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What are we trying to do?

• In control theory, a commonly encountered class of systems is

represented by equations like

ẋ(t) = f0(x(t)) +

m
∑

a=1

ua(t)fa(x(t))

for vector fields F = {f0, f1, . . . , fm} on a manifold M. The

control t 7→ u(t) takes values in U ⊂ Rm.

• The geometrically interesting thing here is the affine distribution

AF defined by

AF ,x =
{

f0(x) +
m
∑

a=1

uafa(x)
∣

∣

∣
u ∈ Rm

}

.

Objective: Frame control theory in terms of the affine distribution

AF rather than the specific choice of generators F .
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• In particular, we are interested in the geometry of controllability,

stabilisability, and relationships between controllability and

stabilisability.

• This seems obvious. Why is there any “content” here?

Answer: Because the control set U actually matters, but in subtle

and nonobvious ways.

Need to really understand some control theory.

Learn things about affine distributions using control theory.

• This is completely vague, so let’s be precise.

Control-Affine systems

Definitions (and lots of them)

Definition 1 An affine distribution on M is a subset A ⊂ TM

such that, for x0 ∈ M, there exists a neighbourhood N of x0 and

vector fields X0, X1, . . . , Xk on N such that

Ax , A ∩ TxM =
{

X0(x) +
∑k

j=1 u
jXj(x)

∣

∣ u ∈ Rk
}

for each x ∈ N. •

Definition 2 An affine system A in an affine distribution A is an

assignment of a subset A (x) ⊂ Ax for each x ∈ M such that

(i) aff(A (x)) = Ax and

(ii) some regularity conditions are satisfied (e.g., continuity with

respect to the Hausdorff metric in coordinates). •
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Definition 3 An affine system A in an affine distribution A is

proper at x0 ∈ M if 0x0
∈ intaff(A (x0))(conv(A (x0))). •

• Intuition: Proper can push in all possible directions with

controls (assumes that L(A)x0
= Ax0

).

Definition 4 A trajectory for an affine system A in an affine

distribution A is a locally absolutely continuous curve ξ : I → M such

that ξ′(t) ∈ A (ξ(t)) for a.e. t ∈ I ⊂ R. •

• Punchline: We have trajectories but no controls.

Controllability definitions

• Usual reachable set definitions:

RA (x0, T ) = {ξ(T )| ξ : [0, T ] → M is a trajectory for A

such that ξ(0) = x0},

RA (x0,≤ T ) = ∪t∈[0,T ]RA (x0, t).

• Predictable controllability definition:

Definition 5 An affine system A is small-time locally

controllable (STLC) from x0 ∈ M if there exists T > 0 such that

int(RA (x0,≤ t)) 6= ∅ for all t ∈ [0, T ]. •
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• One also has the more basic notion of accessibility, but I will

suppose this is well understood (and it is, even in the affine

distribution world).

We will always assume we are dealing with accessible systems.

• The preceding definitions are the exact analogue of the usual

controllability definitions; if we stop here, we have done nothing

new.

• That what is missing is the exact rôle of the affine distribution

A: the definitions involve A is an essential way.

• We get around this with the following (important, I claim)

definitions.

Definition 6 An affine distribution A is:

(i) properly small-time locally controllable (PSTLC) from

x0 if A is STLC from x0 for any affine system A in A that is

proper at x0;

• (Intuition: PSTLC If it is not “inconceivable” that an affine

system A in A be STLC, then it is STLC.)
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(ii) small-time locally uncontrollable (STLUC) from x0 if A

is not STLC from x0 for any affine system A in A for which

A (x0) is compact;

• (Intuition: STLUC Any “feasible” affine system A in A is not

STLC.)

(iii) conditionally small-time locally controllable (CSTLC)

from x0 if it is not PSTLC from x0 but there exists some affine

system A in A such that A (x0) is compact and A is STLC from

x0. •

• (Intuition: CSTLC There is some “feasible” affine system A

in A that is STLC.)
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Examples 7 (All using standard language)

1. A system with controllable linearisation at x0 is PSTLC from x0. (We

will say shortly what “controllable linearisation” means in terms of

affine distributions.)

2. The system

ẋ1 = u, ẋ2 = x2
1

is STLUC from (0, 0).

3. For a control-affine system F = {f0, f1, . . . , fm} let

F1 = {f1, . . . , fm} and F1,x = span
R
(f1(x), . . . , fm(x)). Then:

(a) f0(x0) 6∈ F1,x0
STLUC from x0;

(b) f0(x0) = 0x0
, f0 6∈ spanC∞(M)(F1), x0 a regular point for F1,

and Lie(∞)(F1)x0
= Tx0

M CSTLC from x0.
1

1e.g., Bianchini/Stefani, SIAM J. Control Optim., 31(4), 900-917, 1993.

Stabilisation definitions

Definition 8 A state feedback for an affine system A in an affine

distribution A is a vector field X on M such that X(x) ∈ A (x). •

• The degree of differentiability of state feedback is crucial in any

discussion of stabilisability. One will generally wish to allow

discontinuous state feedback. Let us first consider state feedback

that is at least continuous.

Definition 9 Let r ∈ Z≥0 ∪ {∞} ∪ {ω}. An affine system A in A is

Cr-locally asymptotically stabilisable (LASr) to x0 ∈ M if

there exists a neighbourhood N of x0 and a Cr-state feedback X such

that x0 is a locally asymptotically stable equilibrium point for X |N. •
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• First of all, these notions should probably be modified with various

additional adjectives like “almost,” meaning that the feedback is Cr

on a punctured neighbourhood of x0.

• We are now confronted with the same problem as we were in our

presentation of controllability: our definition of stabilisation involves

the affine system A and not just the affine distribution A.

• One overcomes this in the same way as for controllability: by

introducing the notions PLASr, LAUSr, and CLASr for A.

Example 10 Here is a system that is CLASω. Take M = R and Ax

the affine distribution (distribution, actually) generated by x ∂
∂x

. The

affine system

A1(x) =
{

(1 + u)x ∂
∂x

∣

∣ u ∈ [−1
2 ,

1
2 ]
}

is proper at 0 but not LAS0 (or even open-loop stabilisable) to 0 but

the affine system

A2(x) =
{

(1 + u)x ∂
∂x

∣

∣ u ∈ [−2, 2]
}

is compact at 0 and is LASω to 0.

(In case it is not obvious, this is a bilinear system.) •

• Note that the affine distribution is singular at 0: singularities cause

some odd phenomenon.
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Discontinuous stabilisation

• It is known that open-loop stabilisation (i.e., the weakest possible

form) is equivalent to stabilisation using state feedback, provided

that the state feedback is allowed to be suitably discontinuous.1,2

• We need the appropriate notion of open-loop stabilisation to capture

this.

Definition 11 An affine system A in A is locally asymptotically

controllable (LAC) to x0 if there exists a neighbourhood N of x0

such that, for each x ∈ N, there exists a trajectory ξ : [0,∞[→ N for

A such that ξ(0) = x and limt→∞ ξ(t) = x0.

• Now define the notions PLAC, LAUC, and CLAC for A.

1Clarke, Ledyaev, Sontag, and Subotin, IEEE Trans. Automat. Control ,

42(10), 1394–1407, 1997
2Ancona and Bressan, ESAIM Control Optim. Calc. Var., 4, 445–471, 1999

Results

• There are almost no results out there characterising controllability,

stabilisability, and asymptotic controllability in terms of affine

distributions.

There is a huge amount of work to be done here.

Some (trivial) controllability results

Theorem 12 (Zeroth-order controllability)

(i) If Ax0
= Tx0

M then A is PSTLC from x0.

(ii) If 0x0
6∈ Ax0

then A is STLUC from x0.
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• To state the linearisation controllability result:

If V is a R-vector space, if S ⊂ V, and if L ⊂ End(V), denote by

〈L , S〉 the smallest subspace containing S which is invariant under

each L ∈ L .

• Let Zx0
(A) = {X ∈ Γ(A) | X(x0) = 0x0

}.

• Note that Zx0
(A) can be thought of as a subset of End(Tx0

M) by

X 7→ LX with LX(v) = [V,X ](x0) where V is any vector field

extending v ∈ Tx0
M.

Theorem 13 (Linearised controllability) If

(i) 0x0
∈ Ax0

and

(ii) 〈Zx0
(A),Ax0

〉 = Tx0
M

then A is PSTLC from x0.

A simple but illustrative example relating controllability and

stabilisation

• Let (x1,x2) ∈ R
m ×Rn−m and consider

ẋ1 = u

ẋ2 = Q(x1)

where Q is a quadratic function.

• Example is “simplest” one that is interesting, e.g., there are

potential obstructions to controllability.

• Controllability from 0n:

1. PSTLC if 0n−m ∈ int(conv(image(Q)));

2. STLUC otherwise.

• We have a pair (one for PSTLC and one for STLUC) of very general

second-order theorems; it is not possible to say anything about these

here due to lack of time.
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• Stabilisability to 0n:

1. Fact: PSTLC from 0n if and only if PLAC to 0n.

2. Conjecture: not stabilisable using continuous feedback.

Brockett’s topological necessary condition1for continuous

stabilisability does not always give a result for these systems.

Apply Coron’s condition?2

3. Objective: Design stabilising state feedback. We have done this

only for the simplest possible case:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2
1 − x2

2.

Even in this case it is really nontrivial to design the state

feedback. But. . . the geometry is helpful.

1Differential Geometric Control Theory , 181–191, Birkhäuser, 1983
2Systems Control Lett., 14(3), 227–232, 1990

• The stabilising feedback boils down to the following picture that

should be thought of as giving a system on a sphere (glue the disks

on their boundary):
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• One seeks a homogeneous control and reduces to the homogeneous

sphere.
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Conclusion

A truly geometric theory of affine systems

is a long way from being developed.
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