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Genesis

Ω

Studied two ways of modelling
the system with nonholonomic
constraints
Did some friction modelling
Compared numerics and data
collected from a sophisticated
experiment apparatusa

aA stereo turntable, a ping-pong ball, and a
VHS camera
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Time passes. . .

family. . . boating. . .

reading. . . relaxing. . .
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Revelation
After 25 years. . . back to the drawing
board. . .
Some other contributions in the
intervening years:

1 Cardin/Favretti, J. Geom. Phys., 18(4),
295–325, 1996

2 Favretti, J. Dyn. Diff. Eq., 10(4), 511-536,
1998

3 Zampieri, J. Diff. Eq., 163(2), 335-347, 2000
4 Kupka/Oliva, J. Diff. Eq., 169(1), 169–189,

2001
5 Cortés/de Léon/Martín de Diego/Martínez,

SIAM J. Control Optim., 41(5), 1389–1412,
2002

6 Fernandez/Bloch, J. Phys. A, 41(3), no.
344005, 2008

7 Terra, São Paulo J. Math. Sci., 12(1),
136-145, 2018

8 Jóźwikowski/Respondek, J. Geom. Mech.,
11(1), 77-122, 2019
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Beware

Listen more than see
I will often write precise mathematical statements without defining the
notation. Notation will be explained during the talking part of the talk.
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Two problems
Data:

1 configuration manifold Q of regularity r ∈ {∞, ω};
2 kinetic energy modelled by a Cr-Riemannian metric G;
3 potential energy modelled by a potential function V ∈ Cr(Q);
4 nonholonomic constraints modelled by a Cr-distribution D ⊆ TQ.

Action for a Lagrangian L : TQ → R is

AL(γ) =

∫ t1

t0
L ◦ γ′(t) dt,

for γ ∈ H1([t0, t1];Q; q0, q1).

Problem (Nonholonomic (N))
Find γ ∈ H1([t0, t1];Q;D; q0, q1) such
that
⟨d(AG − AV); δ⟩ = 0,

δ ∈ H1([t0, t1]; γ∗D; q0, q1).

Problem (Variational (V))
Find γ ∈ H1([t0, t1];Q;D; q0, q1) such
that
⟨d(AG,D − AV,D); δσ(0)⟩ = 0,

σ : (−ϵ, ϵ) → H1([t0, t1];Q;D; q0, q1).
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Three examples

g

All solutions to Problems (N) and (V) give the
same physical motions.

For every solution to Problem (N), there ex-
ists a solution to Problem (V) giving the same
physical motion.

g

For almost no solution to Problem (N) does
there exist a solution to Problem (V) that gives
the same physical motion.a

aLemos, Acta Mech., 233, 47-56, 2022
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Problem Statement

Problem (Vague version)
Characterise the set of initial conditions for which the solution to Problems (N)
and (V) gives the same physical motion.

To make this vague statement more precise, one needs to understand
more about the solutions to Problems (N) and (V).
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Some connections and tensors

Given a Riemannian manifold (Q,G) and a distribution D:
1 Levi-Civita connection: ∇G
2 G-orthogonal projections PD and PD⊥

3 constrained connection: ∇D (project ∇G onto D)
4 Fröbenius curvature: FD(X,Y) = PD⊥([X,Y]) (X,Y ∈ Γr(D))
5 geodesic curvature: GD(X,Y) = PD⊥(∇GX Y +∇GY X) (X,Y ∈ Γr(D))
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Solutions to Problem (N)

Theorem
For γ ∈ H1([t0, t1];Q;D; q0, q1), the following statements are equivalent:

1 γ is a solution to Problem (N);
2 γ ∈ H2([t0, t1];Q) and there exists λ ∈ L2([t0, t1]; γ∗D⊥) such that

∇Gγ′γ′ + gradV ◦ γ = λ;

3 γ ∈ H2([t0, t1];Q) and satisfies

∇D
γ′γ′ + PD ◦ gradV ◦ γ = 0.
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Solutions to Problem (V)
Theorem
For γ ∈ H1([t0, t1];Q;D; q0, q1), the following statements are equivalent:

1 γ is a solution to Problem (V);
2 at least one of the following holds:

a some interesting condition for singular extremals that I will ignore, sacrificing
correctness for expediency;

b γ ∈ H2([t0, t1];Q) and there exists λ ∈ H1([t0, t1]; γ
∗D⊥) such that

∇Gγ′γ′ + gradV ◦ γ −∇Gγ′λ− S∗
D(γ

′)(λ) = 0; a

3 at least one of the following holds:
a some other interesting condition for singular extremals that I will again

ignore;
b γ ∈ H2([t0, t1];Q) and there exists λ ∈ H1([t0, t1]; γ

∗D⊥) such that

∇D
γ′γ′ + PD ◦ gradV ◦ γ = F∗

D(γ
′)(λ),

∇D⊥
γ′ λ =

1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ +

1
2

G⋆
D⊥(γ′)(λ) +

1
2

F⋆
D⊥(γ′)(λ).

aKupka/Oliva, J. Diff. Equations, 169(1), 169–189, 2001
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The crucial observation

Compare

∇D
γ′γ′ + PD ◦ gradV ◦ γ = 0

with

∇D
γ′γ′ + PD ◦ gradV ◦ γ = F∗

D(γ
′)(λ),

∇D⊥

γ′ λ =
1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ +

1
2

G⋆
D⊥(γ

′)(λ) +
1
2

F⋆
D⊥(γ

′)(λ). (1)

Problem
Given a physical motion t 7→ γ(t) satisfying Problem (N), find all (if any) initial
conditions for λ so that the resulting solution to (1) is such that F∗

D(γ
′)(λ) = 0.
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Symbolic abstraction
If we think of γ as given, the equation (1) for λ has the form of an affine
differential equation,

∇D⊥

γ′ λ︸ ︷︷ ︸ = 1
2

G⋆
D⊥(γ

′)(λ) +
1
2

F⋆
D⊥(γ

′)(λ)︸ ︷︷ ︸+ 1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ︸ ︷︷ ︸,

λ̇(t) = A(t)(λ(t)) + b(t)

and the condition satisfied by λ is a “satisfies a linear equation” condition,

F∗
D(γ

′)(λ) = 0︸ ︷︷ ︸
B(t)(λ(t))=0

.

Problem (In symbols)
Find all solutions of the affine differential equation

λ̇(t) = A(t)(λ(t)) + b(t)

satisfying B(t)(λ(t)) = 0.
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Complete abstraction

We have the following data:
1 a Cr-vector bundle π : E → M (abstracting the pull-back bundle

π∗
DD⊥ → D);

2 a Cr-cogeneralised subbundle F ⊆ E (abstracting ker(B));
3 an affine vector field X on E (abstracting λ̇ = A ◦ λ+ b) over a vector field

X0 on M (abstracting the equations governing Problem (N)).

Problem (WDSo(N)a(V)A)
Find the subset A of initial conditions in E through which integral curves of X
remain in F.
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Final piece of the jigsaw: just elementary linear
algebra

Proposition (Linear equations)
Let V be a finite-dimensional R-vector space. There is a 1–1 correspondence
between the sets of solutions of linear equations

A(v) + b = 0, A ∈ EndR(V), b ∈ V,

and subspaces ∆ ⊆ V∗ ⊕R with positive codimension. Moreover, the set of
solutions to the linear equation is nonempty if and only if (0, 1) ∈ ∆.

Making this geometric, for a vector bundle π : E → M, we think of
subbundles of positive codimension of E∗ ⊕RM as being bundles of linear
equations.
The affine vector field X induces a linear vector field in this bundle of
linear equations.
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Results

Theorem
Assume X0 is complete.
The solution A of Problem (WDSo(N)a(V)A) is the largest generalised linear
equation subbundle of E∗ ⊕RM whose solutions are a cogeneralised affine
subbundle A over a variety S ⊆ M. Also, this exists.

Once more, in English:
The set of initial conditions for λ that give rise to solutions of Problem (V)
giving physical motions that are solutions to Problem (N) are described by

1 a (possibly empty) subvariety S ⊆ M (think submanifold, if you want) and,
2 for each x ∈ S, an affine subspace Ax ⊆ Fx.

There’s more. . . infinitesimal conditions satisfied by “A”. . . a PDE one can
analyse à la Spencer. . . connections to sub-Riemannian geometry. . . but. . .
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. . . I have important things to do. . .
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