An example with interesting controllability and stabilisation properties

Andrew D. Lewis*

14/12/2006

[^0]
1. The big picture

- The little contribution here is part of a bigger programme:

Understand the geometry of controllability and stabilisation.

- Some interesting questions:

1. When is a system locally controllable?
2. When is a system locally stabilisable?
3. When is a system locally stabilisable using C^{0}-feedback? (Existing topological results are too strong in their hypotheses.)
4. What is the relationship between controllability and stabilisability?

- The emphasis is on geometric structure rather than analytical (e.g., Lyapunov) methods.

2. An interesting class of systems

- State is $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$. Equations:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{u}(t) \\
\dot{\boldsymbol{y}}(t) & =\boldsymbol{Q}(\boldsymbol{x}(t))
\end{aligned}
$$

where $Q: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n-m}$ is quadratic.

- One can show the following:

Theorem 1 Suppose that the controls for the system take values in a subset $U \subset \mathbb{R}^{m}$ for which $\mathbf{0} \in \operatorname{int}(\operatorname{conv}(U))$. Then the system is small-time locally controllable from $(\mathbf{0}, \mathbf{0})$ if and only if $\mathbf{0} \in \operatorname{int}(\operatorname{conv}(\operatorname{image}(\boldsymbol{Q})))$.

- Questions:

1. Is this class of system locally stabilisable using C^{0}-feedback?
2. Is this class of system locally stabilisable if and only if it is locally controllable?

- We do not know the answer to either of these questions.
- In this paper we answer the second question for a certain example in this class by explicitly constructing a stabilising feedback.

3. A transformation using homogeneity

- Given the quadratic nature of the system, we seek a closed-loop system invariant under the action of \mathbb{R} on $\mathbb{R}^{n} \times \mathbb{R}^{n-m}$ given by

$$
\Phi(s,(\boldsymbol{x}, \boldsymbol{y})) \mapsto\left(\mathrm{e}^{s} \boldsymbol{x}, \mathrm{e}^{2 s} \boldsymbol{y}\right)
$$

- Define

$$
\begin{aligned}
\rho: & \mathbb{R}^{m} \times \mathbb{R}^{n-m} \rightarrow \mathbb{R} \\
\quad(\boldsymbol{x}, \boldsymbol{y}) & \mapsto \sqrt{\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|}
\end{aligned}
$$

so that $\rho^{-1}(1)$ is the homogeneous sphere.

- Each orbit of this group action intersects the homogeneous sphere in one place. Invariant closed-loop system means that the closed-loop dynamics maps orbits to orbits.
\longrightarrow Closed-loop dynamics drop to the homogeneous sphere.
- The projection from $\mathbb{R}^{n} \times \mathbb{R}^{n-m}$ to the orbit space (i.e., the homogeneous sphere) is

$$
\begin{aligned}
\pi: & \mathbb{R}^{m} \times \mathbb{R}^{n-m} \rightarrow \rho^{-1}(1) \\
& (\boldsymbol{x}, \boldsymbol{y})
\end{aligned} \mapsto\left(\rho(\boldsymbol{x}, \boldsymbol{y})^{-1} \boldsymbol{x}, \rho(\boldsymbol{x}, \boldsymbol{y})^{-2} \boldsymbol{y}\right) \text {) }
$$

- The dynamics on $\rho^{-1}(1)$ is defined by

$$
(\boldsymbol{x}, \boldsymbol{y}) \mapsto T_{(\boldsymbol{x}, \boldsymbol{y})} \pi(\boldsymbol{u}, \boldsymbol{Q}(\boldsymbol{x}))
$$

for $(\boldsymbol{x}, \boldsymbol{y}) \in \rho^{-1}(1)$.

- Grind. . .

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=-\frac{1}{2} \boldsymbol{x} \hat{\boldsymbol{y}}^{T} \boldsymbol{Q}(\boldsymbol{x})+\left(\boldsymbol{I}_{m}-\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{u} \\
& \dot{\boldsymbol{y}}=\left(\boldsymbol{I}_{n-m}-\boldsymbol{y} \hat{\boldsymbol{y}}^{T}\right) \boldsymbol{Q}(\boldsymbol{x})-2 \boldsymbol{y} \boldsymbol{x}^{T} \boldsymbol{u}
\end{aligned}
$$

- Let us simplify further. Note that $\rho^{-1}(1)$ is not a smooth submanifold, being nondifferentiable on the set

$$
S=\left\{(\boldsymbol{x}, \boldsymbol{y}) \in \rho^{-1}(1) \mid \boldsymbol{y}=\mathbf{0}\right\} .
$$

- Let us remove S from $\rho^{-1}(1)$, and note that $\rho^{-1}(1) \backslash S$ is diffeomorphic to $\mathbb{D}^{m} \times \mathbb{S}^{n-m-1}$ with

$$
\mathbb{D}^{m}=\left\{\boldsymbol{x} \in \mathbb{R}^{m} \mid\|\boldsymbol{x}\|=1\right\}
$$

via the diffeomorphism

$$
(\boldsymbol{x}, \boldsymbol{y}) \mapsto\left(\boldsymbol{x}, \hat{\boldsymbol{y}}=\frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}\right) .
$$

- Grind. . .

$$
\begin{aligned}
& \qquad \begin{aligned}
& \dot{\boldsymbol{x}}=-\frac{1}{2} \boldsymbol{x} \hat{\boldsymbol{y}}^{T} \boldsymbol{Q}(\boldsymbol{x})+\left(\boldsymbol{I}_{m}-\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{u} \\
& \dot{\hat{\boldsymbol{y}}}=\left(\boldsymbol{I}_{n-m}-\hat{\boldsymbol{y}} \hat{\boldsymbol{y}}^{T}\right) \frac{\boldsymbol{Q}(\boldsymbol{x})}{1-\|\boldsymbol{x}\|^{2}} \\
& \text { for }(\boldsymbol{x}, \hat{\boldsymbol{y}}) \in \mathbb{D}^{m} \times \mathbb{S}^{n-m-1}
\end{aligned}
\end{aligned}
$$

- Punchline: Assuming homogeneity of the closed-loop system gives the previous system, essentially on the homogeneous sphere. We need to understand the dynamics on this sphere and how it implies stability of the closed-loop system.

4. The closed-loop dynamics on the homogeneous sphere

- The idea is that one designs the closed-loop system so that the dynamics on the homogeneous sphere tends to a region where trajectories in the unreduced space tend asymptotically to zero.
- The key to this is...

Proposition 2 As in the preceding discussion, let $\boldsymbol{u}: \mathbb{D}^{m} \times \mathbb{S}^{n-m-1} \rightarrow \mathbb{R}^{m}$ be a state feedback for the reduced system on the homogeneous sphere, and let $\overline{\boldsymbol{u}}: \mathbb{R}^{m} \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m}$ be the corresponding state feedback for the unreduced system. Let $\left(\boldsymbol{x}_{0}, \hat{\boldsymbol{y}}_{0}\right) \in \mathbb{D}^{m} \times \mathbb{S}^{n-m-1}$ be an equilibrium point for the reduced closed-loop system and let $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ be the associated point in $\rho^{-1}(1)$. Then the following statements hold:
(i) the corresponding closed-loop trajectory through $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ in the
full state space $\mathbb{R}^{m} \times \mathbb{R}^{n-m}$ is given by $t \mapsto\left(\mathrm{e}^{\alpha t} \boldsymbol{x}_{0}, \mathrm{e}^{2 \alpha t} \boldsymbol{y}_{0}\right)$, where $2 \alpha \boldsymbol{y}_{0}=\boldsymbol{Q}\left(\boldsymbol{x}_{0}\right)$;
(ii) the corresponding closed-loop trajectory through $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ in the full state space $\mathbb{R}^{m} \times \mathbb{R}^{n-m}$ tends to $(\mathbf{0}, \mathbf{0})$ if and only if $\boldsymbol{y}_{0}^{T} \boldsymbol{Q}\left(\boldsymbol{x}_{0}\right)<0$.

- Punchline: Need for dynamics on homogeneous sphere to tend to regions where $\boldsymbol{y}_{0}^{T} \boldsymbol{Q}\left(\boldsymbol{x}_{0}\right)<0$.

5. Specialisation to an example

- We consider the three-dimensional system

$$
\begin{aligned}
\dot{x}_{1} & =u_{1} \\
\dot{x}_{2} & =u_{2} \\
\dot{y}_{1} & =x_{1}^{2}-x_{2}^{2}
\end{aligned}
$$

- The homogeneous sphere with the singularities removed is diffeomorphic to $\mathbb{D}^{2} \times\{-1,1\}$. The dynamics on it are

$$
\begin{aligned}
& \dot{x}_{1}=\mp \frac{1}{2} x_{1}\left(x_{1}^{2}-x_{2}^{2}\right)+\left(1-x_{1}^{2}\right) u_{1}-x_{1} x_{2} u_{2} \\
& \dot{x}_{2}=\mp \frac{1}{2} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)-x_{1} x_{2} u_{1}+\left(1-x_{2}^{2}\right) u_{2}
\end{aligned}
$$

where " + " occurs on $\mathbb{D}^{2} \times\{-1\}$ and " - " occurs on $\mathbb{D}^{2} \times\{1\}$.

- The key is the dynamics of the drift vector field:

- According to Proposition 2 we want to steer the system to the regions where the drift vector field points away from the origin. Call these good regions.
- One can show that the control vector fields are linearly independent everywhere except at the boundary of the disk where they degenerate to be tangent to the boundary.
- This leads to the following control strategy.

Procedure 3 Design controls so that on each disk $\mathbb{D}^{2} \times\{ \pm 1\}$ the closed-loop dynamics have the following properties:
(i) trajectories either leave the disk or tend to an equilibrium point in the good region;
(ii) if a trajectory enters the disk it remains in the disk thereafter.

- It is possible to do this. Here are the closed-loop phase portraits.

- The proof of stability is just a matter of seeing that these phase portraits have the properties in the procedure above.
- Here are the obligatory plots of solutions tending to zero in state space.

- Performance is not that good:

1. can be improved by modifying the reduced dynamics;
2. inevitable, to some extent, since this is a hard system to stabilise.

6. What's the point?

- The example system, while fairly simple, cannot be stabilised by general schemes from the literature that we are aware of
- By understanding the geometry of the system, one can nonetheless design a discontinuous stabilising feedback.
- We can also do this for

$$
\begin{array}{ll}
\dot{x}_{1}=u_{1}, & \dot{y}_{1}=x_{1} x_{2} \\
\dot{x}_{2}=u_{2}, & \dot{y}_{1}=x_{1}^{2}-x_{2}^{2}
\end{array}
$$

but the system

$$
\begin{array}{ll}
\dot{x}_{1}=u_{1}, & \dot{y}_{1}=x_{1} x_{2}, \\
\dot{x}_{2}=u_{2}, & \dot{y}_{2}=x_{1} x_{3}, \\
\dot{x}_{3}=u_{3}, & \dot{y}_{3}=x_{2} x_{3}
\end{array}
$$

seems fundamentally more difficult.

[^0]: *Professor, Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada
 Email: andrew.lewis@queensu.ca, URL: http://www.mast.queensu.ca/~andrew/

