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System definitions

• We will consider various flavours of systems, depending on whether

they represent open-loop or closed-loop, or linear or nonlinear.
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Nonlinear system definitions

Definition 1 A simple mechanical control system is a

quadruple (Q,G, V,F = {F 1, . . . , Fm}) where

(i) Q is an n-dimensional manifold,

(ii) G is a Riemannian metric on Q,

(iii) V is a function on Q, and

(iv) F 1, . . . , Fm are one-forms on Q, generating a subbundle of T∗Q

which we denote by F.

We assume all data to be at least of class C∞. •

• This will typically be the open-loop control system.

• The closed-loop system will be the following.

Definition 2 A forced simple mechanical system is a

quadruple (Q,G, V, F ) where

(i) Q is an n-dimensional manifold,

(ii) G is a Riemannian metric on Q,

(iii) V is a function on Q, and

(iv) F : TQ → T∗Q is a bundle map over idQ called the external

force,

where we assume that all data is at least class C∞.
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An external force F is

(v) dissipative if F (vq) = −R♭(vq), where R is a symmetric

positive-semidefinite (0, 2)-tensor field called a Rayleigh

dissipation tensor, is

(vi) linearly gyroscopic if F (vq) = −C♭(vq), where C is a

skew-symmetric (0, 2)-tensor field called the linear gyroscopic

tensor, and is

(vii) quadratically gyroscopic if F (vq) = −B♭(vq), where B is a

(0, 3)-tensor field, called the quadratic gyroscopic tensor,

satisfying B(uq, vq, wq) = −B(vq, uq, wq), for all uq, vq, wq ∈ TQ,

and where

〈B♭(vq); uq〉 = B(uq, vq, vq). •

Equations of motion for nonlinear systems

• For a simple mechanical control system

(Q,G, V,F = {F 1, . . . , Fm}), the governing equations are

G

∇γ′(t)γ
′(t) = −G♯

◦ dV (γ(t)) +
m∑

a=1

ua(t)G♯
◦ F a(γ(t))

(
q̈ +M−1(q)C(q, q̇)q̇ = −M−1(q)dV (q) +M−1(q)G(q)u

)
,

where
G

∇ is the Levi-Civita connection associated with G.

• For a forced simple mechanical system (Q,G, V, F ), the governing

equations are

G

∇γ′(t)γ
′(t) = −G♯

◦ dV (γ(t)) +G♯
◦ F (γ′(t))

(
q̈ +M−1(q)C(q, q̇)q̇ = −M−1(q)dV (q) +M−1(q)F (q, q̇)

)
.
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Linear system definitions

• The linear open-loop control systems will have the following form.

Definition 3 A linear mechanical control system is a

quadruple (V,M,K, F ) where

(i) V is a finite-dimensional R-vector space,

(ii) M is an inner product on V,

(iii) K is a symmetric (0, 2)-tensor on V, and

(iv) F ∈ L(Rm;V∗). •

• Linear closed-loop systems have the following form.

Definition 4 A forced linear mechanical system is a quadruple

(V,M,K, (F1, F2)) where

(i) V is a finite-dimensional R-vector space,

(ii) M is an inner product on V,

(iii) K is a symmetric (0, 2)-tensor on V, and

(iv) F1 and F2 are linear maps from V to V∗ defining the external

force.

If F1 = 0 and F2 is symmetric and negative semidefinite, then the

external force is dissipative, and if F1 = 0 and F2 is skew-symmetric,

then the external force is gyroscopic. •
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Equations of motion for linear systems

• For a linear mechanical control system (V,M,K, F ), the governing

equations are

ẍ(t) +M ♯
◦ K♭(x(t)) = M ♯

◦ F (u(t)).

• For a forced linear mechanical system (V,M,K, (F1, F2)), the

governing equations are

ẍ(t) +M ♯
◦ K♭(x(t)) = M ♯

◦ F1(x(t)) +M ♯
◦ F2(ẋ(t)).

Problem formulation

Energy shaping feedback for nonlinear systems

• Define Λcl = G
♭
ol

◦G
♯
cl.

Definition 5 An energy shaping feedback for a simple mechanical

Σol = (Q,Gol, Vol,F ) with closed-loop system

Σcl = (Q,Gcl, Vcl,−R♭
cl − C♭

cl −B♭
cl) is given by F : TQ → F with

F = −Fkin − Fpot − Fdiss − Fgyr, where

(i) Fkin : TQ → F has the property that

G
♯
ol

◦ Fkin(γ
′(t)) =

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl(γ
′(t))−

Gol

∇γ′(t)γ
′(t),

(ii) Fpot : Q → F has the property that

Fpot(γ(t)) = Λcl ◦ dVcl(γ(t))− dVol(γ(t)),
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(iii) Fdiss : TQ → F has the property that

Fdiss(γ
′(t)) = Λcl ◦ R

♭
cl(γ

′(t)),

(iv) Fgyr : TQ → F has the property that

Fgyr(γ
′(t)) = Λcl ◦ C

♭
cl(γ

′(t)). •

Energy shaping feedback for linear systems

Definition 6 Let Σol = (V,Mol, Kol, F ) be a linear mechanical

control system. A linear energy shaping feedback for Σol is a

linear map u : V ⊕ V → Rm with the property that there exists

Mcl, Kshp, Rshp ∈ TS2(V) and Cshp ∈ T
∧2

(V) such that Mcl is an

inner product and such that

F ◦ u(x, v) = −Λcl ◦ K
♭
shp(x)− Λcl ◦ R

♭
shp(v)− Λcl ◦ C

♭
shp(v),

where Λcl = M ♭
ol

◦ M
♯
cl. •
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The central problem of energy shaping

Problems 1

1. For a given open-loop system, determine the set of closed-loop

systems.

2. Given a certain property for the closed-loop system, does there

exist an energy shaping feedback for which the closed-loop system

has this property (e.g., stability)? •

Linear energy shaping1

• Given: The open-loop linear mechanical control system

Σol = (V,Mol, Kol, F ).

• Assume that the pair (M ♯
ol

◦ K♭
ol

︸ ︷︷ ︸

A

,M
♯
ol

◦ F )
︸ ︷︷ ︸

B

is controllable. (If not,

then restrict to the controllable subspace.)

• Define EΣol
to be the collection of A ∈ L(V;V) satisfying

1. A = M
♯
ol

◦ K♭
ol +M

♯
ol

◦ F ◦ L
︸ ︷︷ ︸

A+B◦K

for some L ∈ L(V;Rm), and

2. A is diagonalisable over R.

1Zenkov, MTNS’02
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Proposition 1 Let Σ = (V,Mol, Kol, F ) be a linear mechanical

control system. Then, for Mcl, Kcl ∈ TS2(V) with Mcl an inner

product, the following are equivalent:

(i) there exists a linear feedback u : V ⊕ V → Rm of the form

x⊕ v 7→ −L(x) for which the dynamics of the closed-loop system

are those of the forced linear mechanical system

(V,Mcl, Kcl, (0, 0));

(ii) M
♯
cl

◦ K♭
cl ∈ EΣol

.

Corollary 1 A controllable linear mechanical control system can be

stabilised by linear energy shaping feedback.

• One can construct a multitude of explicit ways to “pull apart”

M
♯
cl

◦ K♭
cl to yield Mcl and Kcl.

Some results on potential shaping

The classical result1

• Given: The open-loop simple mechanical control system

Σol = (Q,Gol, Vol,F ).

• Let F(∞) be the largest integrable codistribution contained in F.

• Assume that F and F
(∞) are regular.

• Let C∞(Q)F denote the set of functions f for which

df ∈ Γ∞(F(∞)).

Proposition 2 (van der Schaft 1986) The difference between

the closed- and open-loop potentials lies in C∞(Q)F.

1van der Schaft, Nonlinear Anal. TMA, 10(10), 1021–1035, 1986
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Potential shaping after kinetic shaping

• Now suppose that we have done some kinetic shaping to arrive at a

closed-loop kinetic energy metric Gcl. Recall that Λcl = G
♭
ol

◦G
♯
cl.

• Let Fcl = Λcl(F) and let F
(∞)
cl be the largest integrable

codistribution contained in Fcl.

• Assume that Fcl and F
(∞)
cl are regular.

• Define

PS(Q) = {Vcl ∈ C
∞

(Q) | dVcl − Λcl ◦ dVol ∈ Γ
∞

(Fcl)}

and L(PS(Q)) = C∞(Q)Fcl
.

Proposition 3 PS(Q) is an affine subspace (possibly empty) of

C∞(Q) modelled on the subspace L(PS(Q)).

Interpretation

• Recall the situation with the linear equation Ax = b:

1. b 6∈ image(A): No solutions.

2. b ∈ image(A): Set of solutions is an affine subspace modelled on

ker(A).

• In the classical potential shaping case, b = 0 in the analogue.

• We do not yet understand conditions for the analogue of

b 6∈ image(A) or b ∈ image(A), i.e., we do not understand the

integrability of the potential shaping p.d.e.

• Note that the affine subspace is modelled on C∞(Q)Fcl
.

1. This subspace might be trivial, even when the classical energy

shaping subspace, C∞(Q)F, is not.

2. If codim(F) = 1, then codim(Fcl) = 1, and so Frobenius’s

Theorem guarantees that C∞(Q)Fcl
is not trivial.
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Setting up the potential shaping problem for integrability tests1

• Think of the exterior derivative as a map, denoted by d1, from J1(Fcl)

to T
∧2

(TQ).

• Define

PPS(Vol)q = {j1Fcl(q) | d1(j
1Fcl(q)) = −d(Λcl ◦ dVol)(q)}.

Proposition 4 Suppose that the first cohomology group of Q is zero.

Then a function Vcl is a possible closed-loop potential function if and only

if dVcl = Fcl + Λcl ◦ dVol where Fcl is a section of Fcl having the property

that j1Fcl takes values in PPS(Vol).

• This result puts the kinetic shaping problem in a form where the

techniques of Spencer, Serre, Quillen, Goldschmidt, etc. are applicable.

1Spencer, Ann. Math., 76(3), 306–398 and 399–445, 1962,

Quillen, PhD thesis, Harvard University, 1964,

Serre, Appendix to Guillemin/Sternberg, Bull. Amer. Math. Soc. (N.S.),

70, 16–47, 1964

Goldschmidt, J. Differential Geom., 1, 269–307, 1967

Formulations of the kinetic shaping problem

An affine connection formulation

• For a general affine connection ∇ and Riemannian metric G with its

Levi-Civita connection
G

∇, define a (0, 3)-tensor field D∇,G by

G(∇XY, Z) = G(
G

∇XY, Z) +D∇,G(Z,X, Y ).

• For a (0, k)-tensor A on V, define a symmetric

(resp. skew-symmetric) (0, k)-tensor Sym(A) (resp. Alt(A)) by

Sym(A)(v1, . . . , vk) =
1

k!

∑

σ∈Sk

A(vσ(1), . . . , vσ(k)),

resp. Alt(A)(v1, . . . , vk) =
1

k!

∑

σ∈Sk

(−1)sgn(σ)A(vσ(1), . . . , vσ(k)).

• Think of Sym and Alt as linear maps from T0
k(V) to T0

k(V).
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• A (0, 3)-tensor A is gyroscopic if A(u, v, w) = −A(v, u, w)

is torsional if A(u, v, w) = −A(u, w, v)

Gyr(V): gyroscopic tensors

Tor(V): torsional tensors

• For a Riemannian metric G, define KEG : TQ → R by

KEG(vq) =
1
2
G(vq, vq).

• An affine connection ∇ is G-energy-preserving if

Lγ′′(t)KEG(γ
′(t)) = 0 for every geodesic γ of ∇.

Proposition 5 The following are equivalent:

(i) ∇ is G-energy preserving;

(ii) ∇G ∈ Γ∞(ker(Sym));

(iii) D∇,G ∈ Γ∞(ker(Sym));

(iv) there exists tensor fields Ω∇,G ∈ Γ∞(T
∧3

(TQ)),

B∇,G ∈ Γ∞((Gyr(TQ) ∩ ker(Alt))), and

T̂∇,G ∈ Γ∞((Tor(TQ) ∩ ker(Alt))) such that

G(∇XY, Z) = G(
G

∇XY, Z) +B∇,G(Z,X, Y )

+ T̂∇,G(Z,X, Y ) + Ω∇,G(Z,X, Y ),

for all X, Y, Z ∈ Γ∞(TQ).
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• Discussion:

1. If B is a gyroscopic tensor field, then there exists a unique

energy-preserving, torsion-free affine connection ∇ such that

G(∇XX, Y ) = G(
G

∇XX, Y ) +B(Y,X,X)

for all X, Y ∈ Γ∞(TQ).

Explicitly, ∇ is defined by

G(∇XY, Z) = G(
G

∇XY, Z) +B∇,G(Z,X, Y ),

where B∇,G = B −Alt(B).

2. Changes the kinetic energy/quadratic gyroscopic force

determination into a purely affine connection problem:

Find a Riemannian metric Gcl and a Gcl-energy preserving

connection
cl

∇ such that
cl

∇γ′(t)γ
′(t)−

Gol

∇γ′(t)γ
′(t) ∈ G♯

ol(Fγ(t)).

Setting up the kinetic shaping problem for integrability tests1

• Define

ES(Q) = Σ+
2 (TQ)× (Gyr(TQ) ∩ ker(Alt))

and

PKS(Gol)q =
{
(j1G(q), j1B(q)) ∈ J1(ES(Q))

∣
∣

(LC(j1G(q))− LC(j1Gol(q)) +G
♯B ∈ G♯

ol(F ⊗ TS2(TQ))}.

Proposition 6 A Riemannian metric Gcl and a gyroscopic tensor

field Bcl solve the kinetic energy/quadratic gyroscopic problem if and

only if the 1-jet of the section q 7→ (Gcl(q), Bcl(q)) takes values in

PKS(Gol).

• This result puts the kinetic shaping problem in a form where the

techniques of Spencer, Serre, Quillen, Goldschmidt, etc. are

applicable.
1Ibid
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Energy shaping and linearisation

Problem statement

• Given: A simple mechanical control system

Σnonlin = (Q,Gol, Vol,F ) with q0 an equilibrium point and F regular.

• Let Σlin = (Tq0Q,Gol(q0),HessVol(q0), F ) be its linearisation at q0.

Problem 1 When can a linear energy shaping feedback for the

linearisation be implemented on the full system, and the

implementation is ensured to also be energy shaping? •

• What does “implemented” mean?

• If one is working in a particular set of coordinates, one

“implements” without thinking about it.

• A coordinate-free version is the following.

Definition 7 A near identity diffeomorphism at q0 ∈ Q is a

triple (χ,U0,U1), where

(i) U0 ⊂ Tq0Q is a neighborhood of 0q0 ,

(ii) U1 ⊂ Q is a neighborhood of q0, and

(iii) χ : U0 → U1 is a diffeomorphism satisfying

(a) χ(0q0) = q0 and

(b) T0q0
χ = idTq0

Q (where we make the natural identification of

T0q0
(Tq0Q) with Tq0Q). •
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• Near identity diffeomorphisms have a simple relationship with

coordinate charts:

R
n

Tq0
Q

Q

U0

U1

L(U0)

q0

0q0

χ

L

ψ = L ◦χ−1

• An implementation of a linear feedback

ulin : Tq0Q⊕ Tq0Q → Rm using a near identity diffeomorphism

(χ,U0,U1) is the control law unonlin = ulin ◦ Tχ−1.

Linearisation and potential shaping

Proposition 7 For (Q,Gol, Vol,F ) the following are equivalent:

(i) F is integrable;

(ii) there exists a family F̃ of input one-forms1and a near identity

diffeomorphism such that every closed-loop potential of Σlin can

be implemented as a potential shaping feedback for Σnonlin.

• Punchline: The obstructions to implementing a linearly shaped

potential on the nonlinear system are the same as the obstructions

to nonlinear potential shaping.

1Equivalent to F in the sense that F̃ = F.
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Linearisation and dissipative and gyroscopic forces

Proposition 8 For (Q,Gol, Vol,F ) the following are equivalent:

(i) F is integrable;

(ii) there exists a family F̃ of input one-forms and a near identity

diffeomorphism such that every closed-loop dissipative

(resp. gyroscopic) force for Σlin can be implemented as a

closed-loop dissipative (resp. gyroscopic) force for Σnonlin.

• Punchline: The obstructions implementing linear dissipative and

gyroscopic forces on the nonlinear system are the same as the

obstructions to nonlinear potential shaping.

Interesting open question

Question 1 When can a kinetic/potential shaping feedback for Σlin

be implemented as a kinetic/potential shaping feedback for Σnonlin?
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Open problems

1. Integrability of potential shaping p.d.e.

2. Integrability of kinetic shaping p.d.e.

3. Computable necessary or sufficient conditions for integrability.

4. What closed-loop kinetic energies allow useful potential shaping?

5. Complete the linearisation picture.

6. Closed-loop stability considerations.
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