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The objective of the talk

To illustrate where some fairly sophisticated mathematics has
been used to solve (hopefully somewhat interesting) problems that
may be difficult, or impossible, to solve otherwise.
Collaborators: Francesco Bullo, Bahman Gharesifard, Kevin
Lynch, Richard Murray, David Tyner.
Relies on work by: Suguru Arimoto, Guido Blankenstein, Anthony
Bloch, Dong Eui Chang, Hubert Goldschmidt, Fabio
Gómez-Estern, Velimir Jurdjevic, Naomi Leonard, Jerrold
Marsden, Romeo Ortega, Mark Spong, Héctor Sussmann,
Morikazu Takegaki, Arjan van der Schaft.
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Some toy problems to keep in mind
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Snakeboard gait: x Snakeboard gait: y Snakeboard gait: θ
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Mechanical systems: mathematical modelling

Question: What is the mathematical structure of the equations
governing the motion of a mechanical system?
We will use the Euler–Lagrange equations.
We begin with the kinetic energy Lagrangian.
Expressed in (“generalised”) coordinates (q1, . . . , qn) this
Lagrangian is

L =

n∑
i,j=1

1
2
Gij(q)q̇iq̇j.

Here Gij(q), i, j = 1, . . . , n, are the components of a symmetric
n × n matrix which represents the inertial properties of the system.
G is the kinetic energy metric.
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Mechanical systems: mathematical modelling

For a system with kinetic energy determined by the kinetic energy
metric G and acted upon by no external forces, the following
statements are equivalent for a curve γ in configuration space:

1 γ satisfies the Euler–Lagrange equations,

d
dt

( ∂L
∂q̇i

)
− ∂L

∂qi = 0, i ∈ {1, . . . , n},

where L is the kinetic energy Lagrangian;
2 γ satisfies

q̈i +

n∑
j,k=1

G

Γi
jkq̇jq̇k = 0, i ∈ {1, . . . , n},

where
G

Γi
jk =

1
2
Gil

(∂Glj

∂qk +
∂Glk

∂qj − ∂Gjk

∂ql

)
, i, j, k ∈ {1, . . . , n};

3 γ is a geodesic for the Levi-Civita affine connection:
G

∇γ′(t)γ
′(t) = 0.
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Mechanical systems: mathematical modelling

Now let’s add forces. A force is modelled by a bundle map
F : R × TQ → T∗Q.
For a system with kinetic energy determined by the kinetic energy
metric G and acted upon by no external forces, the following
statements are equivalent for a curve γ in configuration space:

1 γ satisfies the Euler–Lagrange equations,

d
dt

( ∂L
∂q̇i

)
− ∂L

∂qi = Fi; i ∈ {1, . . . , n};

2 γ satisfies

q̈i +
n∑

j,k=1

G

Γi
jkq̇jq̇k = 0, i ∈ {1, . . . , n};

3 γ satisfies the forced geodesic equations:
G

∇γ′(t)γ
′(t) = G−1 ◦ F(t, γ′(t)).
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What have we done?

We have a compact (and well-known) representation of the
equations governing the motion of a mechanical system, and a
prominent rôle is played by the Levi-Civita connection associated
with the kinetic energy metric.
Fact: By relaxing the assumption that the affine connection be the
Levi-Civita connection associated with the kinetic energy metric,
we may include systems with nonholonomic (e.g., rolling)
constraints. (This is not obvious.)
Question: Can we do anything interesting with the structure in our
representation of the equations of motion?
Answer: I think so, in control theory.
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Control theory for mechanical systems

In control theory we have control over some of the external forces.
Thus we write the external force F as

F = Fext +
m∑

a=1

uaFa,

where Fext represents uncontrolled forces and the total control
force is

∑m
a=1 uaFa, i.e., the control force is a linear combination of

forces F1, . . . ,Fm.
Assumption: F1, . . . ,Fm depend only on configuration, and not on
time or velocity.
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Control theory for mechanical systems

The governing equations we consider are then

G

∇γ′(t)γ
′(t) = Yext(t, γ′(t)) +

m∑
a=1

ua(t)Ya(γ(t)),

where Yext = G−1 ◦ Fext and Ya = G−1 ◦ Fa, a = 1, . . . ,m.
Questions:

1 Controllability: Can a state x2 be reached from a state x1 by a
suitable control u?

2 Stabilisability: Can a state x0 be made a stable equilibrium point for
the system after a suitable control u has been prescribed?

3 Motion planning: Design a control steering x1 to x2.
4 Stabilisation: Design a control u that renders x0 a stable equilibrium

point.
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Controllability of mechanical systems: Definitions

G

∇γ′(t)γ
′(t) = Yext(t, γ′(t)) +

m∑
a=1

ua(t)Ya(γ(t))

x0x0

big excursions
not allowed

x0

accessibility controllability

Accessibility (does the set of points reachable from x0 have a
nonempty interior?) is easily decidable.
Controllability (is x0 in the interior of its own reachable set?) is
very difficult to decide.
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Controllability of mechanical systems: Illustration

Controllability is only an interesting problem for underactuated
systems; this excludes the “typical” robot. An example illustrates
how controllability works.
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Controllability of mechanical systems: Results

We consider systems with no external forces:

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Y(γ(t))

(note we do not require ∇ to be the Levi-Civita connection).
Call this an affine connection control system.
Let Y ⊂ TQ be the distribution generated by the vector fields
Y1, . . . ,Ym:

Yq = spanR(Y1(q), . . . , Ym(q)).

Define the symmetric product ⟨X : Y⟩ = ∇XY +∇YX.

Let Sym(∞)(Y) be the smallest distribution containing Y and
closed under symmetric product.
Let Lie(∞)(Sym(∞)(Y)) be the smallest distribution containing
Sym(∞)(Y) and closed under Lie bracket.
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Controllability of mechanical systems: Results

Theorem (Accessibility for affine connection control systems)
For an analytic affine connection control system, the following
statements are equivalent:

(i) the system is accessible from q0;
(ii) Lie(∞)(Sym(∞)(Y))q0 = Tq0Q.

Geometric aside: What is the meaning of the symmetric product?
Say a distribution D ⊂ TQ is geodesically invariant if, for a
geodesic γ such that γ′(t0) ∈ Dγ(t0), γ(t) ∈ Dγ(t) for every t.

Theorem (Meaning of symmetric product)
For a distribution D the following statements are equivalent:

(i) D is geodesically invariant;
(ii) ⟨X : Y⟩ is D-valued for D-valued vector fields X and Y.
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Controllability of mechanical systems: Results

Controllability (as opposed to accessibility) results exist, but are a
little complicated (and frankly unsatisfying) to state.
So let’s just look at some examples.
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Controllability of mechanical systems: Examples

F

φ

Hovercraft system:
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: Yes (a little harder).
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Controllability of mechanical systems: Examples

F

π
2

Now suppose that the fan cannot rotate.
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: No, at least not locally (nontrivial).
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Controllability of mechanical systems: Examples

F

τ

Change the model by adding inertia to the fan.
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: No, at least not locally (getting really difficult now).

Andrew D. Lewis (Queen’s University) Geometry, control, and mechanics 01/11/2010 17 / 28



The punchline

By slight alterations of the problem, a somewhat simple problem
can be made very hard. To determine the answers to some of the
controllability questions, difficult general theorems had to be
proved.
So what? Can the affine connection actually be used to solve a
problem?
Let’s look at the motion planning problem.
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Motion planning: Motivation

F

φ

Imagine trying to steer the hovercraft from one configuration at
rest to another.
We know this is possible (we answered the controllability question
in the affirmative). But how can we do this?
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Motion planning: Results

For the affine connection control system

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t))

one can pose a natural question: What are those vector fields
whose integral curves we can follow with an arbitrary
parameterisation?
Call these decoupling vector fields.

Theorem (Characterisation of decoupling vector fields)
For a vector field X the following statements are equivalent:

(i) X is a decoupling vector field;
(ii) X(q) ∈ Yq and ∇XX(q) ∈ Yq for every q ∈ Q.
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Motion planning: Results

Compare velocity (kinematic) and acceleration (dynamic) control:

γ′(t) =
m∑

a=1

ua(t)Ya(γ(t)) ∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t)).

Somewhat imprecisely, these systems are equivalent if they have
the same trajectories γ.

Theorem (Equivalence of kinematic and dynamic systems)
For an affine connection control system, the following statements are
equivalent:

(i) the kinematic and dynamic systems are equivalent;
(ii) ⟨X : Y⟩ is Y-valued for Y-valued vector fields X and Y.
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Motion planning: Illustrations

The preceding theorems sometimes allow one to construct explicit
solutions to the motion planning problem.
For the planar body:
Planar body motion 1
Planar body motion 2
Planar body motion plan

Another flavour of motion planner
Yet another flavour of motion planner

For the snakeboard:
Snakeboard motion plan 1
Snakeboard motion plan 2

Andrew D. Lewis (Queen’s University) Geometry, control, and mechanics 01/11/2010 22 / 28



Stabilisation using energy shaping: Motivation

We are now thinking about mechanical systems for which the
external force is solely provided by means of a potential function.
We are interested here in the stabilisation problem. For systems
with potential forces, equilibria are points where the derivative of
the potential function is zero. An equilibrium is stable if it is a
minimum of the potential function and unstable if it is a maximum
of the potential function:
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Stabilisation using energy shaping: Motivation

Problem: Using control, can we take a system with an unstable
equilibrium and make it stable by altering the potential function to
have a minimum at the desired point?
For example, one can imagine the classical problem of stabilising
the cart/pendulum system with the pendulum up:

x

θ

The input is a horizontal force applied to the cart.

Andrew D. Lewis (Queen’s University) Geometry, control, and mechanics 01/11/2010 24 / 28



Stabilisation using energy shaping: Problem
description

Problem restatement: Can we determine the set of potential
functions that are achievable by using controls?
If we only use control to alter the potential energy, it is possible to
completely characterise the set of achievable potential functions.
The set is often too small to be useful, e.g., for the pendulum/cart
system, no stable potential is achievable in this way.
Question: What if we allow not only the potential function to
change, but also the kinetic energy metric?
Answer: The set of achievable potential functions is then
larger, e.g., for the pendulum/cart system there is now a stable
potential achieved in this way.
Caveat: To solve this problem requires solving a set of (generally
overdetermined) nonlinear partial differential equations. . . gulp.
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Stabilisation using energy shaping: Methods

Nonetheless, maybe we can answer the question of when a given
system is stabilisable using this “energy shaping” strategy.
Studying the partial differential equations is complicated. Here is a
simple paradigm for understanding what is going on.
Problem: In R3, given a vector field X, find a function f so that
grad f = X.
Answer (from vector calculus): There is a solution if and only if
curlX = 0.
The condition curlX = 0 is called a compatibility condition; it
places the appropriate restrictions on the problem data to ensure
that a solution exists.
We have found the compatibility conditions for the energy shaping
partial differential equations.
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Stabilisation using energy shaping: Methods
This is really not trivial: it involves lots of Riemannian geometry
and enough homological algebra to, for one thing, make sense of
the following exact and commutative diagram

0

��

0

��
S2(T∗M)

��

σ1(Φ) // T∗M ⊗ F τ //

��

K // 0

0 // ρ1(R) //

��

J2(R,E)
ρ1(Φ) //

��

J1(R,F)

��
0 // R // J1(R,E)

��

Φ // F

��
0 0

which is used to construct the compatibility operator as a map
from the bottom left corner to the top right corner.

Andrew D. Lewis (Queen’s University) Geometry, control, and mechanics 01/11/2010 27 / 28



Summary

Riemannian and affine differential geometry provide powerful tools
for dealing with control problems for mechanical systems.
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