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The problem

• Given an open-loop mechanical control system Σol = (Q,Gol, Vol):

Σol = (Q,Gol, Vol,F ) Σcl = (Q,Gcl, Vcl, Fcl)

feedback

• The closed-loop system Σcl = (Q,Gcl, Vcl) should have some desired

properties, e.g., an equilibrium point q0 should be stable.



• In equations:

Given:

Gol

∇γ′(t)γ
′(t) = −G♯

ol
◦ dVol(γ(t)) +

m∑

a=1

ua(t)G♯
ol

◦ F a(γ(t)).

Find: Feedback controls ushp : TQ → Rm such that the closed-loop

system has governing equations

Gcl

∇γ′(t)γ
′(t) = −G♯

cl
◦ dVcl(γ(t)) +G

♯
cl

◦ Fcl(γ
′(t)).

• Form of Fcl: Fcl = Fcl,diss + Fcl,gyr where

1. Fcl,diss is a dissipative force and

2. Fcl,gyr is a quadratic gyroscopic force.

• Recall: A quadratic gyroscopic force is of the form

〈Fgyr(vq);wq〉 = Bgyr(wq , vq, vq),

where Bgyr is a (0, 3)-tensor field satisfying

Bgyr(uq, vq, wq) = −Bgyr(vq, uq, wq)

(denote Fgyr(vq) = B♭
gyr(vq)).

Punchline: Preserves energy.



• Assumed procedure:

1. Find closed-loop (kinetic energy)/(quadratic gyroscopic force):

G
♯
ol

◦ Fkin(γ
′(t)) =

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl,gyr(γ
′(t))−

Gol

∇γ′(t)γ
′(t)

2. Find closed-loop potential energy:

Fpot(γ(t)) = G
♭
ol

◦G
♯
cl

︸ ︷︷ ︸

Λcl

◦dVcl(γ(t))− dVol(γ(t)).

3. Find closed-loop control:

m∑

a=1

ua
shp(vq)G

♯
ol

◦ F a(q) = −Fkin(vq)− Fpot(q).

• Today: Ignore dissipative forces.

Objectives of approach

• What are the possible closed loop energies,

Ecl(vq) =
1
2
Gcl(vq) + Vcl(q)?

• For stabilisation: Want HessVcl(q0) > 0?

• Main limitation for stabilisation: only works for systems that are linearly

stabilizable, i.e., doesn’t work for “hard” systems (i.e., requiring

discontinuous feedback) if there are benefits, they are global in

nature.
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A theorem on potential energy shaping

The setup

• We have an open-loop system (Q,Gol, Vol, {F
1, . . . , Fm}) and have

applied a control to shape the kinetic energy to Gcl.

• Define Λcl = G
♭
ol

◦G
♯
cl.

• Let F be the codistribution generated by {F 1, . . . , Fm} (control forces

are thus F-valued). Assume constant rank.

• Let Fcl be the codistribution Λ−1
cl (F).

Lemma 1 Given: Gol, Vol, Gcl, and F.

A force F taking values in F gives a closed-loop potential Vcl if and only if

F (q) = Λcl ◦ dVcl(q)− dVol(q), q ∈ Q.

The potential energy shaping partial differential equation

• Define QR = Q×R and π : QR → Q by π(q, V ) = q.

• A potential function V defines a section of QR : q 7→ (q, V (q)).

• We have the map Φd : J
1QR → T∗Q satisfying Φd(j1V (q)) = dV (q).

• Abbreviate αcl = Λ−1
cl

◦ dVol.

• Let πFcl
: T∗Q → T∗Q/Fcl be the canonical projection.

• Define

Rpot = {j1V (q) ∈ J1QR | πFcl
◦ Φd(j1V (q)) = πFcl

◦ αcl(q)}.



Proposition 1 A section F of F is a potential energy shaping feedback if

and only if F = Λcl ◦ dV − dVol for a solution V to Rpot.

• What’s the point of all the fanciness?

• You get a partial differential equation in the framework for applying the

Goldschmidt1 theory for integrability of partial differential equations.

1J. Differential Geom., 1, 269–307, 1967

The statement

• Let I2(Fcl) be the two-forms in the algebraic ideal generated by Fcl.

Theorem 1 Let (Q,Gol, Vol,F ) be an analytic simple mechanical control

system and let Gcl be an analytic Riemannian metric. Let j1V (q0) ∈ Rpot.

Assume that q0 is a regular point for F and that Fcl is integrable in a

neighbourhood of q0. Then the following statements are equivalent:

(i) there exists a neighbourhood U of q0 and an analytic potential energy

shaping feedback F defined on U which satisfies

Φd(j1V (q0)) = Fcl(q0) + αcl(q0);

(ii) there exists a neighbourhood U of q0 such that dαcl(q) ∈ I(Fcl,q) for

each q ∈ U.

Moreover, if Vcl,1 and Vcl,2 are two closed-loop potential functions, then

d(Vcl,1 − Vcl,2)(q) ∈ Fcl,q for each q ∈ Q.



The working version

• If Fcl is not integrable, replace it with the largest integrable codistribution

contained in it.

• Since Fcl is integrable choose coordinates (q1, . . . , qn) for Q such that

Fcl,q = spanR(dq
1(q), . . . , dqr(q)).

• Write αcl = Gcl,ijG
jk
ol

∂Vol

∂qk
︸ ︷︷ ︸

αcl,i

dqi.

• The potential shaping partial differential equation has a solution if

∂αcl,a

∂qb
=

∂αcl,b

∂qa
, a, b ∈ {r + 1, . . . , n}.

• If V̄cl is some solution to the potential shaping partial differential equation,

then any other solution has the form

Vcl(q
1, . . . , qn) = V̄cl(q

1, . . . , qn) + F (q1, . . . , qr).

Discussion

• The proof of the existence part of the theorem is not constructive. It

merely tells you that there are no obstructions to constructing a Taylor

series solution order-by-order.

• Note that the integrability condition for potential shaping is a condition

on αcl = Λ−1
cl

◦ dVol. This is dependent on Gcl.

The point: A bad design for Gcl can make it impossible to do any

potential energy shaping.

• Note that we require integrability of Fcl = Λ−1
cl (F). This is dependent

on Gcl.

The point: A bad design for Gcl can make it impossible to achieve any

flexibility in the character of the possible closed-loop potential functions.



An affine connection formulation of kinetic energy

shaping

• For a Riemannian metric G, define KEG : TQ → R by

KEG(vq) =
1
2G(vq, vq).

• An affine connection ∇ is G-energy-preserving if

Lγ′′(t)KEG(γ
′(t)) = 0 for every geodesic γ of ∇.

Lemma 2 ∇ is G-energy preserving if and only if Sym(∇G) = 0.

Theorem 2 Given: Gol and F.

The solutions to the following problems are in 1–1 correspondence:

(i) when does there exist Gcl and a gyroscopic tensor Bcl such that

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl(γ
′(t))−

Gol

∇γ′(t)γ
′(t) ∈ G♯

ol(F);

(ii) when does there exist Gcl and a Gcl-energy preserving connection
cl

∇

such that
cl

∇γ′(t)γ
′(t)−

Gol

∇γ′(t)γ
′(t) ∈ G♯

ol(F).



The kinetic energy shaping partial differential equation

Geometric formulation of partial differential equation

• Recall that the set of torsion-free affine connections on Q is an affine

subbundle

Aff0(Q) = {Γ ∈ T∗Q⊗ J1TQ | Γ ◦ π1
0 = idTQ,

(j1Y − Γ(Y ))(X)− (j1X − Γ(X))(Y ) = [X, Y ]}

modelled on S2(T∗Q)⊗ TQ.

• Let YKE = {(Γ,G) ∈ Aff0(Q)× S2+(T
∗Q) | Γ is G-energy preserving}.

• Define ΦLC : J
1S2+(T

∗Q) → Aff0(Q) by ΦLC(j1G) =
G

∇.

• Define the quasilinear partial differential equation

Rkin = {(j1Γ(q), j1G(q)) ∈ J1Y | πF(Γ(q)− ΦKE(j1G(q))) = 0},

where πF : S(T∗Q)⊗ TQ → S(T∗Q)⊗ TQ/G♯
ol(F) is the canonical

projection.

An observation

• Define two subsets of Aff0(Q):

Aff0(Q,F,
Gol

∇) =
Gol

∇+ S2(T∗M)⊗ coann(F),

EP(Q) = {∇ ∈ Aff0(Q) | ∇ is G-energy preserving for some G}.

• The solutions (
cl

∇,Gcl) to Rkin are then described by asking that

cl

∇ ∈ Aff0(Q,F,
Gol

∇) ∩ EP(Q).

• Aff0(Q,F,
Gol

∇) is easy to understand.

• What about EP(Q)?

• And when ∇ ∈ EP(Q) what does {G | Sym(∇G) = 0} look like?



Relationship to an inverse problem in calculus of variations

• Consider the following subset of EP(Q):

LC(Q) = {∇ ∈ Aff0(Q) | ∇ is the Levi-Civita connection for some G}.

• The problem was initially investigated by Eisenhart and Veblen1 who give

necessary conditions and a sufficient condition with strong hypotheses.

• Comparison of problems:

LC(Q) EP(Q)

∇G = 0 has solution Sym(∇G) = 0 has solution

• The Eisenhart and Veblen problem is “nice:” it has an involutive symbol.

• The symbol for our generalisation is not involutive work to do here.

1Proceedings of the National Academy of Sciences of the United States of America ,

8, 19–23, 1922

Summary

• The method of energy shaping has been applied in certain cases,

sometimes with some generality. However. . .

• The question, “If I give you a system, can you determine whether it can

be stabilised using energy shaping” remains unresolved.


