Variational and nonholonomic mechanics

Andrew D. Lewis
Department of Mathematics and Statistics
Queen's University, Kingston, ON, Canada

In honour of Manuel de León’s 70th birthday 11/12/2023

The problem

Problem (Imprecise version)

When taking a variational approach to the equations of motion in mechanics, do you apply the constraints before or after specifying the variations?

My initial foray: ${ }^{1}$

- Studied two ways of modelling the system with nonholonomic constraints
- Did some friction modelling
- Compared numerics and data collected from a sophisticated experiment apparatus ${ }^{2}$

[^0]
Other, better, work and a return to the problem

- Some other contributions in the intervening years:
(1) Cardin/Favretti, J. Geom. Phys., 18(4), 295-325, 1996
(2) Favretti, J. Dyn. Diff. Eq., 10(4), 511-536, 1998
(3) Zampieri, J. Diff. Eq., 163(2), 335-347, 2000
(4) de León/Marrero/Martin de Diego, J. Geom. Phys., 35(2-3), 126-144
(5) Kupka/Oliva, J. Diff. Eq., 169(1), 169-189, 2001
(6) Cortés/de León/Martín de Diego/Martínez, SIAM J. Control Optim., 41(5), 1389-1412, 2002
(7) Fernandez/Bloch, J. Phys. A, 41(3), no. 344005, 2008
(8) Borisov/Mamaev/Bizyaev, Russian Math. Surveys, 72(5), 783-840, 2017
(9) Terra, São Paulo J. Math. Sci., 12(1), 136-145, 2018
(10) Jóźwikowski/Respondek, J. Geom. Mech., 11(1), 77-122, 2019
- After 25 years. . . a revisitation. ${ }^{3}$

[^1]
Two problems

- Data:
(1) configuration manifold Q of regularity $r \in\{\infty, \omega\}$;
(2) kinetic energy modelled by a C^{r}-Riemannian metric G ;
(3) potential energy modelled by a potential function $V \in \mathrm{C}^{r}(\mathrm{Q})$;
(9) nonholonomic constraints modelled by a C^{r}-distribution $\mathrm{D} \subseteq \mathrm{TQ}$.
- Action for a Lagrangian $L: \mathrm{TQ} \rightarrow \mathbb{R}$ is

$$
A_{L}(\gamma)=\int_{t_{0}}^{t_{1}} L \circ \gamma^{\prime}(t) \mathrm{d} t
$$

for $\gamma \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathbf{Q} ; q_{0}, q_{1}\right)$.

Problem (Nonholonomic (N))

Find $\gamma \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathrm{Q} ; \mathrm{D} ; q_{0}, q_{1}\right)$ such that

$$
\begin{aligned}
& \left\langle\mathrm{d}\left(A_{\mathrm{G}}-A_{V}\right) ; \delta\right\rangle=0, \\
& \quad \delta \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \gamma^{*} \mathrm{D} ; q_{0}, q_{1}\right) .
\end{aligned}
$$

Problem (Variational (V))

Find $\gamma \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathrm{Q} ; \mathrm{D} ; q_{0}, q_{1}\right)$ such that

$$
\begin{gathered}
\left\langle\mathrm{d}\left(A_{\mathrm{G}, \mathrm{D}}-A_{V, \mathrm{D}}\right) ; \delta \sigma(0)\right\rangle=0 \\
\sigma:(-\epsilon, \epsilon) \rightarrow \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathrm{Q} ; \mathrm{D} ; q_{0}, q_{1}\right)
\end{gathered}
$$

Three examples

All solutions to Problems (N) and (V) give the same physical motions.

For every solution to Problem (N), there exists a solution to Problem (V) giving the same physical motion.

For almost no solution to Problem (N) does there exist a solution to Problem (V) that gives the same physical motion. ${ }^{a}$
${ }^{\text {a Lemos, Acta Mech., 233, 47-56, } 2022}$

Problem Statement

Problem (Vague version)

Characterise the set of initial conditions for which the solution to Problems (N) and (V) gives the same physical motion.

- To make this vague statement more precise, one needs to understand more about the solutions to Problems (N) and (V).

Some connections and tensors

Given a Riemannian manifold (Q, G) and a distribution D:
(1) Levi-Civita connection: ∇^{G}
(2) G-orthogonal projections P_{D} and $P_{\mathrm{D}^{\perp}}$
(3) constrained connection: ∇^{D} (project ∇^{G} onto D)
(9) Fröbenius curvature: $F_{\mathrm{D}}(X, Y)=P_{\mathrm{D} \perp}([X, Y]) \quad\left(X, Y \in \Gamma^{r}(\mathrm{D})\right)$
(3) geodesic curvature: $G_{\mathrm{D}}(X, Y)=P_{\mathrm{D}^{\perp}}\left(\nabla_{X}^{\mathrm{G}} Y+\nabla_{Y}^{\mathrm{G}} X\right) \quad\left(X, Y \in \Gamma^{r}(\mathrm{D})\right)$
(6) second fundamental form: $S_{D}(X, Y)=-\left(\nabla_{X}^{\mathrm{G}} P_{\mathrm{D} \perp}\right)(Y)$

$$
\left(X \in \Gamma^{r}(\mathrm{TM}), Y \in \Gamma^{r}(\mathrm{D})\right)
$$

Solutions to Problem (N)

Theorem

For $\gamma \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathbf{Q} ; \mathrm{D} ; q_{0}, q_{1}\right)$, the following statements are equivalent:
(1) γ is a solution to Problem (N);
(2) $\gamma \in \mathrm{H}^{2}\left(\left[t_{0}, t_{1}\right] ; \mathbf{Q}\right)$ and there exists $\lambda \in \mathrm{L}^{2}\left(\left[t_{0}, t_{1}\right] ; \gamma^{*} \mathrm{D}^{\perp}\right)$ such that

$$
\nabla_{\gamma^{\prime}}^{\mathrm{G}} \gamma^{\prime}+\operatorname{grad} V \circ \gamma=\lambda ;
$$

(3) $\gamma \in \mathrm{H}^{2}\left(\left[t_{0}, t_{1}\right] ; \mathrm{Q}\right)$ and satisfies

$$
\nabla_{\gamma^{\prime} \gamma^{\prime}}^{\mathrm{D}}+P_{\mathrm{D}} \circ \operatorname{grad} V \circ \gamma=0 .
$$

Solutions to Problem (V)

Theorem

For $\gamma \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \mathrm{Q} ; \mathrm{D} ; q_{0}, q_{1}\right)$, the following statements are equivalent:
(1) γ is a solution to Problem (V);
(2) at least one of the following holds:
(0) some interesting condition for singular extremals that I will ignore, sacrificing correctness for expediency;
(0) $\gamma \in \mathrm{H}^{2}\left(\left[t_{0}, t_{1}\right] ; \mathbb{Q}\right)$ and there exists $\lambda \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \gamma^{*} \mathrm{D}^{\perp}\right)$ such that

$$
\nabla_{\gamma^{\prime}}^{\mathrm{G}} \gamma^{\prime}+\operatorname{grad} V \circ \gamma-\nabla_{\gamma^{\prime}}^{\mathrm{G}} \lambda-S_{\mathrm{D}}^{*}\left(\gamma^{\prime}\right)(\lambda)=0 ;{ }^{a}
$$

(3) at least one of the following holds:
(0) some other interesting condition for singular extremals that I will again ignore;
(0) $\gamma \in \mathrm{H}^{2}\left(\left[t_{0}, t_{1}\right] ; \mathbb{Q}\right)$ and there exists $\lambda \in \mathrm{H}^{1}\left(\left[t_{0}, t_{1}\right] ; \gamma^{*} \mathrm{D}^{\perp}\right)$ such that

$$
\begin{aligned}
& \nabla_{\gamma^{\prime}}^{\mathrm{D}} \gamma^{\prime}+P_{\mathrm{D}} \circ \operatorname{grad} V \circ \gamma=F_{\mathrm{D}}^{*}\left(\gamma^{\prime}\right)(\lambda), \\
& \nabla_{\gamma^{\prime}}^{\mathrm{D}} \lambda=\frac{1}{2} G_{\mathrm{D}}\left(\gamma^{\prime}, \gamma^{\prime}\right)+P_{\mathrm{D} \perp} \circ \operatorname{grad} V \circ \gamma+\frac{1}{2} G_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda)+\frac{1}{2} F_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda) .
\end{aligned}
$$

[^2]
The crucial observation

Compare

$$
\nabla_{\gamma^{\prime}}^{\mathrm{D}}+P_{\mathrm{D}} \circ \operatorname{grad} V \circ \gamma=0
$$

with

$$
\begin{align*}
& \nabla_{\gamma^{\prime}}^{\mathrm{D}} \gamma^{\prime}+P_{\mathrm{D}} \circ \operatorname{grad} V \circ \gamma=F_{\mathrm{D}}^{*}\left(\gamma^{\prime}\right)(\lambda), \\
& \nabla_{\gamma^{\prime}}^{\mathrm{D} \perp} \lambda=\frac{1}{2} G_{\mathrm{D}}\left(\gamma^{\prime}, \gamma^{\prime}\right)+P_{\mathrm{D}^{\perp}} \circ \operatorname{grad} V \circ \gamma+\frac{1}{2} G_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda)+\frac{1}{2} F_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda) . \tag{1}
\end{align*}
$$

Problem

Given a physical motion $t \mapsto \gamma(t)$ satisfying Problem (N), find all (if any) initial conditions for λ so that the resulting solution to (1) is such that $F_{\mathrm{D}}^{*}\left(\gamma^{\prime}\right)(\lambda)=0$.

Symbolic abstraction

If we think of γ as given, the equation (1) for λ has the form of an affine differential equation,

$$
\underbrace{\nabla_{\gamma^{\prime}}^{\mathrm{D}^{\perp}} \lambda}_{\dot{\lambda}(t)}=\underbrace{\frac{1}{2} G_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda)+\frac{1}{2} F_{\mathrm{D} \perp}^{\star}\left(\gamma^{\prime}\right)(\lambda)}_{A(t)(\lambda(t))}+\underbrace{\frac{1}{2} G_{\mathrm{D}}\left(\gamma^{\prime}, \gamma^{\prime}\right)+P_{\mathrm{D} \perp} \circ \operatorname{grad} V \circ \gamma}_{b(t)},
$$

and the condition satisfied by λ is a "satisfies a linear equation" condition,

$$
\underbrace{F_{\mathrm{D}}^{*}\left(\gamma^{\prime}\right)(\lambda)=0}_{B(t)(\lambda(t))=0} .
$$

Problem (In symbols)

Find all solutions of the affine differential equation

$$
\dot{\lambda}(t)=A(t)(\lambda(t))+b(t)
$$

satisfying $B(t)(\lambda(t))=0$.

Complete abstraction

We have the following data:
(1) a C^{r}-vector bundle $\pi: \mathrm{E} \rightarrow \mathrm{M}$ (abstracting the pull-back bundle $\left.\pi_{\mathrm{D}}^{*} \mathrm{D}^{\perp} \rightarrow \mathrm{D}\right)$;
(2) a C^{r}-cogeneralised subbundle $\mathrm{F} \subseteq \mathrm{E}$ (abstracting $\operatorname{ker}(B)$);
(3) a C^{r}-affine vector field X on E (abstracting $\dot{\lambda}=A \circ \lambda+b$) over a C^{r}-vector field X_{0} on M (abstracting the equations governing Problem (N)).
Representation of an affine vector field X on E over a vector field X_{0} on M .

- Assuming a linear connection ∇ on E , we can write

$$
X=X_{0}^{\mathrm{h}}+A^{\mathrm{e}}+b^{\mathrm{v}}
$$

for $A \in \Gamma^{r}\left(\mathrm{E} \otimes \mathrm{E}^{*}\right)$ and $b \in \Gamma^{r}(\mathrm{E})$ where.$^{\mathrm{h}}$ is horizontal lift,.$^{\mathrm{e}}$ is "vertical evaluation," and ${ }^{v}$ is vertical lift.

- Then, for a curve $\Upsilon: I \rightarrow \mathrm{E}$, the following are equivalent:
(1) Υ is an integral curve for X;
(2) $\nabla_{\gamma^{\prime}} \Upsilon=A \circ \Upsilon+b \circ \gamma$, where $\gamma=\pi \circ \Upsilon$.

A general problem

Given:
(1) an affine vector field X on a vector bundle $\pi: \mathrm{E} \rightarrow \mathrm{M}$ over a vector field X_{0} on M and
(2) a C^{r}-cogeneralised subbundle $\mathrm{F} \subseteq \mathrm{E}$.

Problem (General Geometric Problem)

Find all initial conditions $e \in E$ such that the associated integral curve Υ of X through e satisfies image $(\Upsilon) \subseteq$ F.

Dualise using elementary linear algebra

Proposition (Linear equations)

Let V be a finite-dimensional \mathbb{R}-vector space. There is a 1-1 correspondence between the sets of solutions of linear equations

$$
A(v)+b=0, \quad A \in \operatorname{End}_{\mathbb{R}}(\mathrm{V}), b \in \mathrm{~V},
$$

and subspaces $\Delta \subseteq \mathrm{V}^{*} \oplus \mathbb{R}$ with positive codimension. Moreover,
(1) the set of solutions to the linear equation is nonempty if and only if $(0,1) \in \Delta$ and
(2) the set of solutions is $\{v \in \mathrm{~V} \mid(v, 1) \in \Lambda(\Delta)\}$ with Λ being the annihilator.

Making the dual point of view geometric

- For a vector bundle $\pi: \mathrm{E} \rightarrow \mathrm{M}$, we think of subbundles of positive codimension of $E^{*} \oplus \mathbb{R}_{M}$ as being bundles of linear equations, and call them defining subbundles.
- Let $\Delta \subseteq \mathrm{E}^{*} \oplus \mathbb{R}_{\mathrm{M}}$ be a defining subbundle. Call the set of solutions

$$
\mathrm{A}(\Delta)=\left\{e \in \mathrm{E} \mid\langle\lambda ; e\rangle+a=0,(\lambda, a) \in \Delta_{\pi(e)}\right\}
$$

an affine subbundle variety.

- For an affine subbundle variety $\mathrm{A}(\Delta)$, we have

$$
\mathrm{S}(\mathrm{~A})=\left\{x \in \mathrm{M} \mid \mathrm{A} \cap \mathrm{E}_{x} \neq \varnothing\right\},
$$

called the base variety.

Making the dual point of view geometric (cont'd)

- The connection ∇ on E and the flat connection on \mathbb{R}_{M} induce a connection $\hat{\nabla}$ on $\mathrm{E} \oplus \mathbb{R}_{\mathrm{M}}$.
- The affine vector field $X=X_{0}^{\mathrm{h}}+A^{\mathrm{e}}+b^{\mathrm{v}}$ induces a linear vector field

$$
\widehat{X}=X_{0}^{\mathrm{h}}+(A, b)^{\mathrm{e}}
$$

in $\mathrm{E} \oplus \mathbb{R}_{\mathrm{M}}$ and the dual vector field \widehat{X}^{*} in $\mathrm{E}^{*} \oplus \mathbb{R}_{\mathrm{M}}$.

Proposition

Let Δ be a defining subbundle and let $\mathrm{A}(\Delta)$ be the associated affine subbundle variety. TFAE (morally):
(1) $\mathrm{A}(\Delta)$ is invariant under X;
(2) (3) $\mathrm{S}(\mathrm{A}(\Delta))$ is invariant under X_{0} and
(1) $\Delta \cap\left(\pi^{*} \times \mathrm{pr}_{1}\right)^{-1}(\mathrm{~S}(\mathrm{~A}(\Delta)))$ is invariant under \widehat{X}^{*}.

Results

Abstract

Theorem Assume X_{0} is complete. The set of initial conditions A of the General Geometric Problem is the largest affine subbundle variety contained in F and invariant under X.

There's more. . . infinitesimal conditions satisfied by "A". . . a PDE one can analyse à la Spencer. . . connections to sub-Riemannian geometry... application to the original mechanics problem...

[^0]: ${ }^{1}$ L/Murray, Int. J. Nonlinear Mech., 30(6), 793-815, 1995
 ${ }^{2}$ A stereo turntable, a ping-pong ball, and a VHS camera

[^1]: ${ }^{3}$ L, J. Geom. Mech., 12(2), 165-308, 2020

[^2]: ${ }^{\text {a/Kupka/Oliva, J. Diff. Equations, 169(1), 169-189, } 2001}$

