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Abstract

This paper deals with the design and analysis of dynamical systems on directed graphs (digraphs) that achieve

weight-balanced and doubly stochastic assignments. Weight-balanced and doubly stochastic digraphs are two

classes of digraphs that play an essential role in a variety of coordination problems, including formation control,

agreement, and distributed optimization. We refer to a digraph as doubly stochasticable (weight-balanceable)

if it admits a doubly stochastic (weight-balanced) adjacency matrix. This paper studies the characterization of

both classes of digraphs, and introduces distributed dynamical systems to compute the appropriate set of weights

in each case. It is known that semiconnectedness is a necessary and sufficient condition for a digraph to be

weight-balanceable. The first main contribution is a characterization of doubly-stochasticable digraphs. As a

by-product, we unveil the connection of this class of digraphs with weight-balanceable digraphs. The second

main contribution is the synthesis of a distributed strategy running synchronously on a directed communication

network that allows individual agents to balance their in- and out-degrees. We show that a variation of our

distributed procedure over the mirror graph has a much smaller time complexity than the currently available

centralized algorithm based on the computation of the graph cycles. The final main contribution is the design

of two cooperative strategies for finding a doubly stochastic weight assignment. One algorithm works under the

assumption that individual agents are allowed to add self-loops. For the case when this assumption does not

hold, we introduce an algorithm distributed over the mirror digraph which allows the agents to compute a doubly

stochastic weight assignment if the digraph is doubly stochasticable and announce otherwise if it is not. Various

examples illustrate the results.
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1 Introduction

In the last years there has been considerable interest in understanding the underpinnings of collective behavior

from a dynamical systems perspective. A variety of phenomena from biology and physics have been carefully

studied, and more are coming into light. A few examples of a vast literature include oscillator synchronization [35,

36, 37], self-organization in biological systems [7, 16, 30], and animal grouping and aggregation [17, 27]. In the

study of collective behavior, a major concern is the modeling of the interactions between individual agents and the

understanding on how local interconnections give rise to global emergent behavior. Such coordination problems

have also become a major research area in engineering because of the connections with distributed robotics,

networked systems, and autonomy, see e.g., [6, 25, 33] and references therein.

This paper is a contribution to this buoying field. From a systems and controls perspective, one of the main

objectives is the design of dynamical systems that are distributed over a given interaction topology and whose

performance guarantees can be formally established with regards to the task at hand. In both analysis and design,

the interaction topology (or graph) of the underlying network is a key element as it determines the information

available to each individual. Typically, directed interaction topologies (where interactions among agents are uni-

directional) pose greater technical challenges.

In this paper, we study dynamical systems on two important classes of directed graphs, weight-balanced and

doubly stochastic digraphs. A digraph is weight-balanced if, at each vertex, the sum of the weights of the in-

coming edges is equal to the sum of the weights of the outgoing edges. A digraph is doubly stochastic if it

is weight-balanced and these sums at each vertex are equal to one. The notion of weight-balanced digraph is

key in establishing convergence results of distributed algorithms for average-consensus [28, 29] and consensus

on general functions [9] via Lyapunov stability analysis. Weight-balanced digraphs also appear in the design of

leader-follower strategies under time delays [19], virtual leader strategies under asymmetric interactions [34] and

stable flocking algorithms for agents with significant inertial effects [21]. In [18], a traffic-flow problem is intro-

duced with n junction and m one-way streets with the goal of ensuring a smooth traffic flow. It is shown that the

problem can be reduced to computing weights on the edges of the associated digraph so that it is weight-balanced.

Furthermore, necessary and sufficient conditions are given for a digraph to be weight-balanced and a centralized

algorithm is presented for computing the weight on each edge. Doubly stochastic digraphs also play a key role in

networked control problems. Examples include distributed averaging [6, 29, 33, 40] and distributed convex opti-

mization [20, 26, 41]. Convergence in gossip algorithms also relies on the structure of doubly stochastic digraphs,

see [5, 22].

Because of the numerous algorithms available in the literature that use weight-balanced and doubly stochastic

interaction topologies, it is important to develop distributed strategies that allow individual agents to find the

appropriate weight assignments, i.e., to balance their in- and out-degrees, so that the overall interaction digraph

is weight-balanced or doubly stochastic. In particular, we are interested in designing discrete-time dynamical

systems that can be run on the directed communication network which, in finite time, converge to a weight-
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balanced/doubly stochastic assignment. As a necessary step towards this goal, it is an important research question

to characterize when a digraph can be given an edge weight assignment that makes it belong to either category.

Our focus in this paper is on nonzero weight assignments. In addition to its theoretical interest, the consideration

of nonzero weight assignments is also relevant from a practical perspective, as the use of the maximum number

of edges leads to higher algebraic connectivity [39], which in turn affects positively the rate of convergence [5, 8,

14, 22] of the algorithms typically executed over doubly stochastic digraphs. Alternative versions of the problem,

where some edge weights are allowed to be zero, are also worth exploring, although we do not consider them

here. From a distributed perspective, such problems pose nontrivial challenges, as individual agents would need to

concurrently implement a procedure, see e.g., [10], to determine if severing a particular edge (i.e., setting its weight

to zero) or set of them disconnects the overall digraph. Such procedures would necessarily require information

beyond the immediate neighborhood of the agents.

Our contributions are threefold. First, we obtain a characterization of doubly stochasticable digraphs (a char-

acterization of weight-balanceable digraphs is already available in the literature, cf. [18]). As a by-product of our

study, we demonstrate that the set of doubly stochasticable digraphs can be generated by a special subset of weight-

balanced digraphs. Second, we develop two discrete-time set-valued dynamical systems on the directed commu-

nication network that converge to a weight-balanced digraph in finite time. The imbalance-correcting

algorithm is a synchronous distributed strategy on a digraph in which each agent provably balances its in- and

out-degrees in finite time. In this algorithm, each individual agent can send a message to one of its out-neighbors

and receive a message from its in-neighbors. The mirror imbalance-correcting algorithm is a

provably correct distributed strategy over the mirror digraph whose time complexity is much smaller than that of

the existing centralized strategy of [18] based on the computation of all cycles of the digraph. Third, we synthesize

discrete-time dynamical systems to construct doubly stochastic adjacency matrices. The imbalance-correcting

algorithm with self-loop addition achieves this task under the assumption that individual agents

can add self-loops to the structure of the digraph. If this is not allowed, we introduce the load-pushing

algorithm, which is a strategy distributed over the mirror digraph that allows agents to: (i) identify if their

digraph is doubly stochasticable and, if this is the case, (ii) find a set of weights that makes the digraph dou-

bly stochastic. The algorithm relies on the notion of Doubly-Stochastic-index (DS-index for short) of a strongly

connected doubly stochasticable digraph and its design and correctness analysis draw substantially on distributed

solutions to the maximum flow problem [1, 32]. Our results are applicable to any of the scenarios described

above (distributed formation, consensus, flocking, gossip, or optimization). Our strategies can be executed by the

networked system prior to any other coordination algorithm that requires the interaction topology to be weight-

balanced or doubly stochastic.

This paper is organized as follows. Section 2 presents some mathematical preliminaries. Section 3 gives the

necessary and sufficient conditions for the existence of a doubly stochastic adjacency matrix assignment for a

given digraph. Section 4 introduces two weight-balancing algorithms that allow each agent to balance its in- and
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out-degrees. We characterize their distributed character as well as the convergence and complexity properties. In

Section 5, we discuss the problem of designing cooperative strategies that allow agents to find a doubly stochastic

edge weight assignment. Finally, Section 6 contains our conclusions and ideas for future work.

2 Mathematical preliminaries

We adopt some basic notions from [2, 6, 11]. A directed graph, or simply digraph, is a pair G = (V,E), where V

is a finite set called the vertex set and E ⊆ V ×V is the edge set. If |V | = n, i.e., the cardinality of V is n ∈ Z>0,

we say that G is of order n which, unless otherwise noted, is the standard assumption throughout the paper. A

digraph G1 = (V1,E1) is a subdigraph of G2 = (V2,E2) if V1 ⊂ V2 and E1 ⊂ E2. An edge (u,v) ∈ E is incident

away from u (or an out-edge of u) and incident toward v (or an in-edge of v), and we call u an in-neighbor of v

and v an out-neighbor of u. We denote the set of in-neighbors and out-neighbors of v, respectively, with N in(v)

and N out(v). The in-degree and out-degree of v, denoted din(v) and dout(v), are the number of in-neighbors and

out-neighbors of v, respectively. We call a vertex v isolated if it has zero in- and out-degrees. An undirected graph,

or simply graph, is a pair G = (V,E), where V is a finite set called the vertex set and the edge set E consists of

unordered pairs of vertices. In a graph, neighboring relationships are always bidirectional, and hence we simply

use the terms neighbor, degree, etc. for the notions introduced above. A graph G1 = (V1,E1) is a subgraph of

G2 = (V2,E2) if V1 ⊂ V2 and E1 ⊂ E2. A graph is regular if each vertex has the same number of neighbors.

The union G1 ∪G2 of digraphs G1 = (V1,E1) and G2 = (V2,E2) is defined by G1 ∪G2 = (V1 ∪V2,E1 ∪E2). The

intersection of two digraphs can be defined similarly. A digraph G is generated by a set of digraphs G1, . . . ,Gm if

G = G1 ∪ ·· · ∪Gm. We let E− ⊆ V ×V denote the set obtained by changing the order of the elements of E, i.e.,

(v,u) ∈ E− iff (u,v) ∈ E. The digraph G = (V,E ∪E−) is the mirror of G.

A weighted digraph is a triplet G = (V,E,A), where (V,E) is a digraph and A ∈Rn×n
≥0 is the adjacency matrix.

We denote the entries of A by ai j, where i, j ∈ {1, . . . ,n}. The adjacency matrix has the property that the entry

ai j > 0 if (vi,v j) ∈ E and ai j = 0, otherwise. If a matrix A satisfies this property, we say that A is a weight

assignment of the digraph G = (V,E). Note that any digraph can be trivially seen as a weighted digraph by

assigning weight 1 to each one of its edges. We refer to this as the trivial weight assignment. We will find it useful

to extend the definition of union of digraphs to weighted digraphs. The union G1 ∪G2 of the weighted digraphs

G1 = (V1,E1,A1) and G2 = (V2,E2,A2) is defined by G1∪G2 = (V1∪V2,E1∪E2,A), where

ai j =


(a1)i j (vi,v j) ∈ E1 \E2,

(a2)i j (vi,v j) ∈ E2 \E1,

(a1)i j +(a1)i j (vi,v j) ∈ E1∩E2.

For a weighted digraph, the weighted out-degree, weighted in-degree and imbalance of vi, i ∈ {1, . . . ,n}, are
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respectively,

dw
out(vi) =

n

∑
j=1

ai j, dw
in(vi) =

n

∑
j=1

a ji, ω(vi) = dw
in(vi)−dw

out(vi). (1)

It is worth noticing that the imbalances across the graph always satisfy

n

∑
i=1

ω(vi) = 0. (2)

2.1 Graph connectivity notions

A directed path in a digraph, or in short path, is an ordered sequence of vertices so that any two consecutive

vertices in the sequence are an edge of the digraph. A cycle in a digraph is a directed path that starts and ends at

the same vertex and has no other repeated vertex. Hence, a self-loop is a cycle while an isolated vertex is not. Two

cycles are disjoint if they do not have any vertex in common. We denote by Gcyc a union of some disjoint cycles

of G (note that Gcyc can be just one cycle).

A digraph is strongly connected if there is a path between each pair of distinct vertices and is strongly semicon-

nected if the existence of a path from v to w implies the existence of a path from w to v, for all v,w ∈V . Clearly,

strong connectedness implies strong semiconnectedness, but the converse is not true. The strongly connected

components of a directed graph G are its maximal strongly connected subdigraphs.

2.2 Basic notions from linear algebra

A matrix A ∈ Rn×n
≥0 is weight-balanced if ∑

n
j=1 ai j = ∑

n
j=1 a ji, for all i ∈ {1, . . . ,n}. A matrix A ∈ Rn×n

≥0 is row-

stochastic if each of its rows sums 1. One can similarly define a column-stochastic matrix. We denote the set of all

row-stochastic matrices on Rn×n
≥0 by RStoc(Rn×n

≥0 ). A non-zero matrix A ∈ Rn×n
≥0 is doubly stochastic if it is both

row-stochastic and column-stochastic. A matrix A ∈ {0,1}n×n is a permutation matrix, where n ∈ Z≥1, if A has

exactly one entry 1 in each row and each column. A matrix A ∈ Rn×n
≥0 is irreducible if, for any nontrivial partition

J∪K of the index set {1, . . . ,n}, there exist j ∈ J and k ∈ K such that a jk 6= 0. We denote by Irr(Rn×n
≥0 ) the set all

irreducible matrices on Rn×n
≥0 . Note that a weighted digraph G is strongly connected if and only if its adjacency

matrix is irreducible [2].

One can extend the adjacency matrix associated to a disjoint union of cycles Gcyc of G to a matrix Acyc ∈Rn×n

by adding zero rows and columns for the vertices of G that are not included in Gcyc. Note that the matrix Acyc is

the adjacency matrix for a subdigraph of G. We call Acyc the extended adjacency matrix associated to Gcyc. The

following result establishes the relationship between cycles of G and permutation matrices.

Lemma 2.1 (Cycles and permutation matrices). The extended adjacency matrix associated to a union of disjoint

cycles Gcyc is a permutation matrix if and only if Gcyc contains all the vertices of G.
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Proof. It is clear that if Gcyc is a union of some disjoint cycles and contains all the vertices of G, then the adjacency

matrix associated to Gcyc is a permutation matrix. Conversely, suppose that Gcyc does not contain one of the

vertices of G. Then the adjacency matrix associated to Gcyc has a zero row and thus is not a permutation matrix.

2.3 Weight-balanced and doubly stochastic digraphs

A weighted digraph G is weight-balanced (resp. doubly stochastic) if its adjacency matrix is weight-balanced

(resp. doubly stochastic). Note that G is weight-balanced if and only if dw
out(v) = dw

in(v), for all v ∈V . A digraph

is called weight-balanceable (resp. doubly stochasticable) if it admits a weight-balanced (resp. doubly stochastic)

adjacency matrix. The following two results characterize when a digraph is weight-balanceable.

Theorem 2.2 ([18]). A digraph G = (V,E) is weight-balanceable if and only if the edge set E can be decomposed

into k subsets E1, . . . ,Ek such that

(i) E = E1∪E2∪ . . .∪Ek and

(ii) each G = (V,Ei), i = {1, . . . ,k}, is weight-balanceable.

Theorem 2.3 ([18]). Let G = (V,E) be a digraph. The following statements are equivalent:

(i) G is weight-balanceable,

(ii) Every element of E lies in a cycle,

(iii) G is strongly semiconnected.

The proofs of these theorems are constructive but rely on the computation of all the cycles of the digraph. The

basic idea is that if one can find all the cycles for a given strongly semiconnected digraph, then, by taking the

weighted union of these cycles (i.e., by assigning to each edge the number of times it appears in the cycles), one

arrives at a weight-balanced assignment, see [18].

Note that Theorem 2.3 implies that any strongly semiconnected digraph can be generated by the cycles con-

tained in it. Therefore, it makes sense to define a minimal set of cycles with this property. This motivates the

introduction of the following concept.

Definition 2.4 (Principal cycle set). Let G be a strongly semiconnected digraph and let C (G) denote the set of all

subdigraphs of G that are either isolated vertices, cycles of G, or a union of disjoint cycles of G. A set P⊆C (G) is

a principal cycle set of G if its elements generate G, and there is no subset of C (G) with strictly smaller cardinality

that satisfies this property. We denote by p(G) the cardinality of P.

Note that there might exist more than one principal cycle set. However, by definition, the cardinalities of all

principal cycle sets are the same, hence the notation p(G). Note that a cycle, or a union of disjoint cycles, that
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contains all the vertices has the maximum number of edges that an element of C (G) can have. Thus these elements

are the obvious candidates for constructing a principal cycle set. Principal cycle sets give rise to weight-balanced

assignments, as we state next.

Lemma 2.5 (Weight-balancing via principal cycle sets). Let G be a strongly semiconnected digraph. Then, the

union of the elements of a principal cycle set P of G, considered as subdigraphs with trivial weight assignment,

gives a set of positive integer weights which make the digraph weight-balanced.

Proof. Since each element of a principal cycle P is either an isolated vertex, a cycle, or union of disjoint cycles, it

is weight-balanced. By definition, G can be written as the union of the elements of P. Thus by Theorem 2.2, the

weighted union of the elements of P gives a set of weights makes the digraph G weight-balanced.

In general, the assignment in Lemma 2.5 uses fewer number of cycles than the ones used in Theorem 2.3.

2.4 Discrete set-valued analysis

Here, we provide a brief exposition of useful concepts from discrete-time set-valued dynamical systems follow-

ing [6, 23]. For X ⊆ Rn, let F : X ⇒ X denote a set-valued map that takes a point in X to a subset F(x) of X . The

map F is non-empty if F(x) 6= /0, for all x ∈ X . A point x∗ ∈ X is a fixed point of F if x∗ ∈ F(x∗). An evolution of

F on X is any trajectory γ : Z≥0 → X such that

γ(k +1) ∈ F(γ(k)), for all k ∈ Z≥0.

The map F is closed at x ∈ X if, for any two convergent sequences {xk}∞
k=0 and {yk}∞

k=0, with limk→∞ xk = x,

limk→∞ yk = y, and yk ∈ F(xk), for all k ∈ Z≥0, we have y ∈ F(x). The map F is closed on X if it is closed at x, for

all x ∈ X . A set W ⊂ X is weakly positively invariant with respect to F if for any x ∈W there exists y ∈W such

that y ∈ F(x) and strongly positively invariant with respect to F if F(x)⊂W , for all x ∈W . Finally, a continuous

function V : X → R is called non-increasing along F in W ⊂ X if V (y) ≤ V (x), for all x ∈ W and y ∈ F(x).

Equipped with these tools, one can formulate the following set-valued version of the LaSalle invariance principle,

which will be most useful in the developments later.

Theorem 2.6 (LaSalle invariance principle for discrete-time set-valued dynamical systems). Let F : X ⇒ X be a

set-valued map on X ⊂Rn and let W ⊂ X be a closed and strongly positively invariant with respect to F. Suppose

F is non-empty and closed on W and all evolutions of F with initial condition in W are bounded. Let V : X → R

be continuous and non-increasing function along F on W. Then, any evolution of F with initial condition in W

approaches a set of the form S∩V−1(c), where c∈R and S is the largest weakly positively invariant set contained

in {x ∈W | there exists y ∈ F(x) such that V (x) = V (y)}.
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Figure 1: A weight-balanceable digraph for which their exists no doubly stochastic adjacency assignment.

3 When does a digraph admit a doubly stochastic weight assignment?

Our main goal in this section is to obtain necessary and sufficient conditions that characterize when a digraph

is doubly stochasticable. This characterization is a necessary step before addressing in later sections the design

of distributed dynamical systems that find doubly stochastic weight assignments. As an intermediate step of

this characterization, we will also find it useful to study the relationship between weight-balanced and doubly

stochastic digraphs.

Note that strong semiconnectedness is a necessary, and sufficient, condition for a digraph to be weight-

balanceable. All doubly stochastic digraphs are weight-balanced; thus a necessary condition for a digraph to

be doubly stochasticable is strong semiconnectedness. Moreover, weight-balanceable digraphs that are doubly

stochasticable do not have any isolated vertices. However, none of these conditions are sufficient. A simple ex-

ample illustrates this. Consider the digraph shown in Figure 1. Note that this digraph is strongly connected; thus

there exists a set of positive weights which makes the digraph weight-balanced. However, there exists no set of

nonzero weights that makes this digraph doubly stochastic. Suppose

A =



0 α1 0 0

0 0 α2 0

α3 0 0 α4

α5 0 0 0


,

where αi ∈R>0, for all i ∈ {1, . . . ,5}, is a doubly stochastic adjacency assignment for this digraph. Then a simple

computation shows that the only solution that makes the digraph doubly stochastic is by choosing α3 = 0, which

is not possible by assumption. Thus this digraph is not doubly stochasticable.

The following result will simplify our analysis by allowing us to restrict our attention to strongly connected

digraphs.

Lemma 3.1 (Strongly connected components of a doubly stochasticable digraph). A strongly semiconnected di-

graph is doubly stochasticable if and only if all of its strongly connected components are doubly stochasticable.

Proof. Let G1 and G2 be two strongly connected components of the digraph. Note that there can be no edges

from v1 ∈ G1 to v2 ∈ G2 (or vice versa). If this were the case, then the strong semiconnectedness of the digraph

would imply that there is a path from v2 to v1 in the digraph, and hence G1 ∪G2 would be strongly connected,

contradicting the fact that G1 and G2 are maximal. Therefore, the adjacency matrix of the digraph is a block-
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diagonal matrix, where each block corresponds to the adjacency matrix of a strongly connected component, and

the result follows.

As a result of Lemma 3.1, we are interested in characterizing the class of strongly connected digraphs which

are doubly stochasticable.

3.1 The relationship between weight-balanced and doubly stochastic adjacency matrices

As an intermediate step of the characterization of doubly stochasticable digraphs, we will find it useful to study

the relationship between weight-balanced and doubly stochastic digraphs. The example in Figure 1 underscores

the importance of characterizing the set of weight-balanceable digraphs that are also doubly-stochasticable.

We start by introducing the row-stochastic normalization map φ : Irr(Rn×n
≥0 )→ RStoc(Rn×n

≥0 ) defined by

φ : (ai j) 7→
(

ai j

∑
n
l=1 ail

)
.

Note that, for A ∈ Irr(Rn×n
≥0 ), φ(A) is doubly stochastic if and only if

n

∑
i=1

ai j

∑
n
l=1 ail

= 1,

for all j ∈ {1, . . . ,n}. The following result characterizes when the digraph associated with an irreducible weight-

balanced adjacency matrix is doubly stochasticable.

Theorem 3.2 (Weight-balanced and doubly stochasticable digraphs). Let A ∈ Irr(Rn×n
≥0 ) be an adjacency ma-

trix associated to a strongly connected weight-balanced digraph. Then φ(A) is doubly stochastic if and only if

∑
n
l=1 ail = C, for all i ∈ {1, . . . ,n}, for some C ∈ R>0.

Proof. The implication from right to left is immediate. Suppose then that A is associated to a strongly connected

weight-balanced digraph. Then we need to show that if A satisfies the following set of equations

n

∑
l=1

a jl =
n

∑
l=1

al j,
n

∑
i=1

ai j

∑
n
l=1 ail

= 1,

for all j ∈ {1, . . . ,n}, there exists C ∈ R>0 such that ∑
n
l=1 ail = C, for all i ∈ {1, . . . ,n}. Let Ck = ∑

n
l=1 akl ,

k ∈ {1, . . . ,n}. Then the doubly stochastic conditions can be written as

a1 j

C1
+

a2 j

C2
+ · · ·+

an j

Cn
= 1, (3)

for all j ∈ {1, . . . ,n}. Note that Ck 6= 0, for all k ∈ {1, . . . ,n}, since A is irreducible. By the weight-balanced

assumption, we have

a1 j +a2 j + · · ·+an j = C j,
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for all j ∈ {1, . . . ,n}. Thus
a1 j

C j
+

a2 j

C j
+ · · ·+

an j

C j
= 1, (4)

From (3) and (4), we have

a1 j

(
1

C1
− 1

C j

)
+ · · ·+an j

(
1

Cn
− 1

C j

)
= 0, (5)

for all j ∈ {1, . . . ,n}. Suppose that, up to rearranging,

C1 = min
k
{Ck | k ∈ {1, . . . ,n}},

and, 0 < C1 < Ci, for all i ∈ {2, . . . ,n}. Then (5) gives

a21

(
1

C2
− 1

C1

)
+ · · ·+an1

(
1

Cn
− 1

C1

)
= 0;

thus a j1 = 0, for all j ∈ {2, . . . ,n}, which contradicts the irreducibility assumption. If the set {Ck}n
k=1 has more

than one element giving the minimum, the proof follows a similar argument. Suppose

C1 = C2 = min
k
{Ck | k ∈ {1, . . . ,n}},

and suppose that 0 < C1 = C2 < Ci, for all i ∈ {3, . . . ,n}. Then we have

a31

(
1

C3
− 1

C1

)
+ · · ·+an1

(
1

Cn
− 1

C1

)
= 0,

and

a32

(
1

C3
− 1

C2

)
+ · · ·+an2

(
1

Cn
− 1

C2

)
= 0,

and thus a j1 = 0 = a j2, for all j ∈ {3, . . . ,n}, which contradicts the irreducibility assumption. The same argument

holds for an arbitrary number of minima.

Corollary 3.3 (Self-loop addition makes a digraph doubly stochasticable). Any strongly connected digraph is

doubly stochasticable after adding enough number of self-loops.

Proof. Any strongly connected digraph is weight-balanceable. The result follows from noting that, for any weight-

balanced matrix, it is enough to add self-loops with appropriate weights to the vertices of the digraph to make the

conditions of Theorem 3.2 hold.

Regular undirected graphs trivially satisfy the conditions of Theorem 3.2 and hence the following result.

Corollary 3.4 (Undirected regular graphs). All undirected regular graphs are doubly stochasticable.

We capture the essence of Theorem 3.2 with the following definition.
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Definition 3.5 (C-regularity). Let G = (V,E) be a strongly connected digraph and let A be a weight-balanced

adjacency matrix which satisfies the conditions of Theorem 3.2 with C ∈R>0. Then we refer to G = (V,E,A) as a

C-regular digraph.

3.2 Necessary and sufficient conditions for doubly stochasticability

In this section, we provide a characterization of the structure of digraphs that are doubly stochasticable. We start

by giving a sufficient condition for doubly stochasticability.

Proposition 3.6 (Sufficient condition for doubly stochasticability). A strongly connected digraph G is doubly

stochasticable if there exists a set {Gi
cyc}

ξ

i=1 ⊆ C (G), where ξ ≥ p(G), that generates G and such that, for each

i ∈ {1, . . . ,ξ}, Gi
cyc contains all the vertices of G.

Proof. Suppose G = ∪ξ

i=1Gi
cyc, where Gi

cyc ∈ C (G) contain all the vertices, for all i ∈ {1, . . . ,ξ}. Consider the

adjacency matrix

A =
ξ

∑
i=1

Ai
cyc,

where Ai
cyc is the extended adjacency matrix associated to Gi

cyc. Note that A is weight-balanced and satisfies the

condition of Theorem 3.2 (the sum of each row is equal to ξ ). Thus G is doubly stochasticable.

Proposition 3.6 suggests the definition of the following notion. Given a strongly connected digraph G that

satisfies the sufficient condition of Proposition 3.6, DS(G) ⊆ C (G) is a DS-cycle set of G if all its elements

contain all the vertices of G, they generate G, and there is no subset of C (G) with strictly smaller cardinality

that satisfies these properties. The cardinality of any DS-cycle set of G is the DS-index of G, denoted ds(G). By

definition, ds(G)≥ p(G), where recall that p(G) denotes the cardinality of any principal cycle set.

The following result states that the condition of Proposition 3.6 is actually necessary for a digraph to be doubly

stochasticable.

Proposition 3.7 (Necessary condition for doubly stochasticability). Let G be a strongly connected digraph. Sup-

pose that one can assign a doubly stochastic adjacency matrix A to G. Then G satisfies the condition of Proposi-

tion 3.6 and

A =
ξ

∑
i=1

λiAi
cyc,

where

• {λi}ξ

i=1 ⊂ R>0, ∑
ξ

i=1 λi = 1, and ξ ≥ ds(G).

• Ai
cyc, i ∈ {1, . . . ,ξ}, is the extended adjacency matrix associated to an element of C (G) that contains all the

vertices.

11
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Figure 2: The digraph of Examples 3.9 and 3.10 are shown in plots (a) and (b), respectively.

Proof. Let A be a doubly stochastic matrix associated to G. By the Birkhoff–von Neumann theorem [3], a square

matrix is doubly stochastic if and only if it is a convex combination of permutation matrices. Therefore,

A =
n!

∑
i=1

λ̄iAi
perm,

where λ̄i ∈ R≥0, ∑
n!
i=1 λ̄i = 1, and Ai

perm is a permutation matrix for each i ∈ {1, . . . ,n!}. By Lemma 2.1, for all

λ̄i > 0, one can associate to the corresponding Ai
perm a union of disjoint cycles that contains all the vertices. Thus

each Ai
perm is an extended adjacency matrix associated to an element of C (G) that contains all the vertices. This

proves that there exists a set {Gi
cyc}

ξ

i=1 ⊆ C (G), where ξ ≥ p(G), that generates G; thus G satisfies the condition

of Proposition 3.6. Let us rename all the nonzero coefficients λ̄i > 0 to λi. In order to complete the proof, we need

to show that at least ds(G) of the λi’s are nonzero. Suppose otherwise. Since each Ai
perm with nonzero coefficient

is associated to an element of C (G), this means that the digraph G can be generated by fewer elements than ds(G),

which would contradict the definition of DS-index.

Note that Propositions 3.6 and 3.7 fully characterize the set of doubly stochasticable strongly connected di-

graphs. We gather this result in the following corollary.

Corollary 3.8 (Necessary and sufficient condition for doubly stochasticability). A strongly connected digraph G

is doubly stochasticable if and only if there exists a set {Gi
cyc}

ξ

i=1 ⊆C (G), where ξ ≥ ds(G), that generates G and

such that Gi
cyc contains all the vertices of G, for each i ∈ {1, . . . ,ξ}.

If a doubly stochasticable digraph is not strongly connected, one can use these results for Corollary 3.8 on

each strongly connected component.

Example 3.9 (Weight-balanceable, not doubly stochasticable digraph). Consider the digraph G shown in Fig-

ure 2(a). It is shown in [12] that there exists a set of weights which makes this digraph weight-balanced. We show

that the digraph is not doubly stochasticable. Suppose there exists a union of disjoint cycles containing all the

vertices. Since the edge (v2,v3) only appears in the cycle Gcyc = {v1,v2,v3}, one element in such a union must

contain this cycle. But then it is impossible for this element to also contain v4 and v5, as every cycle containing

v4 and v5 also contains at least one of the vertices {v1,v2,v3}. Thus by Corollary 3.8, there exists no doubly

stochastic adjacency assignment for this digraph. One can verify this by trying to find such assignment explicitly,

12
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Figure 3: The only principal cycle set for the digraph of Example 3.10 contains the above cycles.
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Figure 4: Cycles of the digraph G of Example 3.10 which are not in the principal cycle set.

i.e., by seeking αi ∈ R>0, where i ∈ {1, . . . ,8}, such that

A =



0 α1 0 0 0

0 0 α2 α3 0

α4 0 0 0 0

α5 0 α6 0 α7

0 0 α8 0 0


is doubly stochastic. A simple computation shows that such an assignment is not possible unless α2 = α5 = α6 = 0,

which is a contradiction. •

Example 3.10 (Doubly stochasticable digraph). Consider the digraph G shown in Figure 2(b). One can observe

that the only principal cycle set of G contains the two cycles shown in Figure 3. Both of these cycles pass through

all the vertices of the digraph and thus, using Corollary 3.8, this digraph is doubly stochasticable. Note that this

digraph has another three cycles, shown in Figure 4, none of which are in the principal cycle set. The adjacency

matrix assignment

A =



0 2 0 0 0

0 0 2 0 0

0 0 0 1 1

1 0 0 0 1

1 0 0 1 0


obtained by the sum of the elements of the principal cycle set, is weight-balanced and satisfies the conditions of

Theorem 3.2 and thus is doubly stochasticable. Also note that not all the weight-balanced adjacency assignments

13



become doubly stochastic under the row-stochastic normalization map. An example is given by

A =



0 3 0 0 0

0 0 3 0 0

0 0 0 2 1

2 0 0 0 2

1 0 0 2 0


. •

An alternative question to the one considered above would be to find a set of edge weights (some possibly

zero) that make the digraph doubly stochastic. Such assignments exist for the digraph in Figure 1. However, such

weight assignments are not guaranteed, in general, to preserve the connectivity of the digraph. The following

result gives a sufficient condition for the existence of such a weight assignment.

Proposition 3.11 (Doubly stochasticable digraphs via weight assignments with some zero entries). A strongly

connected digraph G admits an edge weight assignment (where some entries might be zero) such that the resulting

weighted digraph is strongly connected and doubly stochastic if there exists a cycle containing all the vertices

of G.

It is an interesting research question to determine sufficient and necessary conditions that characterize digraphs

that are doubly stochasticable via weight assignments that can have some zero entries and still preserve the graph

connectivity. Regarding Proposition 3.11, note that even if connectivity is preserved, fewer edges lead to smaller

algebraic connectivity [39], which in turn affects negatively the rate of convergence of the consensus, optimization,

and gossip algorithms executed over doubly stochastic digraphs, see e.g., [5, 8, 14, 22].

3.3 Properties of the topological character of doubly stochasticable digraphs

In this section, we investigate the properties of DS-cycle sets and of their cardinality ds(G). First, we show that

rational weight assignments are sufficient to make an adjacency matrix doubly stochastic.

Lemma 3.12 (Rational weight assignments). Assume there exists a real weight assignment that makes a digraph

G doubly stochastic. Then, there also exists a rational weight assignment that makes G doubly stochastic.

Proof. By assumption, G is doubly stochasticable. Thus, by Corollary 3.8, it has a DS-cycle set. Using elements of

this DS-cycle set, one can construct an integer weight assignment Awb that makes G weight balanced and satisfies

the conditions of Theorem 3.2 with some C ∈ Z>0. Therefore, 1
C Awb gives rise to a rational weight assignment

that makes G doubly stochastic.

Lemma 3.12 allows us to focus the attention, without loss of generality, on doubly stochastic adjacency matri-

ces with rational entries or, alternatively, on weight-balanced adjacency matrices with integer entries whose rows

and columns all sum up to the same integer. This is what we do in the rest of the paper.
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Proposition 3.13 (Properties of the DS-index). Let G be a strongly connected doubly stochasticable digraph of

order n ∈ Z>0 with DS-index ds(G). Then for C ≥ ds(G), there exists a weight assignment Awb ∈ Zn×n
≥0 that makes

G a C-regular digraph.

Proof. By Corollary 3.8, it is clear that one can generate Awb ∈ Zn×n
≥0 that makes G weight-balanced and also

satisfies the conditions of Theorem 3.2 for C = ds(G), just by taking the weighted union of the members of a DS-

cycle set. Let C > ds(G). Choose a set of integer numbers λi ∈Z>0, for i∈ {1, . . . ,ds(G)}, such that ∑
ds(G)
i=1 λi =C.

Consider the adjacency matrix

A =
ds(G)

∑
i=1

λiAi
cyc,

where Ai
cyc is the extended adjacency matrix associated to the ith element of the DS-cycle set. The matrix A is

weight-balanced adjacency and satisfies the conditions of Theorem 3.2.

We finish this section by bounding the DS-index of a digraph.

Lemma 3.14 (Bounds for the DS-index). Let G = (V,E) be a doubly stochasticable strongly connected digraph.

Then

max{max
v∈V

dout(v),max
v∈V

din(v)} ≤ ds(G)≤ |E|− |V |+1.

Proof. The first inequality follows from the fact that none of the out-edges of the vertex v (similarly, none of

the in-edges of this vertex) are contained in the same element of any DS-cycle set DS(G). To show the second

inequality, take any element of DS(G). This element must contain |V | edges. The rest of the edges of the digraph

can be represented by at most |E|− |V | elements of C (G), and hence the bound follows.

4 Strategies for making a digraph weight-balanced

The existing centralized algorithm for constructing a weight-balanced digraph, proposed in [18], relies on comput-

ing all the cycles of the digraph and thus it is computationally complex. In this section, we instead introduce two

distributed strategies that are guaranteed to find a weight-balanced adjacency matrix for a weight-balanceable di-

graph and compare their convergence properties. Given the characterization of Theorem 2.3, we focus on strongly

semiconnected digraphs. Since each strongly connected component of the digraph is completely independent

from the others and can be balanced separately, without loss of generality we deal with strongly connected di-

graphs throughout the section.

4.1 The imbalance-correcting algorithm

Given a strongly connected digraph G, we introduce an algorithm, distributed over G, which allows the agents

to balance their in- and out-degrees. An informal description of the imbalance-correcting algorithm

is given in Table 1. Note that this algorithm updates the weights synchronously. A formal description of the
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Setup
1: the communication topology is given by a strongly connected digraph
2: each agent can send messages to its out-neighbors and receive messages from its in-neighbors

At initialization, each agent
1: assigns a weight to each of its out-edges and sends this information to its corresponding out-neighbor
2: computes in-degree with messages received

At each round, each agent synchronously
1: if in-degree is greater than out-degree then
2: selects one of the out-edges with minimum weight
3: changes selected out-edge weight to correct the imbalance
4: sends a message to the corresponding out-neighbor informing of the change
5: recomputes out-degree
6: end if
7: updates in-degree with messages received

Table 1: The imbalance-correcting algorithm.

imbalance-correcting algorithm is as follows. Let G = (V,E) denote the strongly connected digraph

describing the communication topology. Let Adj(G)⊂Rn×n
≥0 be the subset of all possible adjacency matrices with

nonnegative entries associated to G. For A ∈ Adj(G) and i ∈ {1, . . . ,n}, let

a∗i = min
k∈{1,...,n}\{i}

{aik | aik 6= 0},

J∗i = { j ∈ {1, . . . ,n}\{i} | ai j = a∗i }.

The set-valued evolution map fimcor : Adj(G) ⇒ Adj(G) assigns to A = (ai j) ∈ Adj(G) the set

fimcor(A) =

{
B ∈ Adj(G) | for i ∈ {1, . . . ,n} with ω(vi)≤ 0, bi j = ai j for j ∈ {1, . . . ,n} and (6)

for i ∈ {1, . . . ,n} with ω(vi) > 0, there is j∗i ∈ J∗i such that bi j =

{
ai j +ω(vi), if j = j∗i ,

ai j, if j ∈ {1, . . . ,n}\{ j∗i }.

}
,

where recall that ω(vi) denotes the imbalance (1) of vertex vi. Note that the map fimcor defines a discrete-time

set-valued dynamical system on Adj(G) given by

A(k +1) ∈ fimcor(A(k)), for all k ∈ Z≥0,

which corresponds to the imbalance-correcting algorithm presented in Table 1. Our strategy to es-

tablish the correctness of the algorithm is then based on characterizing the properties of the set-valued map fimcor

and then applying the LaSalle invariance principle, cf. Theorem 2.6. We first establish that the map is closed.

Lemma 4.1 (Closedness of fimcor). The map fimcor is closed on Adj(G).

Proof. Let D ∈ Adj(G) and consider two sequences {Dk}∞
k=1 ⊂ Adj(G) and {Ck}∞

k=1 ⊂ Adj(G) such that Ck ∈

fimcor(Dk), for all k ∈ Z>0, limk→∞ Dk = D and limk→∞ Ck = C. Since J∗i (Dk) ⊆ {1, . . . ,n} and n is finite, there
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must exist a set J1×·· ·×Jn in {1, . . . ,n}n that appears infinitely often in the sequence {J∗1 (Dk)×·· ·×J∗n (Dk)}∞
k=1.

Therefore, there exists a subsequence of {Dk}∞
k=1 which, with a slight abuse of notation and for simplicity,

we denote in the same way, such that J∗i (Dk) = Ji, for all k ∈ Z≥1. Now, because Ck ∈ fimcor(Dk), there exist

( j1(k), . . . , jn(k)) ∈ J1× . . .× Jn for each k ∈ Z>0 such that one can write

(Ck)i j =


(Dk)i j +ωk(vi) if ωk(vi) > 0, and j = ji(k),

(Dk)i j, otherwise,
(7)

where (Dk)i j and (Ck)i j denote, respectively, the entries of Dk and Ck, and ωk(vi) is the imbalance of vertex vi in

the weight assignment Dk. Reasoning as before, since J1× . . .× Jn is finite, there exists an element ( j1, . . . , jn) of

this set that appears infinitely often in the sequence {( j1(k), . . . , jn(k))}∞
k=1. Therefore, there exists a subsequence,

which with a slight abuse of notation we denote in the same way, such that ( j1(k), . . . , jn(k)) = ( j1, . . . , jn) for

all k ∈ Z>0. Note that, for each i ∈ {1, . . . ,n} such that ω(vi) > 0, the element ji is unique since otherwise the

sequence {Ck}∞
k=1 would not be convergent. Combining these facts with (7) and taking the limit as k → ∞, we

conclude that C ∈ fimcor(D), and hence fimcor is closed at D, as claimed.

Next, we characterize the fixed points of fimcor.

Lemma 4.2 (Fixed points of fimcor). fimcor has at least one fixed point. Furthermore, A∗ ∈Adj(G) is a fixed point

if and only if A∗ is weight-balanced.

Proof. Given that the digraph is strongly connected, Theorem 2.3 guarantees that it is weight-balanceable, and

therefore at least one fixed point exists (if A ∈ Adj(G) is weight-balanced, then fimcor(A) = {A}, and hence A

is a fixed point of fimcor). On the other hand, suppose A∗ ∈ Adj(G) satisfies A∗ ∈ fimcor(A∗). We reason by

contradiction. If A∗ is not weight-balanced, then (2) would imply that there exists at least a vertex v ∈ V with

ω(v) > 0. From (6), this would imply A∗ /∈ fimcor(A∗), which is a contradiction.

The logic used by the imbalance-correcting algorithm to update edge weights consists of using

edges with the minimum weight. The next result shows that such logic is powerful in terms of propagating a token

(in our case, an imbalance) across the network.

Lemma 4.3 (Propagation of tokens via out-edges with minimum weight). Let G be a strongly connected weighted

digraph and consider a finite number of tokens initially located at some nodes. If each node that possesses a

token repeatedly passes it to one of its out-neighbors via an out-edge with the minimum weight and adds a positive

constant to this weight, all the nodes will be visited by at least one token after a finite number of iterations.

Proof. Let V denote the vertex set of G. Let t0 denote an arbitrary initial time and Vis(t, t0) be the set of nodes

visited by any of the tokens up to time t. Since V is finite and Vis(t, t0)⊂Vis(t +1, t0), for t ∈Z≥0, we deduce that

there exists T such that Vis(t, t0) = Y (t0) ⊆ V , for all t ≥ T . Let us show that Y (t0) = V for all t0. We do this by
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discarding any other possibility. Clearly, |Y (t0)| cannot be 1 because if a node has a token, it will pass it to some

other node. Let m < |V | and assume that we have shown that |Y (t0)| 6= 1, . . . ,m−1 for all t0. Choose any t0 and

let us show that |Y (t0)| 6= m. Suppose otherwise, i.e., |Y (t0)| = m. Since the digraph is strongly connected, there

exists at least one edge from a member of Y (t0), say vk, to a member of V \Y (t0), say vk+1. Since vk ∈Y (t0), vk has

one of the tokens at some point in time, say t1. Suppose vk sends this token via an out-edge to a member of Y (t0)

and increases the weight on this edge; otherwise, |Y (t0)| ≥ m + 1, which is a contradiction. By hypothesis, the

tokens never reach V \Y (t0) and get passed in Y (t0) while increasing the weight of edges among nodes in Y (t0).

We claim that, after a finite time, at least one of the tokens comes back to vk. Suppose otherwise, i.e., for t > t1, no

token will ever visit vk. Since Y (t1 +1)⊆Y (t0) and vk 6∈Y (t1 +1), we conclude that |Y (t1 +1)| ≤m−1, which is

a contradiction. Therefore, a token must visit vk after t1. When this occurs, node vk will choose the out-edge with

minimum weight for sending the token. The whole process gets repeated and thus, after a finite time, the weight

on the out-edge to vk+1 has the minimum weight, and thus vk sends a token to vk+1, implying |Y (t0)| ≥ m + 1,

which is a contradiction. Therefore, |Y (t0)|= |V |, as claimed.

The last ingredient we need in order to characterize the convergence of the imbalance-correcting

algorithm is the Lyapunov function Vwb : Adj(G)→ R≥0 defined by

Vwb(A) =
n

∑
i=1

|
n

∑
j=1

ai j −
n

∑
j=1

a ji|=
n

∑
i=1

|ω(vi)|. (8)

This function is continuous on Adj(G). Note that V (A) = 0 if and only if A is weight-balanced. We are now ready

to state our convergence result.

Theorem 4.4 (Convergence of the imbalance-correcting algorithm). For a strongly connected di-

graph G, any evolution under the imbalance-correcting algorithm converges in finite time to a weight-

balanced adjacency matrix.

Proof. Recall that the evolutions under the imbalance-correcting algorithm correspond to trajectories

of the discrete-time dynamical system defined by fimcor. For an initial condition A∈Adj(G), consider the sublevel

set V−1
wb (≤ Vwb(A)) = {B ∈ Adj(G) | 0 ≤ Vwb(B) ≤ Vwb(A)}. Since Vwb is continuous, this set is closed. Let us

show that the continuous function Vwb is non-increasing along fimcor, and consequently V−1
wb (≤Vwb(A)) is strongly

positively invariant with respect to fimcor. Note that the weight of any given edge is only modified by the agent

who has it as an out-edge. Consider a weight change done by the algorithm on an arbitrary edge (vi,v j), vi,v j ∈V ,

and let us see the effect it has on the imbalances of the two vertices it affects. According to fimcor, vi increases

the weight on its out-edge to v j by ε ∈ R>0 in order to balance itself. Consequently, the imbalance of agent v j

increases by at most ε . Considered together, the weight change performed in the edge decrease the imbalance of

vi by ε while increasing the imbalance of v j by at most ε; thus the value of that Vwb does not increase. Since the

edge (vi,v j) is arbitrary, from (8), this argument implies that Vwb is non-increasing along fimcor.
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Next, let us show that all evolutions of (Adj(G), fimcor) with initial condition in V−1
wb (≤Vwb(A)) are bounded.

Suppose otherwise, and take an initial condition that gives rise to an unbounded trajectory. This implies that there

exists, infinitely often, an agent v ∈V with some positive imbalance. Let us justify that the infimum θ of all these

positive imbalances is positive too. Since, by definition of fimcor, any imbalance in the timesteps after the initial

one is a linear combination of the initial imbalances with coefficients 0 or 1, the following inequality holds

θ ≥ ν = min
k∈{1,...,n}

min
(i1,...,ik)∈C(n,k)

{|ω0(vi1)+ω0(vi2)+ . . .+ω0(vik)| 6= 0},

where C(n,k) denotes the set of combinations of k elements out of n, and ω0(v) refers to the initial imbalance of

v ∈ V . Note that ν > 0. Since ∑v∈V ω(v) = 0, there exists a set of agents Y = {v1, . . . ,vk} ⊂ V , k ∈ Z>0, with

negative imbalance, such that ∑vi∈Y ω(vi) is at most −θ infinitely often. We show that this actually must happen

always. Suppose that at some point in the execution of the algorithm ∑vi∈Y ω(vi) > −θ . After that, it will never

happen that ∑vi∈Y ω(vi) = −θ , otherwise, at least one of the agents has decreased its imbalance from a negative

value, which is not possible by the definition of fimcor. But this contradicts ∑vi∈Y ω(vi) being at most −θ infinitely

often. The above argument shows that there exists a positive imbalance of at least θ that does not visit, even once,

any edge going into the set Y . Finally, since G is strongly connected, this contradicts Lemma 4.3.

Finally, recall that by Lemma 4.1, the map fimcor is closed on V−1
wb (≤Vwb(A)). With all the above hypotheses

satisfied, the application of the LaSalle Invariance Principle for set-valued dynamical systems, cf. Theorem 2.6,

implies that the algorithm evolution approaches a set of the form V−1
wb (c)∩ S, where c ∈ R and S is the largest

weakly positively invariant set contained in {B ∈ V−1
wb (≤ Vwb(A)) | there exists C ∈ fimcor(B) such that Vwb(C) =

Vwb(B)}. In order to complete the proof, we need to show that c = 0. We reason by contradiction. Suppose c > 0

and let A ∈ S∩V−1
wb (c). Since S is weakly positively invariant, there exists an evolution starting from A which is

contained in S, and hence stays in the level set V−1
wb (c). Let us show that after a finite time, this evolution will leave

V−1
wb (c), hence reaching a contradiction. Since c ∈ R>0, there exists at least one agent vi with positive imbalance

ω(vi) > 0. Therefore, since ∑v∈V ω(v) = 0, there exists a set of agents whose imbalances are negative and sum

at least −ω(vi). Since the digraph is strongly connected, by Lemma 4.3, after a finite time the positive imbalance

ω(vi) will visit this set, which would strictly decrease the value of Vwb, reaching a contradiction. Finally, the

finite-time convergence to the set of weight-balanced adjacency matrices follows from noting that the value of Vwb

is initially finite and, by Lemma 4.3, there exists a finite number of iterations after which Vwb is guaranteed to have

decreased at least an amount 2ν . The convergence to a weight-balanced adjacency matrix is a consequence of the

finite-time convergence to the set.

Remark 4.5. (Time complexity of the imbalance-correcting algorithm): Roughly speaking, the time

complexity of an algorithm corresponds to the number of rounds required to achieve its objective. More formal

definitions can be found in [6, 24, 31, 38]. Therefore, characterizing the worst-case time complexity provides a ter-

mination time for the algorithm. The characterization of the time complexity of the imbalance-correcting
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Figure 5: Execution of the imbalance-correcting algorithm for the digraph of Figure 2(a). The initial
condition is the adjacency matrix where all edges are assigned weight 1. In each round, the edges which are used
for sending messages are shown dashed. One can observe that the Lyapunov function Vwb(A0) takes the following
values in subsequent time steps: 6, 4, 4, 4, 4, 4, 0.

algorithm is an open problem (however, we characterize in Section 4.2 the time complexity of a modified

version of this algorithm). In the absence of this characterization, agents could alternatively implement a version

of the convergecast algorithm [31] to determine whether every agent in the digraph has achieved zero imbalance.•

Example 4.6. (Execution of the imbalance-correcting algorithm): Consider the digraph of Fig-

ure 2(a). The imbalance-correcting algorithm converges to a weight-balanced digraph in 6 rounds,

as illustrated in Figure 5. •

4.2 The mirror imbalance-correcting algorithm

In this section, we modify the imbalance-correcting algorithm to synthesize a strategy, distributed

over the mirror of the digraph, which converges quickly to a weight-balanced digraph. This procedure can be

employed to construct a weight-balanced digraph without computing any cycle. An informal description of the

mirror imbalance-correcting algorithm is given in Table 2.

A formal description of the mirror imbalance-correcting algorithm is as follows. Let G =

(V,E) denote the strongly connected digraph describing the communication topology. For all i ∈ {1, . . . ,n}, let

J#
i = { j ∈ {1, . . . ,n}\{i} | v j ∈N out(vi) and ω(v j) = min

vl∈N out(vi)
ω(vl)}.
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Setup
1: the communication topology is given by a strongly connected digraph
2: each agent can send messages to its out-neighbors and receive messages from its in-neighbors
3: each agent has a memory of the number of messages sent to each of its neighbors

At initialization, each agent
1: assigns a weight to each of its out-edges and sends this information to its corresponding out-neighbor
2: computes in-degree with messages received

At each round, each agent synchronously
1: if in-degree is greater than out-degree then
2: selects out-neighbors with minimum imbalance
3: among these, selects randomly among the ones with minimum messages sent to (fair-decision rule)
4: changes corresponding out-edge weight to correct the imbalance
5: sends a message to the corresponding out-neighbor informing of the change
6: updates memory of number of messages sent to out-neighbor
7: recomputes out-degree
8: end if
9: updates in-degree with messages received

Table 2: The mirror imbalance-correcting algorithm.

We define gimcor : Adj(G) ⇒ Adj(G) by

gimcor(A) =
{

B ∈ Adj(G) | for i ∈ {1, . . . ,n} with ω(vi)≤ 0, bi j = ai j for j ∈ {1, . . . ,n} and (9)

for i ∈ {1, . . . ,n} with ω(vi) > 0, there is j#
i ∈ J#

i such that bi j =

{
ai j +ω(vi), if j = j#

i ,

ai j, if j ∈ {1, . . . ,n}\{ j#
i }.

}
.

This map defines a discrete-time set-valued dynamical system on Adj(G) given by

A(k +1) ∈ gimcor(A(k)), for all k ∈ Z≥0.

Note that the evolutions of the mirror imbalance-correcting algorithm are a subset of all the evo-

lutions of this dynamical system (because of the fair-decision rule). The next result shows that this algorithm

converges in finite time to a weight-balanced digraph.

Theorem 4.7 (Convergence of the mirror imbalance-correcting algorithm). For a strongly con-

nected digraph G, any evolution under the mirror imbalance-correcting algorithm converges in

finite time to a weight-balanced adjacency matrix.

Proof. For an initial condition A ∈ Adj(G), consider the sublevel set V−1
wb (≤ Vwb(A)). Similarly to the proof of

Theorem 4.4, observe that the continuous function Vwb is non-increasing along gimcor and thus V−1
wb (≤ Vwb(A))

is strongly positively invariant with respect to gimcor. An argument similar to the one in Lemma 4.1 shows that

the map gimcor is closed at V−1
wb (≤ Vwb(A)). Now, pick an evolution of (Adj(G),gimcor) with initial condition in

V−1
wb (≤ Vwb(A)) that satisfies the fair-decision rule. Then a similar version of Lemma 4.3 can be used to estab-

lish that this evolution is bounded. Thus by the LaSalle Invariance Principle for set-valued dynamical systems,
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Figure 6: A strongly connected digraph.

Theorem 2.6, this evolution approaches a set of the form V−1
wb (c)∩ S, where c ∈ R≥0 and S is the largest weakly

positively invariant set contained in {B∈V−1
wb (≤Vwb(A)) | there exists C ∈ gimcor(B) such that Vwb(C) =Vwb(B)}.

The fact that c must be zero follows from the observation that, under the mirror imbalance-correcting

algorithm, the value of Vwb decreases by a finite amount, bounded away by a positive constant, after a finite

number of iterations. The convergence in finite time can also be justified in a similar way to Theorem 4.4.

Example 4.8 (Execution of the mirror imbalance-correcting algorithm). Figure 6 shows a strongly

connected digraph. Figure 7 shows an execution of the mirror imbalance-correcting algorithm for

this digraph that converges in three rounds to a weight-balanced digraph. Note that agent v4 has two out-neighbors
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Figure 7: An execution of mirror imbalance-correcting algorithm for the digraph of Figure 6.
The dashed lines show the edges which have been used to send messages.

with the same imbalance, namely v1 and v5. If v4 decides to update the weight on the edge (v4,v5) to correct

its imbalance, then the fair-decision rule will make it choose the edge (v4,v1) the next time. Figure 8 shows the

result of the execution of the mirror imbalance-correcting algorithm in such a case. If after the

4th round of the execution the agent v4 would keep updating the weight on the edge to agent v5, then the algorithm

would never converge to a weight-balanced digraph. •

Next, we investigate the rate of convergence of the mirror imbalance-correcting algorithm.
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Figure 8: Another possible execution of mirror imbalance-correcting algorithm for Example 4.8.
The dashed lines show the edges which have been used to send messages.

Proposition 4.9. (Time complexity of the mirror imbalance-correcting algorithm): The time

complexity of the mirror imbalance-correcting algorithm is in O(n4).

Proof. Let G = (V,E) be a strongly connected digraph and consider the agent vi ∈ V which initially has the

maximum positive imbalance ω(vi) = r ∈ R>0. In the worst-case scenario, this imbalance should reach r agents

with negative imbalance of −1 and it has to go through the longest path in order to reach the first agent with

negative imbalance −1 and, after that, through the longest path to get to the second agent with negative imbalance

and so on. According to the execution of the mirror imbalance-correcting algorithm, agent vi ∈V

updates the weight on the edge to an out-neighbor vi+1 ∈V . Then, agent vi+1 might pass the imbalance to the next

agent in the longest path directly, or after sending it to a cycle which does not include any agent with negative

imbalance. Then, after some finite time, the agent vi+1 will receive the positive imbalance r again and by the

fair-decision rule, this time it will pick a different out-neighbor. Now, suppose that all the agents in this longest

path have the maximum number of out-neighbors and furthermore, suppose that all the agents try all their other

out-neighbors (via cycles) before finding the correct out-neighbor. Since the longest path, the maximum length

of a cycle, and the maximum out-degree are all in O(n), the time complexity of the positive imbalance r reaching

the first agent with negative imbalance −1 is in O(n3). Since the imbalance r is in O(n), the time complexity of

mirror imbalance-correcting algorithm is in O(n4).

The result stated in Proposition 4.9 is to be contrasted with the time complexity of the centralized algorithm

proposed in [18] to construct a weight-balanced digraph, which can be shown to be in O(2n2
).

5 Strategies for making a digraph doubly stochastic

In this section, we investigate the design of cooperative strategies running on strongly connected communication

networks that allow agents to determine a set of edge weights that make the digraph doubly stochastic. The key

difference with respect to Section 4 is that weight-balancing strategies aim at achieving zero imbalance for all

agents, whereas the doubly-stochastic strategies must additionally ensure that all agents share the same in-degree.
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5.1 The imbalance-correcting algorithm with self-loop addition

From Corollary 3.3, we know that all strongly connected digraphs can be made doubly stochastic by allowing

the addition of self-loops to the digraph. Combining this observation with the imbalance-correcting

algorithm, we synthesize a distributed strategy that allows the agents to make any strongly connected commu-

nication network doubly stochastic. This strategy, named the imbalance-correcting algorithm with

self-loop addition, is described in Table 3. Note that there are a number of distributed ways to compute

the maximum out-degree (cf. Step 2: of the initialization stage in Table 3), see e.g., [24, 31].

Setup
1: the communication topology is given by a strongly connected digraph
2: each agent can send messages to its out-neighbors and receive messages from its in-neighbors

At initialization, group of agents
1: executes the imbalance-correcting algorithm
2: computes maximum out-degree

At each round, each agent synchronously
1: if out-degree is smaller than maximum out-degree then
2: adds a self-loop with appropriate weight to make out-degree equal to maximum out-degree
3: divides weights on each out-edge by maximum out-degree
4: end if

Table 3: The imbalance-correcting algorithm with self-loop addition.

Theorem 5.1. (imbalance-correcting algorithm with self-loop addition): The execution

of imbalance-correcting algorithm with self-loop addition over a strongly connected com-

munication topology gives rise to a doubly stochastic weighted digraph.

Example 5.2. (Execution of the imbalance-correcting algorithm with self-loop addition):

Consider the digraph of Figure 2(a). As we showed, there exists no doubly stochastic adjacency matrix associated

to this digraph. However, if we allow the agents to modify the digraph by adding self-loops, a doubly stochastic

adjacency matrix can be associated to this digraph. Using the imbalance-correcting algorithm, the

agents can compute the weight-balanced adjacency matrix

A =



0 6 0 0 0

0 0 3 3 0

5 0 0 0 0

1 0 1 0 1

0 0 1 0 0


.

Now, if the agents execute the modification of the digraph by adding self-loops with appropriate weight, they
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compute the adjacency matrix

A =



0 6 0 0 0

0 0 3 3 0

5 0 1 0 0

1 0 1 3 1

0 0 1 0 5


.

Finally, by executing a division on the weight of the out-edges, the agents compute the doubly stochastic adjacency

matrix

A =



0 1 0 0 0

0 0 1/2 1/2 0

5/6 0 1/6 0 0

1/6 0 1/6 1/2 1/6

0 0 1/6 0 5/6


. •

5.2 The load-pushing algorithm

Given a digraph G = (V,E) and C ∈ Z>0, in this section we introduce the load-pushing algorithm. This

is a distributed strategy over the mirror digraph of G, that, upon completion, allows the group of agents to declare

whether the graph G is C-regular. If it is, the strategy finds a set of weights that makes the graph C-regular. Note

that, once such weights have been found, agents can easily determine a doubly stochastic weight assignment by

dividing all entries by C.

Our strategy is essentially an adaptation of the Goldberg-Tarjan’s algorithm [15] for the problem under consid-

eration. This point will be clearer when we address the proof of its correctness in Theorem 5.3. The load-pushing

algorithm is formally described in Table 4.

The next result characterizes the convergence properties of the load-pushing algorithm.

Theorem 5.3. (The load-pushing algorithm finds a C-regular weight assignment iff the digraph is doubly

stochasticable): Let G =(V,E) be a digraph and C≥max{maxv∈V dout(v),maxv∈V din(v)}. If the load-pushing

algorithm announces that G is not C-regular and C ≥ |E|− |V |+ 1, then the digraph is not doubly stochas-

ticable. If G is doubly stochasticable and C ≥ ds(G), then the load-pushing algorithm converges to a

C-regular digraph. In both cases, the algorithm terminates in O(|V |2×|E|) steps.

Proof. We start by showing that the problem of finding a C-regular digraph can be reduced to a maximum flow

problem with positive lower bounds on the edge loads [1, 4]. Consider the bipartite digraph G̃ = (Ṽ , Ẽ), where

• Ṽ contains two copies of V , named Vu and Vw, a source node s, and a target node t, i.e.,

Ṽ = {s}∪Vu∪Vw∪{t}.
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Setup
1: the communication topology is given by a strongly connected digraph G
2: integer C ∈ Z>0 is known to all agents
3: each agent can send/receive messages to/from its in- and out-neighbors

At initialization, each agent i ∈ {1, . . . ,n}
1: assigns unit weight ai j := 1 to each of its out-edges (vi,v j) and sends this information to its corre-

sponding out-neighbor v j
2: computes in-degree with messages received
3: initializes (source-load, target-load) vector (Ls(vi),Lt(vi)) := (C−dout(vi),din(vi)−C)
4: initializes (source-height, target-height) vector (Hs(vi),Ht(vi)) := (2,1)
5: sends Hs(vi) to its out-neighbors and Ht(vi) to its in-neighbors
6: computes Hmax-in

s (vi) = maxv j∈N in(vi) Hs(v j) with messages received

At each round, each agent i ∈ {1, . . . ,n} synchronously
1: if Ls(vi) > 0 then
2: if there exists an out-neighbor v j ∈N out(vi), where ai j < C and Hs(vi) > Ht(v j) then
3: sends load Ls(vi) to v j and sets ai j := ai j +Ls(vi) and Ls(vi) := 0 (push forward)
4: else
5: announces that digraph is not C-regular, algorithm terminates

(declare digraph not C-regular)
6: end if
7: end if
8: if Lt(vi) > 0 then
9: if there exists an in-neighbor vk ∈N out(vi), where aki > Lt(vi)+1 and Ht(vi) > Hs(vk) then

10: sends load Lt(vi) to vk and sets aki := aki−Lt(vi) and Lt(vi) := 0 (push backward)
11: else
12: sets Ht(vi) := Hmax-in

s (vi)+1 and sends Ht(vi) to in-neighbors (increase target-height)
13: end if
14: end if

Table 4: The load-pushing algorithm.

In other words, the nodes ui ∈Vu and wi ∈Vw correspond to the agent vi ∈V ;

• Ẽ is defined as follows: there is no edge between vertices in Vu and there is no edge between vertices in Vw.

For each edge (vi,v j) in E, there exists an edge (ui,w j) ∈ Ẽ; there is an out edge between s to all ui in Vu

and an out-edge from each wi in Vw to t.

Next, let us define a maximum flow problem on G̃. Let the capacity on each edge of the form (s,ui) or (w j, t) ∈ Ẽ,

i, j ∈ {1, . . . , |V |} be exactly C. Let the capacity on each edge (ui,w j) ∈ Ẽ be lower bounded by 1 and upper

bounded by C. We refer to the weight of such edges as ãi j, and therefore, 1 ≤ ãi j ≤ C. Consider the following

problem: find the maximum flow that can be sent from the source s to the target t. It is not difficult to see that,

by definition of C-regularity, the digraph G is C-regular if and only if the maximum flow of the problem just

introduced is C|V |.

Following [1, 4], the maximum flow problem with lower bounds described above can be transformed into a

regular maximum flow problem as follows. Define āi j = ãi j−1. The bounds 1≤ ãi j ≤C now become 0≤ āi j <C.
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For each edge of the form (s,ui) ∈ Ẽ, let the capacity be

C− ∑
(ui,w j)∈Ẽ

1 = C−dout(vi).

For each edge of the form (wi, t) ∈ Ẽ, let the capacity be

−C + ∑
(u j ,wi)∈Ẽ

1 =−C +din(vi).

The proof now follows from noting that the execution of the load-pushing algorithm, when transcribed

to this maximum flow problem, exactly corresponds to the execution of the distributed version presented in [32]

of the preflow-push algorithm of Goldberg-Tarjan algorithm [15]. Note that, given our discussion in Section 3,

it is enough to execute load-pushing algorithm for C ≥ |E|− |V |+ 1 (cf. Lemma 3.14) to determine if

the digraph G is indeed doubly stochasticable. The time complexity of the algorithm is a consequence of [15,

Theorem 3.11].

It is worth mentioning that without the characterization of doubly stochasticable digraphs, a negative answer

from load-pushing algorithm for a given C would be inconclusive to determine if the digraph is indeed

doubly stochasticable. At the same time, the results of Section 3 imply that, if a digraph is doubly stochasticable

and the load-pushing algorithm is executed with C ≥ ds(G) (which in particular is guaranteed if C ≥

|E|− |V |+1), then the strategy will find a set of appropriate weights.

v1 // v2

��~~~~
~~

~~
~~

~~
~~

~~
~~

v4

OO

33 v3oo

``@@@@@@@@@@@@@@@@

Figure 9: A doubly stochasticable digraph with ds(G) = 2.

Example 5.4. (Execution of the load-pushing algorithm): Consider the digraph shown in Figure 9. One

can easily check that this digraph is doubly stochasticable and ds(G) = 2. Suppose the agents want to find a

C-regular weight assignment and they run the load-pushing algorithm for C = 3≥ ds(G) = 2. Figure 10

shows the execution of the algorithm. To represent its evolution, we associate to each vertex vi, i ∈ {1, . . . ,4}, the

source- and target-loads and a subindex with the source- and target-height. The algorithm converges to a 3-regular

digraph in 5 iterations. •
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Figure 10: The execution of the load-pushing algorithm for the digraph in Figure 9. At each iteration of
the algorithm, the pair (Ls,Lt)(Hs,Ht ) is shown for each vertex. At each iteration, dashed lines represent the edges
used by the vertices to send loads. Observe that (2), (3), (4), (5), respectively, correspond to the operations push
forward, increasing target height, push backward, and push forward.

6 Conclusions

In this paper, we have studied two important classes of digraphs: weight-balanced and doubly stochastic di-

graphs. The first contribution is a necessary and sufficient condition for doubly stochasticability of a digraph.

We have unveiled the particular connection of the class of doubly stochasticable digraphs with a special subset

of weight-balanced digraphs. The second contribution is the design of two discrete-time dynamical systems for

constructing a weight-balanced digraph from a strongly connected digraph: (i) the imbalance-correcting

algorithm, running synchronously on a group of agents, and (ii) the mirror imbalance-correcting

algorithm, distributed over the mirror of the original digraph. We have established the finite-time convergence

of both strategies via the set-valued discrete-time LaSalle Invariance Principle. We have also characterized the

time complexity of the mirror imbalance-correcting algorithm, which is substantially better than

that of the existing centralized algorithm. The third contribution is the design of two discrete-time dynamical

systems for constructing a doubly stochastic adjacency matrix for a doubly stochasticable strongly connected di-

graph: (i) the imbalance-correcting algorithm with self-loop addition, works under the

assumption that agents are allowed to add weighted self-loops. We showed that any strongly connected digraph can

be assigned a doubly stochastic adjacency matrix with this procedure; (ii) the load-pushing algorithm,
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distributed over the mirror digraph, for the case when agents are not allowed to add self-loops. The convergence

of this algorithm, and its time complexity, has been established by formulating the problem as a constrained

maximum flow problem.

Our results greatly enlarge the domain of systems on which a variety of distributed formation, consensus, and

optimization algorithms can be executed by providing strategies that agents can use to form weight-balanced and

doubly stochastic communication topologies. Regarding future work, we would like to better understand the gap

between ds(G) and p(G) for doubly stochasticable digraphs and develop a full chart of the worst-case and average

time complexities of the proposed algorithms. We would also like to study the case when zero edge weights

are allowed and, in particular, develop algorithmic procedures that can identify a strongly connected spanning

subdigraph which is doubly stochasticable. To our knowledge, the synthesis of a distributed dynamical system

that computes doubly stochastic weight assignments when agents communicate only over the original digraph,

and not over the mirror digraph, is still an open problem. Finally, we would like to employ the results of this

paper to extend the range of applicability of existing distributed algorithms for coordination, formation control,

and optimization tasks.
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