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System definitions

e We will consider various flavours of systems, depending on whether
they represent open-loop or closed-loop, or linear or nonlinear.
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Nonlinear system definitions

Definition 1 A simple mechanical control system is a
quadruple (Q,G,V, & = {F*', ..., F™}) where

(i

) Q is an n-dimensional manifold,
(i) G is a Riemannian metric on Q,
(iii) V is a function on Q, and

)

(iv) F' ..., F™ are one-forms on Q, generating a subbundle of T*Q
which we denote by J.

We assume all data to be at least of class C°. °

e This will typically be the open-loop control system.

e The closed-loop system will be the following.

Definition 2 A forced simple mechanical system is a

quadruple (Q, G, V, F') where

(i)
(i) G is a Riemannian metric on Q,
(iii)

(iv) F: TQ — T*Q is a bundle map over idq called the external

Q is an n-dimensional manifold,

V is a function on Q, and

force,

where we assume that all data is at least class C°.
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An external force F' is

(v) dissipative if F(v,) = —R’(v,), where R is a symmetric
positive-semidefinite (0, 2)-tensor field called a Rayleigh
dissipation tensor, is

(vi) linearly gyroscopic if F(v,) = —C”(v,), where C' is a
skew-symmetric (0, 2)-tensor field called the linear gyroscopic
tensor, and is

(vii) quadratically gyroscopic if F(v,) = —B°(v,), where B is a
(0, 3)-tensor field, called the quadratic gyroscopic tensor,
satisfying B(ug, vg, wy) = —B(vg, ug, wy), for all ug, vy, wy € TQ,
and where

b
(B’ (vq); uq) = B(ug, vg, vg). *

Equations of motion for nonlinear systems

e For a simple mechanical control system
(Q,G,V,¥ ={F',...,F™}), the governing equations are

G

V() = =GF e dV(3(t)) + Y u® ()G o F(4(t))
(G+M " (@)C(q. 9)g = —M " (@)dV(q) + M~ (q)G(q)u),

G
where V is the Levi-Civita connection associated with G.

e For a forced simple mechanical system (Q, G, V, F), the governing
equations are

G

Vo' (t) = =G o dV (y(t) + G* o F(v/(t))
(i+ M q)C(g.9)g=—M"(q)dV(q) + M~ (q)F(q,q)).
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Linear system definitions

e The linear open-loop control systems will have the following form.
Definition 3 A linear mechanical control system is a
quadruple (V, M, K, F') where

(i) V is a finite-dimensional IR-vector space,

(i)

(iii) K is a symmetric (0, 2)-tensor on V, and

(iv) F e L(R™;V*). )

M is an inner product on V,

e Linear closed-loop systems have the following form.

Definition 4 A forced linear mechanical system is a quadruple

(V, M, K, (F1, Fy)) where

(i) V is a finite-dimensional IR-vector space,

(i) M is an inner product on V,

(iii) K is a symmetric (0, 2)-tensor on V, and
)

(iv) Fy and F5 are linear maps from V to V* defining the external

force.

If '} =0 and F5 is symmetric and negative semidefinite, then the
external force is dissipative, and if F; = 0 and F5 is skew-symmetric,
then the external force is gyroscopic. °
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Equations of motion for linear systems

e For a linear mechanical control system (V, M, K, F'), the governing

equations are
Z(t) + MFo Kb(a:(t)) = Mo F(u(t)).

e For a forced linear mechanical system (V, M, K, (F1, F5)), the
governing equations are

i(t) + Mo KP(x(t)) = MF o Fy(x(t)) + M* o Fy(i(t)).

Problem formulation

Energy shaping feedback for nonlinear systems

o Define Ay = G, oG,

Definition 5 An energy shaping feedback for a simple mechanical
Yo = (Q, Gor, Voi, &) with closed-loop system

Y = (Q,Ga, Va, —RY — C — B) is given by F': TQ — F with

F = —Fiin — Fpot — Fyiss — Fgyr, Where

(i) Fiin: TQ — F has the property that

G| Gy

Gﬁl o Fin(7/(t)) = V’y’(t)'Y/(t) + Gg ° BEI (') - Vv,(tw’(t),
(ii) Fpot: Q = F has the property that

Foot(7(1)) = Aci o dVa(v(t)) — dVar(v(1)),
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(iii) Fgiss: TQ — F has the property that
Fiss(7/(t)) = At o Ril (Y'(1)),
(iv) Fgyr: TQ — JF has the property that

ngf(’yl(t)) = AcI ° C’Z (")’,(t)). °

Energy shaping feedback for linear systems

Definition 6 Let Xy = (V, M, Ko, F) be a linear mechanical
control system. A linear energy shaping feedback for ¥ is a
linear map u: V@&V — R™ with the property that there exists
M, Kahp, Repp € TS*(V) and Cgpp € TA(V) such that My is an
inner product and such that

Fou(w,v) = —Ad o K () = Adt 0 R (v) = Aat 0 Cdp (),

where Ay = M7 o M, .
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The central problem of energy shaping

Problems 1

1. For a given open-loop system, determine the set of closed-loop
systems.

2. Given a certain property for the closed-loop system, does there
exist an energy shaping feedback for which the closed-loop system
has this property (e.g., stability)? o

Linear energy shaping’

e Given: The open-loop linear mechanical control system
EoI = (V7 Mol; Koh F)
o Assume that the pair (M o K2, MY o F) is controllable. (If not,
—_——— ——

A B
then restrict to the controllable subspace.)

e Define Ex, to be the collection of A € L(V;V) satisfying
1. A= MoK+ Mo FolL for some L € L(V;R™), and

A+BoK
2. A is diagonalisable over R.

1Zenkov, MTNS’02
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Proposition 1 Let ¥ = (V, My, Ko, F') be a linear mechanical
control system. Then, for My, K € TSQ(V) with M an inner
product, the following are equivalent:

(i) there exists a linear feedback w: V &V — R™ of the form
x ® v — —L(x) for which the dynamics of the closed-loop system
are those of the forced linear mechanical system
(V: Mch Kch (07 0)>"

(ii) Mfo K} € Bs,.
Corollary 1 A controllable linear mechanical control system can be

stabilised by linear energy shaping feedback.

e One can construct a multitude of explicit ways to “pull apart”
M o K? to yield My and Kq.

Some results on potential shaping

The classical result!

e Given: The open-loop simple mechanical control system
EO| == (Q7GO|7%|7g)'

e Let F(°°) be the largest integrable codistribution contained in F.
e Assume that F and F(>) are regular.

e Let C*(Q)g denote the set of functions f for which
df € I (F)),

Proposition 2 (van der Schaft 1986) The difference between
the closed- and open-loop potentials lies in C*(Q) .

lyvan der Schaft, Nonlinear Anal. TMA, 10(10), 1021-1035, 1986
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Potential shaping after kinetic shaping

e Now suppose that we have done some kinetic shaping to arrive at a
closed-loop kinetic energy metric G¢. Recall that Ay = Gg, o Gcﬁl.

o Let I = Ag(F) and let ffﬁloo) be the largest integrable
codistribution contained in F.

o Assume that Fo and F™ are regular.

e Define
PS(Q)={Va e CT(Q) | dVag—AqodVy € T (Fa)}

and L(PS(Q)) = C=(Q)7,.

Proposition 3 PS(Q) is an affine subspace (possibly empty) of
C*=(Q) modelled on the subspace L(PS(Q)).

Interpretation

e Recall the situation with the linear equation Az = b:
1. b ¢ image(A): No solutions.
2. b € image(A): Set of solutions is an affine subspace modelled on
ker(A).
e In the classical potential shaping case, b = 0 in the analogue.

e We do not yet understand conditions for the analogue of
b & image(A) or b € image(A), i.e., we do not understand the
integrability of the potential shaping p.d.e.

e Note that the affine subspace is modelled on C*(Q),,.

1. This subspace might be trivial, even when the classical energy
shaping subspace, C*(Q)s, is not.

2. If codim(F) = 1, then codim(F) = 1, and so Frobenius's

Theorem guarantees that C™(Q),, is not trivial.
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Setting up the potential shaping problem for integrability tests!

e Think of the exterior derivative as a map, denoted by d;, from J!(Fy)
to TA*(TQ).

e Define
Pos(Vol)g = {5' Fa(q) | d1(j Fu(q)) = —d(Aa > dVe)(q)}

Proposition 4 Suppose that the first cohomology group of Q is zero.
Then a function V¢ is a possible closed-loop potential function if and only
if dVgy = Fq + A o dVy, where Fy is a section of F having the property
that j'Fy takes values in Pps(Vy)).

e This result puts the kinetic shaping problem in a form where the
techniques of Spencer, Serre, Quillen, Goldschmidt, etc. are applicable.

ISpencer, Ann. Math., 7T6(3), 306-398 and 399-445, 1962,
Quillen, PhD thesis, Harvard University, 1964,
Serre, Appendix to Guillemin/Sternberg, Bull. Amer. Math. Soc. (N.S.),
70, 16-47, 1964
Goldschmidt, J. Differential Geom., 1, 269-307, 1967

Formulations of the kinetic shaping problem

An affine connection formulation

e For a general affine connection V and Riemannian metric G with its
G
Levi-Civita connection V, define a (0, 3)-tensor field Dy ¢ by
G
G(VxY,Z)=G(VxY,Z)+ Dvc(Z,X,Y).

e For a (0,k)-tensor A on V, define a symmetric
(resp. skew-symmetric) (0, k)-tensor Sym(A) (resp. Alt(A)) by

1
Sym(A)(vlv S ,’Uk) = H Z A(UU(I)v s 7va(k))7

) oESE

resp. Alt(A)(v1,...,vk) = Z sgn(a)A (Vo(1)s - s Vo (k))-
ocESy

e Think of Sym and Alt as linear maps from T9(V) to T (V).
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e A (0,3)-tensor A is gyroscopic if A(u,v,w) =—A(v,u,w)
is torsional if A(u,v,w) =—A(u,w,v)
Gyr(V): gyroscopic tensors
Tor(V): torsional tensors

e For a Riemannian metric G, define KEg: TQ — R by
KEg(vq) = 3G(vg, vg).

e An affine connection V is G-energy-preserving if
ZynKEg(7/(t)) = 0 for every geodesic y of V.

Proposition 5 The following are equivalent:

(i) V is G-energy preserving;
(ii) VG € I'(ker(Sym));
(iii) Dy g € I'(ker(Sym)),
(iv) there exists tensor fields Qv ¢ € T (TA*(TQ)),

By g € I'"((Gyr(TQ) nker(Alt))), and
Ty € T=((Tor(TQ) Nker(Alt))) such that

G
G(VxY, Z) = G(VxY, Z) + By c(Z, X,Y)
+ TV,G(Z7 X, Y) + QV,G(Z7 X, Y)v

forall X,Y,Z € T=(TQ).
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e Discussion:

1. If B is a gyroscopic tensor field, then there exists a unique
energy-preserving, torsion-free affine connection V such that

G
G(VxX,Y)=G(VxX,Y)+ B, X, X)

forall X, Y e I'(TQ).
Explicitly, V is defined by

G
G(Vva Z) = G(vav Z) + BV,G(Z7X7 Y)7

where By ¢ = B — Alt(B).
2. Changes the kinetic energy/quadratic gyroscopic force
determination into a purely affine connection problem:

Find a Riemannian metric G, and a Gg-energy preserving

cl
connection V such that

cl

Gol
VoY (t) = VY (1) € Ggl(rfv(t))'

Setting up the kinetic shaping problem for integrability tests!
e Define
ES(Q) = X5 (TQ) x (Gyr(TQ) Nker(Alt))

and

Pus(Gal)g = {(7'G(q), i* B(q)) € J*(ES(Q))]
(LC(5'G(q)) — LC(j'Gai(q)) + G* B € G5 (F @ TS*(TQ))}.

Proposition 6 A Riemannian metric G and a gyroscopic tensor
field B solve the kinetic energy/quadratic gyroscopic problem if and
only if the 1-jet of the section q — (G (q), Ba(q)) takes values in
Prs(Gal)-

e This result puts the kinetic shaping problem in a form where the
techniques of Spencer, Serre, Quillen, Goldschmidt, etc. are
applicable.

Hbid
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Energy shaping and linearisation

Problem statement

e Given: A simple mechanical control system
Yhonlin = (Q, Gor, Vor, &) with qo an equilibrium point and F regular.

o Let Xjin = (T4, Q, Goi(qo), Hess Voi(qo), F') be its linearisation at gq.

Problem 1 When can a linear energy shaping feedback for the
linearisation be implemented on the full system, and the
implementation is ensured to also be energy shaping? °

e What does “implemented” mean?

e If one is working in a particular set of coordinates, one
“implements” without thinking about it.

e A coordinate-free version is the following.

Definition 7 A near identity diffeomorphism at ¢y € Q is a
triple (x, Up, U7 ), where
(i) Up C T4 Q is a neighborhood of 0y,
(i) U; C Q is a neighborhood of ¢y, and
(iii) x: Ug — Uy is a diffeomorphism satisfying
(a) x(0go) = qo and

(b) To,, x =idr, q (where we make the natural identification of
To,, (T4, Q) with T4, Q). °
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e Near identity diffeomorphisms have a simple relationship with

coordinate charts:

TQOQ
-—r R"
L
X L(Uo)
we ey
W= Lox !

e An implementation of a linear feedback
Ulin: T¢oQ ® T4, Q — IR™ using a near identity diffeomorphism
(x, Up, Uy) is the control law wnenlin = wiin © TX L.

Linearisation and potential shaping

Proposition 7 For (Q, G, Vo, &) the following are equivalent:

(i) F is integrable;

(ii) there exists a family F of input one-forms'and a near identity
diffeomorphism such that every closed-loop potential of Y, can
be implemented as a potential shaping feedback for ¥ oniin-

e Punchline: The obstructions to implementing a linearly shaped
potential on the nonlinear system are the same as the obstructions

to nonlinear potential shaping.

IEquivalent to F in the sense that F=7.
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Linearisation and dissipative and gyroscopic forces

Proposition 8 For (Q, Gy, Vo, &) the following are equivalent:

(i) F is integrable;

(ii) there exists a family E' of input one-forms and a near identity
diffeomorphism such that every closed-loop dissipative
(resp. gyroscopic) force for ¥y, can be implemented as a
closed-loop dissipative (resp. gyroscopic) force for ¥nonlin-

e Punchline: The obstructions implementing linear dissipative and
gyroscopic forces on the nonlinear system are the same as the
obstructions to nonlinear potential shaping.

Interesting open question

Question 1 When can a kinetic/potential shaping feedback for ¥,
be implemented as a kinetic/potential shaping feedback for ¥ oniin?

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Open problems

1. Integrability of potential shaping p.d.e.

2. Integrability of kinetic shaping p.d.e.

3. Computable necessary or sufficient conditions for integrability.

4. What closed-loop kinetic energies allow useful potential shaping?
5. Complete the linearisation picture.

6. Closed-loop stability considerations.
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