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1. The big picture

• The little contribution here is part of a bigger programme:

Understand the geometry of controllability and stabilisation.

• Some interesting questions:

1. When is a system locally controllable?

2. When is a system locally stabilisable?

3. When is a system locally stabilisable using C0-feedback?

(Existing topological results are too strong in their hypotheses.)

4. What is the relationship between controllability and

stabilisability?

• The emphasis is on geometric structure rather than analytical

(e.g., Lyapunov) methods.
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2. An interesting class of systems

• State is (x,y) ∈ Rm ×Rn−m. Equations:

ẋ(t) = u(t)

ẏ(t) = Q(x(t)),

where Q : Rm → Rn−m is quadratic.

• One can show the following:

Theorem 1 Suppose that the controls for the system take values in

a subset U ⊂ Rm for which 0 ∈ int(conv(U)). Then the system is

small-time locally controllable from (0, 0) if and only if

0 ∈ int(conv(image(Q))).

• Questions:

1. Is this class of system locally stabilisable using C0-feedback?

2. Is this class of system locally stabilisable if and only if it is locally

controllable?

• We do not know the answer to either of these questions.

• In this paper we answer the second question for a certain example in

this class by explicitly constructing a stabilising feedback.
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3. A transformation using homogeneity

• Given the quadratic nature of the system, we seek a closed-loop

system invariant under the action of R on Rn ×Rn−m given by

Φ(s, (x,y)) 7→ (esx, e2sy).

• Define
ρ : Rm ×Rn−m → R

(x,y) 7→
√

‖x‖2 + ‖y‖

so that ρ−1(1) is the homogeneous sphere.

• Each orbit of this group action intersects the homogeneous sphere in

one place. Invariant closed-loop system means that the closed-loop

dynamics maps orbits to orbits.

Closed-loop dynamics drop to the homogeneous sphere.

• The projection from Rn ×Rn−m to the orbit space (i.e., the

homogeneous sphere) is

π : Rm ×Rn−m → ρ−1(1)

(x,y) 7→ (ρ(x,y)−1x, ρ(x,y)−2y)

• The dynamics on ρ−1(1) is defined by

(x,y) 7→ T(x,y)π(u,Q(x)),

for (x,y) ∈ ρ−1(1).
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• Grind. . .

ẋ = − 1
2xŷ

TQ(x) + (Im − xxT )u,

ẏ = (In−m − yŷT )Q(x)− 2yxTu,

• Let us simplify further. Note that ρ−1(1) is not a smooth

submanifold, being nondifferentiable on the set

S = {(x,y) ∈ ρ−1(1) | y = 0}.

• Let us remove S from ρ−1(1), and note that ρ−1(1) \ S is

diffeomorphic to Dm × Sn−m−1 with

D
m = {x ∈ Rm | ‖x‖ = 1}

via the diffeomorphism

(x,y) 7→ (x, ŷ = y

‖y‖ ).

• Grind. . .

ẋ = − 1
2xŷ

TQ(x) + (Im − xxT )u,

˙̂y = (In−m − ŷŷT )
Q(x)

1− ‖x‖2
,

for (x, ŷ) ∈ Dm × Sn−m−1.

• Punchline: Assuming homogeneity of the closed-loop system gives

the previous system, essentially on the homogeneous sphere. We

need to understand the dynamics on this sphere and how it implies

stability of the closed-loop system.
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4. The closed-loop dynamics on the homogeneous

sphere

• The idea is that one designs the closed-loop system so that the

dynamics on the homogeneous sphere tends to a region where

trajectories in the unreduced space tend asymptotically to zero.

• The key to this is. . .

Proposition 2 As in the preceding discussion, let

u : Dm × Sn−m−1 → Rm be a state feedback for the reduced system

on the homogeneous sphere, and let u : Rm ×Rn−m → Rm be the

corresponding state feedback for the unreduced system. Let

(x0, ŷ0) ∈ D
m × Sn−m−1 be an equilibrium point for the reduced

closed-loop system and let (x0,y0) be the associated point in ρ−1(1).

Then the following statements hold:

(i) the corresponding closed-loop trajectory through (x0,y0) in the

full state space Rm ×Rn−m is given by t 7→ (eαtx0, e
2αty0),

where 2αy0 = Q(x0);

(ii) the corresponding closed-loop trajectory through (x0,y0) in the

full state space Rm ×Rn−m tends to (0, 0) if and only if

yT
0 Q(x0) < 0.

• Punchline: Need for dynamics on homogeneous sphere to tend to

regions where yT
0 Q(x0) < 0.
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5. Specialisation to an example

• We consider the three-dimensional system

ẋ1 = u1,

ẋ2 = u2,

ẏ1 = x2
1 − x2

2.

• The homogeneous sphere with the singularities removed is

diffeomorphic to D2 × {−1, 1}. The dynamics on it are

ẋ1 = ∓ 1
2x1(x

2
1 − x2

2) + (1− x2
1)u1 − x1x2u2,

ẋ2 = ∓ 1
2x2(x

2
1 − x2

2)− x1x2u1 + (1− x2
2)u2,

where “+” occurs on D2 × {−1} and “−” occurs on D2 × {1}.

• The key is the dynamics of the drift vector field:

fixed
points

• According to Proposition 2 we want to steer the system to the

regions where the drift vector field points away from the origin. Call

these good regions.

• One can show that the control vector fields are linearly independent

everywhere except at the boundary of the disk where they

degenerate to be tangent to the boundary.
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• This leads to the following control strategy.

Procedure 3 Design controls so that on each disk D2 × {±1} the

closed-loop dynamics have the following properties:

(i) trajectories either leave the disk or tend to an equilibrium point in

the good region;

(ii) if a trajectory enters the disk it remains in the disk thereafter.

• It is possible to do this. Here are the closed-loop phase portraits.
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• The proof of stability is just a matter of seeing that these phase

portraits have the properties in the procedure above.
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• Here are the obligatory plots of solutions tending to zero in state space.
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• Performance is not that good:

1. can be improved by modifying the reduced dynamics;

2. inevitable, to some extent, since this is a hard system to stabilise.
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6. What’s the point?

• The example system, while fairly simple, cannot be stabilised by

general schemes from the literature that we are aware of.

• By understanding the geometry of the system, one can nonetheless

design a discontinuous stabilising feedback.

• We can also do this for

ẋ1 = u1,

ẋ2 = u2,

ẏ1 = x1x2,

ẏ1 = x2
1 − x2

2,

but the system
ẋ1 = u1,

ẋ2 = u2,

ẋ3 = u3,

ẏ1 = x1x2,

ẏ2 = x1x3,

ẏ3 = x2x3

seems fundamentally more difficult.
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