Composition, superposition, and ordinary differential equations

Andrew D. Lewis

Department of Mathematics and Statistics Queen's University, Kingston, ON, Canada

Geometry, Topology, and Control System Design 12/06/2023

Composition and superposition

- Suppose that one has spaces X and Y with structure giving rise to distinguished function (vector) spaces \$\mathcal{F}_{X}\$ and \$\mathcal{G}_{Y}\$. For example,
 - X and Y could be topological spaces with \(\mathcal{F}_{\color}\) and \(\mathcal{G}_{\color}\) the spaces of continuous functions,
 - 2 \mathcal{X} and \mathcal{Y} could be smooth, real analytic, or holomorphic manifolds with classes of functions $\mathscr{F}_{\mathcal{X}}$ and $\mathscr{G}_{\mathcal{Y}}$ of some regularity,
 - 3 \mathfrak{X} and \mathfrak{Y} could be measure spaces with $\mathscr{F}_{\mathfrak{X}}$ and $\mathscr{G}_{\mathfrak{Y}}$ some L^{*p*} classes of functions,
 - 4 . .
- Also suppose that there is a natural class of mappings $\mathcal{M}_{\mathfrak{X}, \mathfrak{Y}}$ from \mathfrak{X} to \mathfrak{Y} that respect the structure of \mathfrak{X} and \mathfrak{Y} . For example,
 - continuous mappings,
 - 2 mappings with some regularity,
 - measurable mappings,
 -) . . .

Composition and superposition (cont'd)

One now has a natural collection of operators.

) Composition operator: $C_{\Phi} \colon \mathscr{G}_{\mathcal{Y}} o \mathscr{F}_{\mathfrak{X}}$

 $g\mapsto g\circ\Phi$

for fixed $\Phi \in \mathscr{M}_{\mathfrak{X},\mathfrak{Y}}$.

2 Superposition operator: $S_g: \mathcal{M}_{X,\mathcal{Y}} \to \mathcal{F}_X$

 $\Phi\mapsto g\circ\Phi$

for fixed $g \in \mathcal{G}_{\mathcal{Y}}$.

3 Joint composition operator: $C_{\mathfrak{X},\mathfrak{Y}}: \mathcal{M}_{\mathfrak{X},\mathfrak{Y}} \times \mathcal{G}_{\mathfrak{Y}} \to \mathcal{F}_{\mathfrak{X}}$ $(\Phi, g) \mapsto g \circ \Phi.$

¹Also, *Nemytskii operator* or *nonlinear composition operator*.

Composition and superposition (cont'd)

Questions

- Well-definedness: For the chosen spaces of functions and mappings, are the operators well-defined? (The answer is sometimes provided by a classical theorem about composition.)
- Continuity: Assuming that spaces of functions and mappings have topologies, are the operators continuous? (Answers can sometimes be surprising, as we shall see.)
- Boundedness: Assuming that spaces of functions and mappings have bornologies, are the operators bornological? (For composition, boundedness and continuity are sometimes the same, but for superposition not necessarily so.)

• *Key fact:* Composition is typically linear, while superposition is typically nonlinear.

How can this have anything to do with ODEs?

Series representations of solutions to ODEs

- Let $r \in \{\infty, \omega\}$ and let M be a C^r-manifold.
- First consider the *time-independent* case.
 - Let $X \in \Gamma^r(\mathsf{TM})$ and let $x_0 \in \mathsf{M}$.
 - **2** Think of $X \in L(C^{r}(M); C^{r}(M))$ by $f \mapsto Xf \triangleq \mathscr{L}_{X}f$.
 - ^③ For *t* ∈ \mathbb{R} and *f* ∈ $C^r(M)$, consider the *Volterra series* in L($C^r(M)$; $C^r(M)$) given by

$$\sum_{k=0}^{\infty} \frac{t^k}{k!} \underbrace{X \cdots X}_{k\text{-times}} f = \sum_{k=0}^{\infty} \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} X^k f \, \mathrm{d}t_k \cdots \mathrm{d}t_2 \mathrm{d}t_1.$$

If $r = \omega$, this converges for small t and for x near x_0 to the flow of X:

$$f \circ \Phi_t^X(x) = \left(\sum_{k=0}^\infty \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} X^k f \, \mathrm{d}t_k \cdots \mathrm{d}t_2 \mathrm{d}t_1\right) (x).^2$$

²Agrachev, Gamkredlidze, *Math. USSR-Sb.*, **107**(4), 467–532, 1978

Andrew D. Lewis (Queen's University) Comp

Composition, superposition, and ODEs

Series representations of solutions to ODEs (cont'd)

- Next consider the *time-dependent* case.
 - Let $X \in L^1_{loc}(\mathbb{R}; \Gamma^r(\mathsf{TM}))$, let $t_0 \in \mathbb{R}$, and let $x_0 \in \mathsf{M}$.
 - **②** For fixed *t* ∈ \mathbb{R} , think of *X*(*t*) ∈ L(C^{*r*}(M); C^{*r*}(M)) by $f \mapsto X(t)f \triangleq \mathscr{L}_{X(t)}f$.
 - **③** For *t* ∈ \mathbb{R} and *f* ∈ $C^{r}(M)$, the *Volterra series* in L($C^{r}(M)$; $C^{r}(M)$) given by

$$\sum_{k=0}^{\infty} \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} X(t_1) X(t_2) \cdots X(t_k) f \, \mathrm{d} t_k \cdots \mathrm{d} t_2 \mathrm{d} t_1$$

If $r = \omega$, this converges for small t and for x near x_0 to the flow of X:

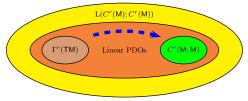
$$f \circ \Phi_t^X(x) = \left(\sum_{k=0}^{\infty} \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} X(t_1) X(t_2) \cdots X(t_k) f \, \mathrm{d}t_k \cdots \mathrm{d}t_2 \mathrm{d}t_1\right) (x).^3$$

³Agrachev, Gamkredlidze, Op. cit.

Andrew D. Lewis (Queen's University)

Series representations of solutions to ODEs (cont'd)

- Drawbacks:
 - **1** doesn't converge for $r = \infty$;
 - 2 doesn't make sense for less than C^{∞} regularity, e.g., the standard locally Lipschitz theory;
 - one starts the series with a geometric entity in L(C^r(M); C^r(M)) (a vector field), and the limit is a geometric entity in L(C^r(M); C^r(M)) (a (local) diffeomorphism), but the intermediate partial sums are merely linear partial differential operators:



One way to understand the talk: Can we remain in the green blob, and resolve some of the drawbacks?

Time- and parameter-dependent vector fields

 Typical hypotheses for right-hand sides of ODEs for existence, uniqueness, and continuous dependence of solutions look like this:⁴

To each point (α,β) in \mathscr{F} there is a constant $\delta > 0$ and two integrable functions $\dot{M}(t)$, K(t) such that

1. The δ -neighborhood of (α, β) is in \mathscr{F} ;

2. For each x in the δ -neighborhood β_{δ} of β and for each λ in Λ , the functions $f^{i}(t,x,\lambda)$ are measurable in t on the δ -neighborhood α_{δ} of α and satisfy the inequality

$$(2.1) |f(t,x,\lambda)| \le M(t)$$

on α_{δ} . Hence $f(t,x,\lambda)$ is integrable on $\alpha - \delta < t < \alpha + \delta$ for each x in β_{δ} and λ in Λ ;

3. For each x and y in the δ -neighborhood β_{δ} of β and each λ in Λ , the inequality

$$(2.2) |f(t,x,\lambda) - f(t,y,\lambda)| \le K(t) |x - y|$$

holds on the δ -neighborhood α_{δ} of α ;

4. For each x in β_{δ} and λ_0 in Λ we have

(2.3)
$$\lim_{\lambda=\lambda_0} \int_{\alpha-\delta}^{\alpha+\delta} |f(t,x,\lambda) - f(t,x,\lambda_0)| dt = 0$$

⁴Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, 1966

Time- and parameter-dependent vector fields (cont'd)

- If one wants more regular dependence on initial conditions, one needs more complicated conditions.
- We do this in a compact manner for a broad range of regularity classes and for sections of a C^{*r*}-vector bundle $\pi_E \colon E \to M$.
 - Let r ∈ {∞, ω, hol} and let ν ∈ Z≥0 ∪ (Z≥0 + lip) ∪ {∞, ω, hol}. Regularity "m + lip" for m ∈ Z≥0 means "class C^m with locally Lipschitz top derivative."
 - 2 Locally convex topologies for $\Gamma^{\nu}(\mathsf{E})$ are classical, except for $\nu \in (\mathbb{Z}_{\geq 0} + \mathsf{lip}) \cup \{\omega\}...$ but known in all cases...
 - Time-dependent sections are in

$$\Gamma^{\nu}_{\mathrm{LI}}(\mathbb{T}; \mathbf{E}) \triangleq \mathsf{L}^{1}_{\mathrm{loc}}(\mathbb{T}; \Gamma^{\nu}(\mathbf{E}))(\simeq \mathsf{L}^{1}_{\mathrm{loc}}(\mathbb{T}; \mathbb{R}) \widehat{\otimes}_{\pi} \Gamma^{\nu}(\mathbf{E}))$$

for $\mathbb{T}\subseteq\mathbb{R}$ an interval.

Time- and parameter-dependent sections are in

$$\Gamma^{\nu}_{\mathsf{PLI}}(\mathbb{T};\mathsf{E};\mathcal{P}) \triangleq \mathsf{C}^{0}(\mathcal{P};\mathsf{L}^{1}_{\mathsf{loc}}(\mathbb{T};\Gamma^{\nu}(\mathsf{E}))),$$

for a topological space \mathcal{P} .

Time- and parameter-dependent mappings

- Facts.⁵
 - a C^{ν}-vector field $X: \mathbb{T} \times M \to TM$ is in $\Gamma^{\nu}_{Ll}(\mathbb{T}; TM)$ if and only if $Xf \in C^{\nu}_{Ll}(\mathbb{T}; M)$ for every $f \in C^{r}(M)$;
 - 2 a C^ν-vector field X: T × M × P → TM is in Γ^ν_{PLI}(T; TM; P) if and only if Xf ∈ C^ν_{PLI}(T; M; P) for every f ∈ C^r(M).
- *Definitions:* (locally absolutely continuous sections of $\pi_E \colon E \to M$)
 - **1** a C^{ν} -section $\xi \colon \mathbb{T} \times \mathsf{M} \to \mathsf{E}$ is in $\Gamma^{\nu}_{\mathsf{LAC}}(\mathbb{T}; \mathsf{E})$ if

$$\xi(t) = \int_{t_0}^t \Xi(s) \, \mathrm{d}s$$

for some $\Xi \in \Gamma^{\nu}_{LI}(\mathbb{T}; \mathsf{E});$

- Definitions: (locally absolutely continuous mappings)
 - a C^{ν} -mapping $\Phi: \mathbb{T} \times M \to N$ is in $C^{\nu}_{LAC}(\mathbb{T}; (M; N))$ if

$$g \circ \Phi \in C^{\nu}_{LAC}(\mathbb{T}; \mathsf{M})$$
 for every $g \in C'(\mathsf{N})$;

$$C^{\nu}_{\mathsf{PLAC}}(\mathbb{T}; (\mathsf{M}; \mathsf{N}); \mathcal{P}) = C^{0}(\mathcal{P}; C^{\nu}_{\mathsf{LAC}}(\mathbb{T}; (\mathsf{M}; \mathsf{N}))).$$

⁵Technical point: For $\nu =$ hol, these statements require M to be a "Stein manifold." We will just assume this to always be the case.

Properties of $C^{\text{lip}}_{\text{PLAC}}(\mathbb{T};(M;N);\mathbb{P})$

- Of course, lip-regularity is classically important, and so interesting to think about.
 - $\label{eq:clip} \begin{array}{l} \label{eq:clip} \bullet \ C^{\mathsf{lip}}_{\mathsf{PLAC}}(\mathbb{T};(\mathsf{M};\mathsf{N});\mathbb{P}) \subseteq \mathsf{C}^0(\mathbb{T}\times\mathsf{M}\times\mathbb{P};\mathsf{N}) \text{ (actually only requires } \\ \nu=0). \end{array}$
 - 2 $t \mapsto \Phi_x^p(t) = \Phi(t, x, p)$ are locally absolutely continuous (again, only requires $\nu = 0$).
 - 3 lim_{(x,p)→(x0,p0)} Φ^p_x = Φ^{p0}_{x0}, uniformly on compact subintervals of T.
 4 Let
 - **a** $K \subseteq M$ and $\mathbb{K} \subseteq \mathbb{T}$ be compact and

denote

and let

() \mathcal{V} be a neighbourhood of K_0 .

Then there exists a neighbourhood O of p_0 such that

$$\bigcup_{t,x,p)\in\mathbb{K}\times K\times\mathfrak{O}}\Phi(t,x,p)\subseteq\mathfrak{V}.$$

The main idea

- One fantasises that, given X ∈ Γ^ν_{PLI}(𝔅; TM; 𝒫), its flow (from a fixed initial time t₀) is in C^ν_{PLAC}(𝔅; (M; M); 𝒫).
- The fantasy is false in an obvious way: the flow will generally only be defined on a subset of $\mathbb{T} \times M \times \mathcal{P}$, i.e., flows are only *local* flows. Let us sidestep this issue for the moment...
- We can try to realise our fantasy by a procedure rather like Picard iteration in the classical setting.
 - **1** Take $\Phi_{0,t}^{p}(x) = \Phi_{0}(t, x, p) = x$, i.e., $\Phi_{0,t}^{p} = id_{\mathsf{M}}$.
 - 2 Given $\Phi_k \colon \mathbb{T} \times \mathsf{M} \times \mathcal{P} \to \mathsf{M}$, define Φ_{k+1} by

$$g \circ \Phi^p_{k+1,t} = g + \int_{t_0}^t X^p_s g \circ \Phi^p_{k,s} X^p_s g \circ \Phi^p_{k,s} \,\mathrm{d} s, \qquad g \in \mathsf{C}^r(\mathsf{M}).$$

- **(a)** We have seen that $(s, x, p) \mapsto X_s^p g \in C_{\mathsf{PLI}}^{\nu}(\mathbb{T}; \mathsf{M}; \mathcal{P})$.
 - The hard part is handling the time- and parameter-dependent superposition operation $\Phi_s^p \mapsto X_s^p g \circ \Phi_s^p$ for $\Phi \in \mathsf{C}_{\mathsf{PLAC}}^{\nu}(\mathbb{T}; (\mathsf{M}; \mathsf{M}); \mathcal{P})$.

A theorem on time-dependent superposition

Theorem

Let $r \in \{\infty, \omega, hol\}$ and let $\nu \in \mathbb{Z}_{\geq 0} \cup \{\infty, \omega, hol\}$. Let M and N be C^r-manifolds. If $\Phi \in C^{\nu}_{LAC}(\mathbb{T}; (M; N))$ and if $g \in C^{\nu}_{LI}(\mathbb{T}; N)$, then the mapping

$$t \mapsto g_t \circ \Phi_t$$

defines an element of $C_{LI}^{\nu}(\mathbb{T}; M)$.

A theorem on time- and parameter-dependent superposition

Theorem

Let $r \in \{\infty, \omega, \mathsf{hol}\}$, let $\nu \in \mathbb{Z}_{\geq 0} \cup \{\infty, \omega, \mathsf{hol}\}$, and denote

$$u' = \begin{cases} m + \mathsf{lip}, & m \in \mathbb{Z}_{\geq 0}, \\
u, &
u \in \{\infty, \omega, \mathsf{hol}\}. \end{cases}$$

Let M and N be C^r-manifolds and let \mathcal{P} be a topological space. If $\Phi \in C^{\nu}_{\mathsf{PLAC}}(\mathbb{T}; (\mathsf{M}; \mathsf{N}); \mathcal{P})$ and if $g \in C^{\nu'}_{\mathsf{PLI}}(\mathbb{T}; \mathsf{N}; \mathcal{P})$, then the mapping

$$\mathcal{P} \ni p \mapsto \left(t \mapsto \int_{t_0}^t g_s^p \circ \Phi_s^p \, \mathrm{d}s \right)$$

defines an element of $C^{\nu}_{\mathsf{PLAC}}(\mathbb{T};\mathsf{M};\mathbb{P}).$

A theorem on time- and parameter-dependent superposition (cont'd)

Remarks

Part of the proof of the theorem is proving that the joint composition map

$$C_{\mathsf{M},\mathsf{N}} \colon \mathsf{C}^{\nu}(\mathsf{M};\mathsf{N}) \times \mathsf{C}^{\nu}(\mathsf{N}) \to \mathsf{C}^{\nu}(\mathsf{M})$$
$$(\Phi,g) \mapsto g \circ \Phi$$

is continuous.

- **3** This is classical for $\nu \in \mathbb{Z}_{\geq 0} \cup \{\infty, \mathsf{hol}\}^a$.
- This is true but not classical for $\nu = \omega$.^b
- O This is false for *ν* ∈ ℤ_{≥0} + lip; the superposition operator S_g is continuous for *ν* = lip if and only if g ∈ C¹(N).^c

^aExercise 2.4.10 in Hirsch's *Differential Topology*, Springer, 1976 ^bL, *Geometric analysis on real analytic manifolds*, Springer, 2023 ^cDrábek, *Comment. Math. Univ. Carolin.*, **16**(1), 37-57, 1975

A theorem on time- and parameter-dependent superposition (cont'd)

Remarks

- ² Because of the lack of continuity of the superposition operator for $\nu \in \mathbb{Z}_{\geq 0} + \text{lip}$, the previous theorem does not hold for such ν .
- So For the theorem to hold for $\nu \in \mathbb{Z}_{\geq 0}$, we require that g have regularity $\nu' = \nu + \text{lip.}$
- Punchline: Getting the continuous dependence on the parameter in our Picard-like iteration is subtle: to get C^m -regular parameter dependence of Φ_{k+1} , one must assume that *X* has regularity C^{m+lip} .
- Our iterative method does not require infinite differentiability since successive iterates involve composition, not differentiation.
- One starts the iteration with a mapping, at each iteration step one defines a new mapping, and convergence is to a mapping.
- Trade off: superposition is nonlinear!

Convergence of iteration scheme

- Some cases are done, but convergence is a work in progress...
- Acknowledgements: Saber Jafarpour and Kaly Zhang

The End