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What these ideas are and are not about

@ They are not intended to be used to design control laws or,
indeed, perform any other useful control theoretic tasks.

@ The machinery in this talk is intended to provide a framework for
studying fundamental structural problems in control theory,
nothing more. .. but nothing less either.

@ This talk is a mere sketch of the conference paper which is a mere
sketch of a larger body of work:

@ Tautological Control Systems, Springer-Verlag, 2014, 118pp-+xii
@ Time-Varying Vector Fields and Their Flows (with S. Jafarpour),
Springer-Verlag, 2014, 119pp-+viii
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What is the “problem”?

@ Why is a different framework needed from what is already out
there? Let us consider the simplest possible illustration of this.

» If one has a vector field X on a manifold M with an equilibrium point
xp € M, the notions of “linearisation of X about x;” and “linear
stability of X at x,” are unambiguous, i.e., understood in a
coordinate-invariant way.

» The same is not true of “linearisation of control systems,

linear

controllability of control systems,” and “linear stabilisability of control
systems.”
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What is the “problem”? (cont’d)

Example
Consider the two control-affine systems

x1(t) = x(1), x1(1) = x2(2),
X (1) = x3(t)uy (1), X (1) = x3(t) + x3(H)ur (1),
x3(1) = up(1), X3 (1) = up(1),

@ The systems are related by a simple feedback transformation and
have the same trajectories.

@ The system on the left has a linearisation that is neither

controllable nor stabilisable and the linearisation on the right is
controllable (and so stabilisable).

Conclusion: The notions of linearisation, linear controllability, and
linear stabilisability are not feedback-invariant.
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What is the “problem”? (cont’d)

@ Plea: Do not try to “figure out” the example, but rather understand
that it just says that the usual definitions have a lurking problem.

@ As you know, nonlinear control theory is filled with many rather
complicated constructions and theorems for doing things like
determining when a system is controllable or stabilisable, and for
determining the conditions for optimality of an extremal.

@ Outside of the Lyapunov theory for stabilisation, there are likely
very few constructions in nonlinear control theory that are
feedback-invariant.

@ To be able to address fundamental structural problems in control
theory, one needs to have a feedback-invariant approach, or else
hypotheses and/or conclusions will change with different system
representations.
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What is the “problem”? (cont’d)

@ There are at least two approaches:

» Make constructions with a given representation, and verify that
these are, in fact, feedback-invariant.
» Develop a methodology that is representation independent.

@ The former is rather like making a coordinate construction in
differential geometry and showing it, in fact, does not depend on
the choice of coordinates, e.g., the linearisation of a vector field
about an equilibrium point using the Jacobian in a set of
coordinates.

@ This approach seems really hard, probably impossible, definitely
extremely messy.

@ The latter approach is like making constructions in differential
geometry that are a prioriindependent of coordinates.

@ This latter approach is what we use here. It seems more elegant,
but has its own difficulties.
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Warning!

We are interested in “feedback-invariance,” not
“feedback-invariants.”
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Definitions

@ Throughout, v € {m,m + lip,c0,w} form e Zspandr=wifr =w
and r = oo otherwise.

Definition
A C"-tautological control system is a pair & = (M, &) where
(i) Mis a C"-manifold and
(i) & assigns to each open U C M a subset & (U) of vector fields on
U with the property that if V C U then X|V € & (V) for every
XeFU. )

Definition
A C”-tautological control system & = (M, &) is globally generated if
there exists a family & of globally defined vector fields such that

FU) = {X|U| X e Z).
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Examples

Examples

1. An “ordinary” control system is a triple ¥ = (M, F, €) where M is the
state manifold, € is the control set (assumed to be a topological
space), and F is the dynamics:

t — u(t) € € being the control and 7 — £(¢) € M being the trajectory.
For each u € @ suppose that F*: x — F(x,u) is C”. Define a
C”-tautological control system &y, = (M, %) by

Fn(U) = {F|U]| u e €}.
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Examples (cont'd)

Examples (contd)
2. Let D € TM be a C”-distribution and define a C”-tautological control
system &p = (M, %) by

Ip(U) = {D-valued vector fields on U of class C”}.

This system is not globally generated.
3. Given a globally defined tautological control system & = (M, %)
define an “ordinary” control system X with control set ¢ = & (M) and
dynamics

F(x,X) = X(x)

N —

This is the tautology!
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Correspondences (system)

@ Note that we can go from a control system to a tautological control
system back to a control system.

@ Note that we can go from a globally defined tautological control
system to a control system back to a tautological control system.

Proposition
Given a globally defined tautological control system & = (M, %) and a
control system ¥ = (M, F,C):

(i) sy = &;

(i) Loy, = X if the map u — F" is an homeomorphism onto its image. )

@ We see here the first suggestion that topologies for spaces of
vector fields are required in this framework. On this, more to come.
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Trajectories

@ In usual “family of vector fields” approaches, trajectories are
concatenations of integral curves, i.e., piecewise constant
controls.

@ In the usual framework of x = F(x, u) one prescribes a control (say,
bounded and measurable) to produce a time-varying vector field,
and trajectories are integral curves of this vector field.

@ We do not want to just do the first thing and we cannot do the
second. ..
@ Here’s what we do:
@ fix an open U C M and interval T C R;
@ let LITY(T; Z (L)) be the locally integrable mappings
X: T — IT'Y(TU) such that X(r) € & (U) for each ¢ € T;
@ a trajectory is an integral curve of some X € LITV(T; % (U)).
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Comments on topologies

@ “Integrable” in the preceding slide means in the sense of the
“Bochner integral.”
@ This requires a locally convex topology for I'”(TM), which we have.
» For v € {m, o0} and (sort of) for v = m + lip, this is classical.
» For v = w this is new and nontrivial.
» Explicit seminorms are given allowing us to explicitly characterise
measurability and integrability.
» We prove that, if r — X, is integrable, then the solutions of
x(t) = X,(x(r)) exist, are unique, and depend on initial condition in a
C”-manner.
» For v = w, this is the only known result of this type.

@ See Saber’s talk later and our joint Springer booklet Time-Varying
Vector Fields and Their Flows.
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Correspondences (trajectories)

Theorem

If X = (M, F,C) is an ordinary control system with &y, the associated
tautological control system, then:

(i) trajectories of X are trajectories of &y ;

(ii) ifu — F" is continuous, injective, and proper, then trajectories of
By, are trajectories of ¥;

(iii) if C is a Suslin space and if F is continuous and proper, then
trajectories of &y, are trajectories of ¥..
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Correspondences (trajectories) (cont'd)

Theorem

If 6 = (M, ) is a globally generated tautological control system with

Y the associated ordinary control system, then trajectories of & and
Y agree.

Corollary

(i) Trajectories of control-affine systems correspond to trajectories of
the corresponding tautological control system.

(ii) If X is a control system with compact control set, trajectories of %

correspond to trajectories of the corresponding tautological control
system.

v
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What'’s with the “sheaf” business?

@ The definition of tautological control system includes the
prescription of vector field families on all open sets.

@ This idea comes from sheaf theory, and we will not say much
about it here.

@ One might feel that the most natural tautological control systems
are those that are globally defined. This is false: It is likely that
assiduous attention to the sheaf theory aspects of tautological
control theory will play an important part in the future development
of the framework.

@ For example:

@ sheaves systematise the notion of “germ” that is so important in
local (in time and space) structure, and combined with our
topologies give access to structure that is new;

@ for flows, the analogue of sheaves for vector fields is groupoids;

@ the map assigning to a time-varying vector field its flow becomes a
homeomorphism in this framework.
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What has been done?

@ Apart from the basic constructions reported here:

@ a study of transformations of tautological control systems;

@ atheory of linearisation (harder than you might think);

@ the Orbit Theorem for tautological control systems (S. Jafarpour);

© the beginning of optimal control theory (weirder than you might
think, e.g., cost functions are sheaf morphisms).
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What remains to be done?

Almost everything. ..
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