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The problem

Problem (Imprecise version)

When taking a variational approach to the equations of motion in mechanics,
do you apply the constraints before or after specifying the variations?

My initial foray:

@ Studied two ways of modelling the system with nonholonomic constraints
@ Did some friction modelling

@ Compared numerics and data collected from a sophisticated experiment
apparatus?

"L/Murray, Int. J. Nonlinear Mech., 30(6), 793-815, 1995
2A stereo turntable, a ping-pong ball, and a VHS camera
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Other, better, work and a return to the problem

@ Some other contributions in the intervening years:

@ Cardin/Favretti, J. Geom. Phys., 18(4), 295-325, 1996

@ Favretti, J. Dyn. Diff. Eq., 10(4), 511-536, 1998

© Zampieri, J. Diff. Eq., 163(2), 335-347, 2000
de Ledn/Marrero/Martin de Diego, J. Geom. Phys., 35(2-3), 126—144
Kupka/Oliva, J. Diff. Eq., 169(1), 169-189, 2001
Cortés/de Leén/Martin de Diego/Martinez, SIAM J. Control Optim., 41(5), 1389—-1412,
2002
Fernandez/Bloch, J. Phys. A, 41(3), no. 344005, 2008
Borisov/Mamaev/Bizyaev, Russian Math. Surveys, 72(5), 783-840, 2017
Terra, Sdo Paulo J. Math. Sci., 12(1), 136-145, 2018
(70} Jézwikowski/Respondek, J. Geom. Mech., 11(1), 77-122, 2019

@ After 25 years. . . a revisitation.?

3L, J. Geom. Mech., 12(2), 165-308, 2020
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Two problems

@ Data:

@ configuration manifold Q of regularity € {co, w};

@ kinetic energy modelled by a C’-Riemannian metric G;

@ potential energy modelled by a potential function V € C'(Q);

© nonholonomic constraints modelled by a C’-distribution D C TQ.

@ Action for a Lagrangian L: TQ — R is

AL(y) = / ) Loo/(r)dr,

fo

for v € H'([to, 1]; Q; qo, q1)-

Problem (Nonholonomic (N)) Problem (Variational (V))
Find~ € Hl([fo,tle; D; g0, q1) such Find~ € Hl([foatle; D; g0, q1) such
that that
(d(Ag —Av);0) =0, (d(Ag,p — Av,p); 60(0)) =0,
& € H'([to,11];7"D; 0, q1)- o: (—€,¢) = H'([to,1);Q; D; g0, q1)-
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Three examples

Andrew D. Lewis (Queen’s University)

All solutions to Problems (N) and (V) give the
same physical motions.

For every solution to Problem (N), there ex-
ists a solution to Problem (V) giving the same
physical motion.

For almost no solution to Problem (N) does
there exist a solution to Problem (V) that gives
the same physical motion.?

aLemos, Acta Mech., 233, 47-56, 2022
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Problem Statement

Problem (Vague version)

Characterise the set of initial conditions for which the solution to Problems (N)
and (V) gives the same physical motion.

@ To make this vague statement more precise, one needs to understand
more about the solutions to Problems (N) and (V).
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Some connections and tensors

Given a Riemannian manifold (Q, G) and a distribution D:
@ Levi-Civita connection: V&
@ G-orthogonal projections Pp and Pp.
© constrained connection: VP (project V& onto D)
@ Frébenius curvature: Fp(X,Y) = Pp. ([X,Y]) (X,Y € I'"(D))
@ geodesic curvature: Gp(X,Y) = Pp. (V$Y + V$X) (X,Y € I7(D))
@ second fundamental form: Sp(X,Y) = —(V$Pp.)(Y)
(X eT"(TM), Y € T7(D))
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Solutions to Problem (N)

Theorem

For v € H'([t0, 11]; Q; D; qo, q1), the following statements are equivalent:
@ ~ is a solution to Problem (N);
Q + € H([to,11]; Q) and there exists A € L*([t, 11];v*D*) such that

VS@’ +gradVory =\
© + € H([to,11]; Q) and satisfies

VSMy’ + PpogradVoy =0.
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Solutions to Problem (V)
Theorem

For v € H! ([0, 1]; Q; D; g0, 41), the following statements are equivalent:
@ + is a solution to Problem (V);

@ at least one of the following holds:

© some interesting condition for singular extremals that | will ignore, sacrificing
correctness for expediency;
O v € H¥([1o, 11]; Q) and there exists X € H'([to, 11];*D*) such that

VS,fy/ +gradVory — VS,)\ —85(v)(\) =0;°

© at least one of the following holds:
© some other interesting condition for singular extremals that | will again
ignore;
O v € H¥ ([, 11]; Q) and there exists X € H'([to, t:];*D*) such that
Vs/wl + PpogradVoy = Fp(7v)(N),

L 1
V2A = 2Go(y,7) + Pos o grad Ve + 2 Gau (7)) + 5 Fos (1) ().

4Kupka/Oliva, J. Diff. Equations, 169(1), 169—189, 2001
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The crucial observation

Compare

V3,7'+PDogradV07:0 J

with

V2y/ + Ppograd Vo = F(v) (),

L 1. 1
V5 A=3Go(v,7) +Por ograd Ve + -G (v)(N) + 5F5. (V)N (1)

o

Problem

Given a physical motion t — ~(t) satisfying Problem (N), find all (if any) initial
conditions for X so that the resulting solution to (1) is such that F§(v")(\) = 0.

Andrew D. Lewis (Queen’s University) Variational and nonholonomic mechanics Delednfest (11/12/2023) 10/17



Symbolic abstraction

If we think of v as given, the equation (1) for A has the form of an affine
differential equation,

+ 1 ’ - / 1 Y
VA = 2G5, ()N + S (7)) + 2 Go(77) + Pos ograd Vo,
~——

A = ADOO) + b1

and the condition satisfied by A is a “satisfies a linear equation” condition,

F5()(\) =0.
N————
B(1)(A(1))=0
Problem (In symbols)
Find all solutions of the affine differential equation
A(t) = A@AD)) + b(1)
satisfying B(t)(\(¢)) = 0.
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Complete abstraction

We have the following data:
@ a C’-vector bundle 7: E — M (abstracting the pull-back bundle
71'|’5Dl — D);
@ a C'-cogeneralised subbundle F C E (abstracting ker(B));

© a C'-affine vector field X on E (abstracting A = A o A + b) over a C"-vector
field X, on M (abstracting the equations governing Problem (N)).

Representation of an affine vector field X on E over a vector field X, on M.
@ Assuming a linear connection V on E, we can write

X =X +A® + b

for A € I7(E ® E*) and b € T"(E) where - is horizontal lift, -© is “vertical
evaluation,” and -V is vertical lift.

@ Then, for a curve Y: I — E, the following are equivalent:

@ 7 is anintegral curve for X;
Q@ V,T=AoY +boy,wherey=moT.
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A general problem

Given:

@ an affine vector field X on a vector bundle 7: E — M over a vector field X,
on M and

@ a C'-cogeneralised subbundle F C E.

Problem (General Geometric Problem)

Find all initial conditions e € E such that the associated integral curve T of X
through e satisfies image(Y) C F.
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Dualise using elementary linear algebra

Proposition (Linear equations)
LetV be a finite-dimensional R -vector space. There is a 1-1 correspondence
between the sets of solutions of linear equations

Av)+b=0, A€ Endr(V), beV,

and subspaces A C V* @ R with positive codimension. Moreover,

@ the set of solutions to the linear equation is nonempty if and only if
(0,1) € A and

@ the set of solutions is {v € V' | (v,1) € A(A)} with A being the annihilator.

Andrew D. Lewis (Queen’s University) Variational and nonholonomic mechanics Delednfest (11/12/2023) 14/17



Making the dual point of view geometric

@ For a vector bundle 7: E — M, we think of subbundles of positive
codimension of E* & Ry as being bundles of linear equations, and call
them defining subbundles.

@ Let A C E* @ IRy be a defining subbundle. Call the set of solutions
A(A)={ecE| (Ae) +a=0, (N a) € Are}

an affine subbundle variety.
@ For an affine subbundle variety A(A), we have

S(A) = {xeM| ANE, # o},

called the base variety.
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Making the dual point of view geometric (cont’d)

@ The connection V on E and the flat connection on Ry induce a
connection V on E & Ry.

@ The affine vector field X = X} + A® + b" induces a linear vector field
X =x0+(A,b)°
in E @ Ry and the dual vector field X* in E* @ Ry.

Proposition
Let A be a defining subbundle and let A(A) be the associated affine
subbundle variety. TFAE (morally):

@ A(A) is invariant under X ;

@ O S(A(Q)) is invariant under X, and R
O AN (7 xpr) "' (S(A(A))) is invariant under X*.
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Results

Theorem

Assume X, is complete.
The set of initial conditions A of the General Geometric Problem is the largest
affine subbundle variety contained in F and invariant under X.

There’s more. . . infinitesimal conditions satisfied by “A”...a PDE one can
analyse a la Spencer. .. connections to sub-Riemannian
geometry. .. application to the original mechanics problem...

Andrew D. Lewis (Queen’s University) Variational and nonholonomic mechanics Delednfest (11/12/2023) 17/17



