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The problem

Problem (Imprecise version)
When taking a variational approach to the equations of motion in mechanics,
do you apply the constraints before or after specifying the variations?

My initial foray:1

Ω

Studied two ways of modelling the system with nonholonomic constraints
Did some friction modelling
Compared numerics and data collected from a sophisticated experiment
apparatus2

1L/Murray, Int. J. Nonlinear Mech., 30(6), 793–815, 1995
2A stereo turntable, a ping-pong ball, and a VHS camera
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Other, better, work and a return to the problem

Some other contributions in the intervening years:
1 Cardin/Favretti, J. Geom. Phys., 18(4), 295–325, 1996
2 Favretti, J. Dyn. Diff. Eq., 10(4), 511-536, 1998
3 Zampieri, J. Diff. Eq., 163(2), 335-347, 2000
4 de León/Marrero/Martin de Diego, J. Geom. Phys., 35(2–3), 126–144
5 Kupka/Oliva, J. Diff. Eq., 169(1), 169–189, 2001
6 Cortés/de León/Martín de Diego/Martínez, SIAM J. Control Optim., 41(5), 1389–1412,

2002
7 Fernandez/Bloch, J. Phys. A, 41(3), no. 344005, 2008
8 Borisov/Mamaev/Bizyaev, Russian Math. Surveys, 72(5), 783–840, 2017
9 Terra, São Paulo J. Math. Sci., 12(1), 136-145, 2018

10 Jóźwikowski/Respondek, J. Geom. Mech., 11(1), 77-122, 2019

After 25 years. . . a revisitation.3

3L, J. Geom. Mech., 12(2), 165–308, 2020
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Two problems
Data:

1 configuration manifold Q of regularity r ∈ {∞, ω};
2 kinetic energy modelled by a Cr-Riemannian metric G;
3 potential energy modelled by a potential function V ∈ Cr(Q);
4 nonholonomic constraints modelled by a Cr-distribution D ⊆ TQ.

Action for a Lagrangian L : TQ → R is

AL(γ) =

∫ t1

t0
L ◦ γ′(t) dt,

for γ ∈ H1([t0, t1];Q; q0, q1).

Problem (Nonholonomic (N))
Find γ ∈ H1([t0, t1];Q;D; q0, q1) such
that
⟨d(AG − AV); δ⟩ = 0,

δ ∈ H1([t0, t1]; γ∗D; q0, q1).

Problem (Variational (V))
Find γ ∈ H1([t0, t1];Q;D; q0, q1) such
that
⟨d(AG,D − AV,D); δσ(0)⟩ = 0,

σ : (−ϵ, ϵ) → H1([t0, t1];Q;D; q0, q1).
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Three examples

g

All solutions to Problems (N) and (V) give the
same physical motions.

For every solution to Problem (N), there ex-
ists a solution to Problem (V) giving the same
physical motion.

g

For almost no solution to Problem (N) does
there exist a solution to Problem (V) that gives
the same physical motion.a

aLemos, Acta Mech., 233, 47-56, 2022
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Problem Statement

Problem (Vague version)
Characterise the set of initial conditions for which the solution to Problems (N)
and (V) gives the same physical motion.

To make this vague statement more precise, one needs to understand
more about the solutions to Problems (N) and (V).
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Some connections and tensors

Given a Riemannian manifold (Q,G) and a distribution D:
1 Levi-Civita connection: ∇G
2 G-orthogonal projections PD and PD⊥

3 constrained connection: ∇D (project ∇G onto D)
4 Fröbenius curvature: FD(X,Y) = PD⊥([X,Y]) (X,Y ∈ Γr(D))
5 geodesic curvature: GD(X,Y) = PD⊥(∇GX Y +∇GY X) (X,Y ∈ Γr(D))
6 second fundamental form: SD(X,Y) = −(∇GX PD⊥)(Y)

(X ∈ Γr(TM), Y ∈ Γr(D))
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Solutions to Problem (N)

Theorem
For γ ∈ H1([t0, t1];Q;D; q0, q1), the following statements are equivalent:

1 γ is a solution to Problem (N);
2 γ ∈ H2([t0, t1];Q) and there exists λ ∈ L2([t0, t1]; γ∗D⊥) such that

∇Gγ′γ′ + gradV ◦ γ = λ;

3 γ ∈ H2([t0, t1];Q) and satisfies

∇D
γ′γ′ + PD ◦ gradV ◦ γ = 0.
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Solutions to Problem (V)
Theorem
For γ ∈ H1([t0, t1];Q;D; q0, q1), the following statements are equivalent:

1 γ is a solution to Problem (V);
2 at least one of the following holds:

a some interesting condition for singular extremals that I will ignore, sacrificing
correctness for expediency;

b γ ∈ H2([t0, t1];Q) and there exists λ ∈ H1([t0, t1]; γ
∗D⊥) such that

∇Gγ′γ′ + gradV ◦ γ −∇Gγ′λ− S∗
D(γ

′)(λ) = 0; a

3 at least one of the following holds:
a some other interesting condition for singular extremals that I will again

ignore;
b γ ∈ H2([t0, t1];Q) and there exists λ ∈ H1([t0, t1]; γ

∗D⊥) such that

∇D
γ′γ′ + PD ◦ gradV ◦ γ = F∗

D(γ
′)(λ),

∇D⊥
γ′ λ =

1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ +

1
2

G⋆
D⊥(γ′)(λ) +

1
2

F⋆
D⊥(γ′)(λ).

aKupka/Oliva, J. Diff. Equations, 169(1), 169–189, 2001
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The crucial observation

Compare

∇D
γ′γ′ + PD ◦ gradV ◦ γ = 0

with

∇D
γ′γ′ + PD ◦ gradV ◦ γ = F∗

D(γ
′)(λ),

∇D⊥

γ′ λ =
1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ +

1
2

G⋆
D⊥(γ

′)(λ) +
1
2

F⋆
D⊥(γ

′)(λ). (1)

Problem
Given a physical motion t 7→ γ(t) satisfying Problem (N), find all (if any) initial
conditions for λ so that the resulting solution to (1) is such that F∗

D(γ
′)(λ) = 0.
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Symbolic abstraction
If we think of γ as given, the equation (1) for λ has the form of an affine
differential equation,

∇D⊥

γ′ λ︸ ︷︷ ︸ = 1
2

G⋆
D⊥(γ

′)(λ) +
1
2

F⋆
D⊥(γ

′)(λ)︸ ︷︷ ︸+ 1
2

GD(γ
′, γ′) + PD⊥ ◦ gradV ◦ γ︸ ︷︷ ︸,

λ̇(t) = A(t)(λ(t)) + b(t)

and the condition satisfied by λ is a “satisfies a linear equation” condition,

F∗
D(γ

′)(λ) = 0︸ ︷︷ ︸
B(t)(λ(t))=0

.

Problem (In symbols)
Find all solutions of the affine differential equation

λ̇(t) = A(t)(λ(t)) + b(t)

satisfying B(t)(λ(t)) = 0.
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Complete abstraction

We have the following data:
1 a Cr-vector bundle π : E → M (abstracting the pull-back bundle

π∗
DD⊥ → D);

2 a Cr-cogeneralised subbundle F ⊆ E (abstracting ker(B));
3 a Cr-affine vector field X on E (abstracting λ̇ = A ◦ λ+ b) over a Cr-vector

field X0 on M (abstracting the equations governing Problem (N)).
Representation of an affine vector field X on E over a vector field X0 on M.

Assuming a linear connection ∇ on E, we can write

X = Xh
0 + Ae + bv

for A ∈ Γr(E ⊗ E∗) and b ∈ Γr(E) where ·h is horizontal lift, ·e is “vertical
evaluation,” and ·v is vertical lift.
Then, for a curve Υ: I → E, the following are equivalent:

1 Υ is an integral curve for X;
2 ∇γ′Υ = A ◦Υ+ b ◦ γ, where γ = π ◦ Υ.
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A general problem

Given:
1 an affine vector field X on a vector bundle π : E → M over a vector field X0

on M and
2 a Cr-cogeneralised subbundle F ⊆ E.

Problem (General Geometric Problem)
Find all initial conditions e ∈ E such that the associated integral curve Υ of X
through e satisfies image(Υ) ⊆ F.
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Dualise using elementary linear algebra

Proposition (Linear equations)
Let V be a finite-dimensional R-vector space. There is a 1–1 correspondence
between the sets of solutions of linear equations

A(v) + b = 0, A ∈ EndR(V), b ∈ V,

and subspaces ∆ ⊆ V∗ ⊕R with positive codimension. Moreover,
1 the set of solutions to the linear equation is nonempty if and only if

(0, 1) ∈ ∆ and
2 the set of solutions is {v ∈ V | (v, 1) ∈ Λ(∆)} with Λ being the annihilator.
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Making the dual point of view geometric

For a vector bundle π : E → M, we think of subbundles of positive
codimension of E∗ ⊕RM as being bundles of linear equations, and call
them defining subbundles.
Let ∆ ⊆ E∗ ⊕RM be a defining subbundle. Call the set of solutions

A(∆) = {e ∈ E | ⟨λ; e⟩+ a = 0, (λ, a) ∈ ∆π(e)}

an affine subbundle variety .
For an affine subbundle variety A(∆), we have

S(A) = {x ∈ M | A ∩ Ex ̸= ∅},

called the base variety .
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Making the dual point of view geometric (cont’d)

The connection ∇ on E and the flat connection on RM induce a
connection ∇̂ on E ⊕RM.
The affine vector field X = Xh

0 + Ae + bv induces a linear vector field

X̂ = Xh
0 + (A, b)e

in E ⊕RM and the dual vector field X̂∗ in E∗ ⊕RM.

Proposition
Let ∆ be a defining subbundle and let A(∆) be the associated affine
subbundle variety. TFAE (morally):

1 A(∆) is invariant under X;
2 a S(A(∆)) is invariant under X0 and

b ∆ ∩ (π∗ × pr1)
−1(S(A(∆))) is invariant under X̂∗.
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Results

Theorem
Assume X0 is complete.
The set of initial conditions A of the General Geometric Problem is the largest
affine subbundle variety contained in F and invariant under X.

There’s more. . . infinitesimal conditions satisfied by “A”. . . a PDE one can
analyse à la Spencer. . . connections to sub-Riemannian
geometry. . . application to the original mechanics problem. . .
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