2 .
- By applying suitable controls to our general system, one may move in the directions

$$f_0, f_1, \dots, f_m,$$

 $[f_a, f_b], a, b = 0, \dots, m,$
 $[f_a, [f_b, f_c]], a, b, c = 0, \dots, m,$
etc.

A mechanical exhibition of the Lie bracket

A theorem on the nature of the reachable set

Theorem 1

Procedure: Compute Lie brackets

 $[f_{a_1}, [f_{a_2}, [\dots, [f_{a_{k-1}}, f_{a_k}]]]], k \in \mathbb{Z}_+, a_1, \dots, a_k \in \{0, 1, \dots, m\}.$

Check: At some point in the computation, do some collection of these Lie brackets evaluated at x_0 form a basis? *Conclusion:* If so, $int(\Re(x_0, \leq T) \neq \varnothing)$.

Is the Lie bracket important?

- Our previous analysis and theorem suggest that the Lie bracket is interesting in geometric control theory.
- It is also important in differential geometry, physics, some areas of partial differential equations.
- It is also an example of a general structure in algebra known as a Lie algebra. Associated with these are Lie groups.
- Thus Lie brackets appear in various contexts in mathematics, as well as being essential in geometric control theory.

Refining the reachable set

- Accessibility is essentially exactly characterised by the previous theorem.
- Controllability is "impossible" (precisely, it is NP-hard, in the language of computational complexity).

Geometric mechanics

- Apart from control theory, mechanics has its own very interesting mathematical structure.
- The most important part of the physical model is the kinetic energy
 leads to an interesting geometric structure called a *Riemannian metric*.
- Also interesting are *nonholonomic constraints* (as in last two of the examples).
- The structure associated with a nonholonomic constraint is a *distribution*

→ relationship between Riemannian metric and constraint distribution gives lots of interesting problems.

A simple example in detail

- Hovercraft system:
 - 1. Question: Is the system accessible?
 - 2. Answer: Yes (easy).
 - 3. *Question:* Is the system controllable?
 - 4. Answer: Yes (a little harder).
 - 5. *Question:* Can we design an algorithm to steer from state to state?
 - 6. Answer: Yes, if we are quite clever.
 - 7. Question: Can we design an algorithm to stabilise a desired state?
 - 8. Answer: Yes, but we do not understand this very well.

Make the example harder

- 1. *Question:* Is the system accessible?
- 2. Answer: Yes (easy).
- 3. *Question:* Is the system controllable?
- 4. *Answer:* No, at least not locally (nontrivial).

- 5. *Question:* Can we design an algorithm to steer from state to state?
- 6. Answer: Unknown.
- 7. Question: Can we design an algorithm to stabilise a desired state?
- 8. Answer: Unknown

Make the example different

- 1. Question: Is the system accessible?
- 2. Answer: Yes (easy).
- 3. *Question:* Is the system controllable?
- 4. *Answer:* No, at least not locally (getting really difficult now).
- 5. *Question:* Can we design an algorithm to steer from state to state?
- 6. Answer: Unknown.
- 7. Question: Can we design an algorithm to stabilise a desired state?
- 8. Answer: Unknown

Punchline Even easy problems can be very difficult.

Motion planning for the easy planar body

• Movies for the planar body.

Nonholonomic mechanics: snakeboard example

- Snakeboard corporate movies.
- Snakeboard gaits.

Snakeboard motion planning

- The movies suggest that the snakeboard is controllable. It is.
- *Problem:* Can one design an algorithm to steer the snakeboard from a desired initial position to a desired final position?
- Answer: Yes!

But where's the mathematics?

- Control theory is widely practised as an engineering discipline.
- But it is also a mathematical subject in its own right.
- It has many branches.
- Linear control theory:
 - 1. linear differential equations;
 - 2. linear algebra;
 - 3. complex function theory;
 - 4. measure theory;
 - 5. functional analysis;
 - 6. operator theory;
 - 7. convex analysis.
- Nonlinear control theory:
 - 1. linear algebra;
 - 2. advanced differential equations;
 - 3. measure theory;
 - 4. "simple" differential geometry.
- Geometric control theory:
 - 1. linear algebra;
 - 2. advanced differential equations;
 - 3. measure theory;
 - 4. differential geometry;
 - 5. theory of distributions;
 - 6. analytic differential geometry (e.g., no partitions of unity);

- Control theory for mechanical systems:
 - 1. all the stuff from geometric control theory plus
 - 2. Riemannian geometry;
 - 3. affine differential geometry;
 - 4. Lie groups;
 - 5. some physics, if it interests you.
- *Important fact:* Each branch of control theory also has its own unique mathematical problems. That is, control theory *is* a subject in mathematics.

Summary

- Control theory is a broad subject, which uses a huge variety of mathematics, and possesses its own intricate mathematical problems.
- Mechanical control systems provide a class of systems with rich geometric structure.
- There is much work to be done here.

Acknowledgements for movies

- The Snakeboard manufactured by Snakeboard USA, http://www.snakeboard.com/.
- 2. The Roller Racer is manufactured by Mason Corporation, http://www.masoncorporation.com/.
- The Plasma Car is made by PlaSmart Corporation, http://www.plasmacar.com/.