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Genesis

@ Studied two ways of modelling
the system with nonholonomic
constraints

@ Did some friction modelling

@ Compared numerics and data
collected from a sophisticated
experiment apparatus?

4A stereo turntable, a ping-pong ball, and a
VHS camera

VARIATIONAL PRINCIPLES FOR CONSTRAINED
SYSTEMS: THEORY AND EXPERIMENT

Andrew D, Lewis® and Richard M. Murray
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1 INTRODUCTION

(1) and the

references contained therein).
For deriving equations of motion for systems with constraints, there are at least two

e nonholonomic method i the classical method for derving cquaions of moton for

befound in (2],
‘motion for systems with Allof motion

poposed i (5. Thi methd trens meckasica sysems with constraints s 0 sundnd
constrained va and the cquations of motion are derivable using
iqus rom the. ﬂkuh- of vraions with conmas. In (4] ter i ¢ e o mu
presents some
Ing bllard bl A conlrpda of s riiue spper 57
 pape e pret e nenhoonomc oncmic mabods or ding

10 as acatastatic. This i y from the usual

means for an affine constraint to_be holonomic. This may be thought of as a modest

In the o wiers e comnrnie 1 bronomi, (e mosklouomic snd vikiecnic
ystem. These resulls are

presented in Secion 2.

In Section We point out
that ystem using
both the nonholonomic and vakonomic methods. In the nonholonomic approach an
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Time passes...

v .4

boating. . .

reading. . . relaxing. . .
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Revelation

@ After 25 years. . .back to the drawing
board. ..

@ Some other contributions in the
intervening years:
@ Cardin/Favretti, J. Geom. Phys., 18(4),
295-325, 1996
© Favretti, J. Dyn. Diff. Eq., 10(4), 511-536,
1998
@ zampieri, J. Diff. Eq., 163(2), 335-347, 2000
© Kupka/Oliva, J. Diff. Eq., 169(1), 169-189,
(5]

2001

Cortés/de Léon/Martin de Diego/Martinez,

SIAM J. Control Optim., 41(5), 1389—-1412,

2002

Fernandez/Bloch, J. Phys. A, 41(3), no.

344005, 2008

@ Terra, Sdo Paulo J. Math. Sci., 12(1),
136-145, 2018

© Jozwikowski/Respondek, J. Geom. Mech.,
11(1), 77-122, 2019
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Beware

Listen more than see

| will often write precise mathematical statements without defining the
notation. Notation will be explained during the talking part of the talk.
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Two problems

@ Data:

@ configuration manifold Q of regularity » € {co, w};

@ kinetic energy modelled by a C’-Riemannian metric G;

@ potential energy modelled by a potential function V € C'(Q);

© nonholonomic constraints modelled by a C’-distribution D C TQ.

@ Action for a Lagrangian L: TQ — R is

AL(y) = / ) Loo/(r)dr,

fo

for v € H'([to, 1]; Q; g0, q1)-

Problem (Nonholonomic (N)) Problem (Variational (V))
Find~ € Hl([fo,tle; D; g0, q1) such Find~ € Hl([foatle; D; g0, q1) such
that that
(d(Ag —Av);0) =0, (d(Ag,p — Av,p); 60(0)) =0,
& € H'([to,11];7"D; 0, q1)- o: (—€,¢) = H'([to,1);Q; D; g0, q1)-
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Three examples

Andrew D. Lewis (Queen’s University)

All solutions to Problems (N) and (V) give the
same physical motions.

For every solution to Problem (N), there ex-
ists a solution to Problem (V) giving the same
physical motion.

For almost no solution to Problem (N) does
there exist a solution to Problem (V) that gives
the same physical motion.?

aLemos, Acta Mech., 233, 47-56, 2022
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Problem Statement

Problem (Vague version)

Characterise the set of initial conditions for which the solution to Problems (N)
and (V) gives the same physical motion.

@ To make this vague statement more precise, one needs to understand
more about the solutions to Problems (N) and (V).
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Some connections and tensors

Given a Riemannian manifold (Q, G) and a distribution D:
@ Levi-Civita connection: V&
@ G-orthogonal projections Pp and Pp.
@ constrained connection: VP (project V& onto D)
@ Frébenius curvature: Fp(X,Y) = Pp.([X,Y]) (X,Y € (D))
@ geodesic curvature: Gp(X,Y) = Pp. (VSY + V$X) (X,Y € (D))
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Solutions to Problem (N)

Theorem

For v € H'([t0, 11]; Q; D; qo, q1), the following statements are equivalent:

@ ~ is a solution to Problem (N);
Q + € H([to,11]; Q) and there exists A € L*([t, 11];v*D*) such that

VS@’ +gradVory =\
© + € H([to,11]; Q) and satisfies

VSMy’ + PpogradVoy =0.
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Solutions to Problem (V)
Theorem

For v € H! ([0, 1]; Q; D; g0, 41), the following statements are equivalent:
@ + is a solution to Problem (V);

@ at least one of the following holds:

© some interesting condition for singular extremals that | will ignore, sacrificing
correctness for expediency;
O v € H¥([1o, 11]; Q) and there exists X € H'([to, 11];*D*) such that

VS,fy/ +gradVory — VS,)\ —85(v)(\) =0;°

© at least one of the following holds:
© some other interesting condition for singular extremals that | will again
ignore;
O v € H¥ ([, 11]; Q) and there exists X € H'([to, t:];*D*) such that
Vs/wl + PpogradVoy = Fp(7v)(N),

L 1
V2A = 2Go(y,7) + Pos o grad Ve + 2 Gau (7)) + 5 Fos (1) ().

4Kupka/Oliva, J. Diff. Equations, 169(1), 169—189, 2001
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The crucial observation

Compare

V3,7'+PDogradV07:0 J

with

V2y/ + Ppograd Vo = F(v) (),

L 1. 1
V5 A=3Go(v,7) +Por ograd Ve + -G (v)(N) + 5F5. (V)N (1)

o

Problem

Given a physical motion t — ~(t) satisfying Problem (N), find all (if any) initial
conditions for X so that the resulting solution to (1) is such that F§(v")(\) = 0.
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Symbolic abstraction

If we think of v as given, the equation (1) for A has the form of an affine
differential equation,

+ 1 ’ - / 1 Y
V2N = 2G5, (V)N + S (7)) + S Go(77) + Pos ograd Vo,
~——

A = ADCO) + b1

and the condition satisfied by A is a “satisfies a linear equation” condition,

F5()(\) =0.
N————
B(1)(A(1))=0
Problem (In symbols)
Find all solutions of the affine differential equation
A(t) = A@AD)) + b(1)
satisfying B(t)(\(¢)) = 0.
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Complete abstraction

We have the following data:
@ a C’-vector bundle 7: E — M (abstracting the pull-back bundle
75D+ - D);
@ a C’-cogeneralised subbundle F C E (abstracting ker(B));

@ an affine vector field X on E (abstracting A = A o A + b) over a vector field
X, on M (abstracting the equations governing Problem (N)).

Problem (WDSo(N)a(V)A)

Find the subset A of initial conditions in E through which integral curves of X
remain in F.
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Final piece of the jigsaw: just elementary linear
algebra

Proposition (Linear equations)

LetV be a finite-dimensional R -vector space. There is a 1-1 correspondence
between the sets of solutions of linear equations

AWv)+b=0, A€ Endr(V), beV,

and subspaces A C V* ® R with positive codimension. Moreover, the set of
solutions to the linear equation is nonempty if and only if (0,1) € A.

@ Making this geometric, for a vector bundle =: E — M, we think of
subbundles of positive codimension of E* & Ry as being bundles of linear
equations.

@ The affine vector field X induces a linear vector field in this bundle of
linear equations.
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Results

Theorem

Assume X, is complete.

The solution A of Problem (WDSo(N)a(V)A) is the largest generalised linear
equation subbundle of E* & Ry whose solutions are a cogeneralised affine
subbundle A over a variety S C M. Also, this exists.

Once more, in English:
The set of initial conditions for \ that give rise to solutions of Problem (V)
giving physical motions that are solutions to Problem (N) are described by
@ a (possibly empty) subvariety S € M (think submanifold, if you want) and,
@ for each x € S, an affine subspace A, C F,.

There’s more. . . infinitesimal conditions satisfied by “A”...a PDE one can
analyse a la Spencer. .. connections to sub-Riemannian geometry. .. but...
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... | have important things to do...
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