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Distributed continuous-time convex

optimization on weight-balanced digraphs

Bahman Gharesifard Jorge Cortés

Abstract

This paper studies the continuous-time distributed optimization of a sum of convex functions over

directed graphs. Contrary to what is known in the consensus literature, where the same dynamics

works for both undirected and directed scenarios, we show that the consensus-based dynamics that

solves the continuous-time distributed optimization problem for undirected graphs fails to converge

when transcribed to the directed setting. This study sets the basis for the design of an alternative

distributed dynamics which we show is guaranteed to converge, on any strongly connected weight-

balanced digraph, to the set of minimizers of a sum of convex differentiable functions with globally

Lipschitz gradients. Our technical approach combines notions of invariance and cocoercivity with the

positive definiteness properties of graph matrices to establish the results.

I. INTRODUCTION

Distributed optimization of a sum of convex functions has applications in a variety of scenarios,

including sensor networks, source localization, and robust estimation, and has been intensively

studied in recent years, see e.g. [1], [2], [3], [4], [5], [6], [11]. Most of these works build on

consensus-based dynamics [7], [8], [9], [10] to design discrete-time algorithms that find the

solution of the optimization problem. A recent exception are the works [12], [13] that deal with

continuous-time strategies on undirected networks. This paper furthers contributes to this body of

work by studying continuous-time algorithms for distributed optimization in directed scenarios.

The unidirectional information flow among agents characteristic of directed networks often

leads to significant technical challenges when establishing convergence and robustness properties

of coordination algorithms. The results of this paper provide one more example in support of

this assertion for the case of continuous-time consensus-based distributed optimization. This is
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somewhat surprising given that, for consensus, the same dynamics works for both undirected

connected graphs and strongly connected, weight-balanceddirected graphs, see e.g., [7], [8].

The contributions of this paper are the following. We first show that the solutions of the

optimization problem of a sum of locally Lipschitz convex functions over a directed graph

(or digraph) correspond to the saddle points of an aggregateobjective function that depends

on the graph topology through its Laplacian. This function is convex in its first argument

and linear in the second. Moreover, its gradient is distributed when the graph is undirected.

Our second step is then to study the convergence properties of the saddle-point dynamics and

establish its asymptotic correctness when the original functions are locally Lipschitz (i.e., not

necessarily differentiable) and convex, extending the results available in the literature [13] for

continuously differentiable, strictly convex functions.Next, we consider the optimization problem

over digraphs. We first provide an example of a strongly connected, weight-balanced digraph

where the distributed version of the saddle-point dynamicsdoes not converge. This motivates

us to introduce a generalization of the dynamics that incorporates a design parameter. We show

that, when the original functions are differentiable and convex with globally Lipschitz gradients,

the design parameter can be appropriately chosen so that theresulting dynamics asymptotically

converge to the set of minimizers of the objective function on any strongly connected and weight-

balanced digraph. Our technical approach combines notionsand tools from set-valued stability

analysis, algebraic graph theory, and convex analysis.

II. PRELIMINARIES

We start with notational conventions. LetR andR≥0 denote the set of reals and nonnegative

reals, respectively. We let|| · || denote the Euclidean norm onRd. We let1d = (1, . . . , 1)T , 0d =

(0, . . . , 0)T ∈ R
d, and Id denote the identity matrix inRd×d. For A ∈ R

d1×d2 andB ∈ R
e1×e2,

A⊗B is their Kronecker product. A functionf : X1×X2 → R, with X1 ⊂ R
d1 , X2 ⊂ R

d2 closed

and convex, isconcave-convexif it is concave in its first argument and convex in the second

one. A saddle point(x∗
1, x

∗
2) ∈ X1 × X2 of f satisfiesf(x1, x

∗
2) ≤ f(x∗

1, x
∗
2) ≤ f(x∗

1, x2) for all

x1 ∈ X1 andx2 ∈ X2. A set-valued mapf : Rd
⇒ R

d takes elements ofRd to subsets ofRd.

A. Graph theory

We present basic notions from algebraic graph theory [9]. Adirected graph, or digraph, is a

pair G = (V, E), whereV is the (finite) vertex set andE ⊆ V × V is the edge set. A digraph is

undirectedif (v, u) ∈ E anytime(u, v) ∈ E . We refer to an undirected digraph as agraph. A

December 10, 2012 DRAFT



3

path is an ordered sequence of vertices such that any pair of vertices appearing consecutively

is an edge. A digraph isstrongly connectedif there is a path between any pair of distinct

vertices. For a graph, this notion is referred to asconnected. A weighted digraphis a triplet

G = (V, E ,A), where (V, E) is a digraph andA ∈ R
n×n
≥0 is the adjacency matrix, satisfying

aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. The weighted out-degree and in-degree ofvi,

i ∈ {1, . . . , n}, are respectively,dw
out(vi) =

∑n

j=1 aij anddw
in(vi) =

∑n

j=1 aji. The weighted out-

degree matrixDout is diagonal with(Dout)ii = dw
out(i), for i ∈ {1, . . . , n}. TheLaplacianmatrix is

L = Dout−A. Note thatL1n = 0. If G is strongly connected, then zero is a simple eigenvalue of

L. G is undirected ifL = L
T andweight-balancedif dw

out(v) = dw
in(v), for all v ∈ V. The following

three notions are equivalent: (i)G is weight-balanced, (ii)1T
nL = 0, and (iii) L+ L

T is positive

semidefinite, see e.g., [9, Theorem 1.37]. IfG is weight-balanced and strongly connected, then

zero is a simple eigenvalue ofL+ L
T . Any undirected graph is weight-balanced.

B. Nonsmooth analysis

We recall some notions from nonsmooth analysis [15]. A function f : Rd → R is locally

Lipschitzatx ∈ R
d if there exists a neighborhoodU of x andCx ∈ R≥0 such that|f(y)−f(z)| ≤

Cx||y − z||, for y, z ∈ U . f is locally Lipschitz onRd if it is locally Lipschitz at x for all

x ∈ R
d and globally Lipschitzon R

d if for all y, z ∈ R
d there existsC ∈ R≥0 such that

|f(y)− f(z)| ≤ C||y − z||. Locally Lipschitz functions are differentiable almost everywhere. If

Ωf denotes the set of points wheref fails to be differentiable, thegeneralized gradientof f is

∂f(x) = co{ lim
k→∞

∇f(xk) | xk → x, xk /∈ Ωf ∪ S},

whereS is any set of measure zero and co denotes convex hull.

Lemma 2.1:(Continuity of the generalized gradient map):Let f : R
d → R be a locally

Lipschitz function atx ∈ R
d. Then the set-valued map∂f : Rd

⇒ R
d is upper semicontinuous

and locally bounded atx ∈ R
d and moreover,∂f(x) is nonempty, compact, and convex.

For f : Rd × R
d → R and z ∈ R

d, we let ∂xf(x, z) denote the generalized gradient ofx 7→
f(x, z). Similarly, for x ∈ R

d, we let∂zf(x, z) denote the generalized gradient ofz 7→ f(x, z).

A critical point x ∈ R
d of f satisfies0 ∈ ∂f(x). A function f : Rd → R is regular at x ∈ R if

for all v ∈ R
d the right directional derivative off , in the direction ofv, exists atx and coincides

with the generalized directional derivative off at x in the direction ofv, see [15] for definitions

of these notions. A convex and locally Lipschitz function atx is regular [15, Proposition 2.3.6].
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Lemma 2.2:(Finite sum of locally Lipschitz functions):Let {f i}ni=1 be locally Lipschitz atx ∈
R

d. Then∂(
∑n

i=1 f
i)(x) ⊆ ∑n

i=1 ∂f
i(x), and equality holds iff i is regular fori ∈ {1, . . . , n}

(here, the summation of sets is the set of points of the form
∑n

i=1 gi, with gi ∈ ∂f i(x)).

A locally Lipschitz and convex functionf satisfies, for allx, x′ ∈ R
d and ξ ∈ ∂f(x), the

first-order conditionof convexity,

f(x′)− f(x) ≥ ξT (x′ − x). (1)

The notion of cocoercivity [16] plays a key role in our technical approach later. Forδ ∈ R>0, a

locally Lipschitz functionf is δ-cocoerciveif, for all x, x′ ∈ R
d andgx ∈ ∂f(x), gx′ ∈ ∂f(x′),

(x− x′)T (gx − gx′) ≥ δ(gx − gx′)T (gx − gx′).

The next result [16, Lemma 6.7] characterizes cocoercive differentiable convex functions.

Proposition 2.3: (Characterization of cocoercivity):Let f be a differentiable convex function.

Then,∇f is globally Lipschitz with constantK ∈ R>0 iff f is 1
K

-cocoercive.

C. Set-valued dynamical systems

Here, we recall some background on set-valued dynamical systems following [17]. A continuous-

time set-valued dynamical system onX ⊂ R
d is a differential inclusion

ẋ(t) ∈ Ψ(x(t)) (2)

wheret ∈ R≥0 andΨ : X ⊂ R
d
⇒ R

d is a set-valued map. A solution to this dynamical system

is an absolutely continuous curvex : [0, T ] → X which satisfies (2) almost everywhere. The set

of equilibria of (2) is denoted byEq(Ψ) = {x ∈ X | 0 ∈ Ψ(x)}.

Lemma 2.4:(Existence of solutions):ForΨ : Rd
⇒ R

d upper semicontinuous with nonempty,

compact, and convex values, there exists a solution to (2) from any initial condition.

The LaSalle Invariance Principle is helpful to establish the asymptotic convergence of systems

of the form (2). A setW ⊂ X is weakly positively invariantunder (2) if, for eachx ∈ W , there

exists at least one solution of (2) starting fromx entirely contained inW . Similarly, W is

strongly positively invariantunder (2) if, for eachx ∈ W , all solutions of (2) starting fromx

are entirely contained inW . Finally, theset-valued Lie derivativeof a differentiable function

V : Rd → R with respect toΨ at x ∈ R
d is L̃ΨV (x) = {vT∇V (x) | v ∈ Ψ(x)}.

Theorem 2.5:(Set-valued LaSalle Invariance Principle):Let W ⊂ X be strongly positively

invariant under (2) andV : X → R a continuously differentiable function. Suppose the evolutions
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of (2) are bounded andmax L̃ΨV (x) ≤ 0 or L̃ΨV (x) = ∅, for all x ∈ W . Let SΨ,V = {x ∈
X | 0 ∈ L̃ΨV (x)}. Then any solutionx(t), t ∈ R≥0, starting inW converges to the largest

weakly positively invariant setM contained inS̄Ψ,V ∩ W . WhenM is a finite collection of

points, then the limit of each solution equals one of them.

III. PROBLEM STATEMENT AND EQUIVALENT FORMULATIONS

Consider a network composed byn agentsv1, . . . , vn whose communication topology is

described by a strongly connected digraphG. An edge(vi, vj) represents the fact thatvi can

receive information fromvj . For eachi ∈ {1, . . . , n}, let f i : Rd → R be locally Lipschitz and

convex, and only available to agentvi. The network objective is to solve

minimize f(x) =

n∑

i=1

f i(x), (3)

in a distributed way. Letxi ∈ R
d denote the estimate of agentvi about the value of the solution

to (3) and letxT = ((x1)T , . . . , (xn)T ) ∈ R
nd. Next, we provide an alternative formulation of (3).

Lemma 3.1:Let L ∈ R
n×n be the Laplacian ofG and defineL = L ⊗ Id ∈ R

nd×nd. The

problem (3) onRd is equivalent to the following problem onRnd,

minimize f̃(x) =
n∑

i=1

f i(xi), subject to Lx = 0nd. (4)

Proof: The proof follows by noting that (i)̃f(1n ⊗ x) = f(x) for all x ∈ R
d and (ii) since

G is strongly connected,Lx = 0nd if and only if x = 1n ⊗ x, for somex ∈ R
d.

The formulation (4) is appealing because it brings togetherthe estimates of each agent about

the value of the solution to the original optimization problem. Note thatf̃ is locally Lipschitz

and convex. Moreover, from Lemma 2.2, the elements of its generalized gradient are of the form

g̃x = (g1
x1 , . . . , gnxn) ∈ ∂f̃(x), wheregi

xi ∈ ∂f i(xi), for i ∈ {1, . . . , n}. Since f̃ is convex and

the constraints in (4) are linear, the constrained optimization problem is feasible [18].

The next result introduces a function which corresponds to the Lagrangian function associated

to the constrained optimization problem (4) plus an additional quadratic term that vanishes if

the agreement constraint is satisfied. Interestingly, the saddle points of this function correspond

to the solutions of the constrained optimization problem, as we show next.

Proposition 3.2: (Solutions of the distributed optimization problem as saddle points):Let G be

strongly connected and weight-balanced, and defineF : Rnd × R
nd → R by

F (x, z) = f̃(x) + x
TLz +

1

2
x
TLx. (5)
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ThenF is locally Lipschitz and convex in its first argument and linear in its second, and

(i) if (x∗, z∗) is a saddle point ofF , then so is(x∗, z∗ + 1n ⊗ a), for anya ∈ R
d.

(ii) if (x∗, z∗) is a saddle point ofF , thenx∗ is a solution of (4).

(iii) if x
∗ is a solution of (4), then there existsz∗ with Lz∗ ∈ −∂f̃ (x∗) such that(x∗, z∗) is

a saddle point ofF .

Proof: First, note that forG weight-balanced,L + LT is positive semi-definite. Since the

sum of convex functions is convex, one deduces thatF is convex in its first argument. By

inspection,F is linear in its second argument. The statement (i) is immediate. To show (ii),

using thatG is strongly connected, one can see that the saddle points ofF are of the form

(x∗, z∗) with x
∗ = 1n⊗x∗, x∗ ∈ R

d, andLz∗ ∈ −∂f̃ (x∗). The last inclusion implies that there

exist gix∗ ∈ ∂f i(x∗), i ∈ {1, . . . , n}, such thatLz∗ = −(g1x∗ , . . . , gnx∗)T . Noting that

(1T
n ⊗ Id)L = (1T

n ⊗ Id)(L⊗ Id) = 1T
nL⊗ Id = 0d×dn,

we deduce0d = (1T
n ⊗ Id)Lz

∗ = −∑n

i=1 g
i
x∗. As a result, using Lemma 2.2,x∗ is a solution

of (4). Finally, (iii) follows by notingx∗ = 1n ⊗ x∗ and the fact that0 ∈ ∂f(x∗) implies that

there existsz∗ ∈ R
nd with Lz∗ ∈ −∂f̃ (x∗), yielding that(x∗, z∗) is a saddle point ofF .

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON UNDIRECTED NETWORKS

Here, we review the continuous-time solution to the optimization problem proposed in [12],

[13] for undirected graphs. IfG is undirected, the gradient ofF in (5) is distributed overG.

Given Proposition 3.2, it is natural to consider the saddle-point dynamics ofF to solve (3),

ẋ+ Lx+ Lz ∈ −∂f̃ (x), (6a)

ż = Lx. (6b)

Note that (6) is a set-valued dynamical system. Using Lemmas2.1 and 2.4, one can guarantee

the existence of solutions. Moreover, from Proposition 3.2, if (x∗, z∗) is an equilibrium of (6),

thenx∗ is a solution to (4). According to [13], the dynamics (6) leads the network to agree on

a global minimum off for the case whenG is undirected andf is both strictly convex and

the sum of differentiable convex functions. We extend here this result to the case whenG is

undirected andf is the sum of locally Lipschitz convex functions. The proof is also useful later

to illustrate the challenges in solving the distributed optimization problem over directed graphs.

Theorem 4.1:(Asymptotic convergence of(6) on graphs):Let G be a connected graph and

consider the optimization problem (3), where eachf i, i ∈ {1, . . . , n} is locally Lipschitz and
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convex. Then, the projection onto the first component of any trajectory of (6) asymptotically

converges to the set of solutions to (4). Moreover, iff has a finite number of critical points, the

limit of the projection onto the first component of each trajectory is a solution of (4).

Proof: For convenience, we denote the dynamics (6) byΨdis-opt : R
nd ×R

nd
⇒ R

nd ×R
nd.

Let x∗ = 1n⊗x∗ be a solution of (4). By Proposition 3.2(iii), there existsz
∗ such that(x∗, z∗) ∈

Eq(Ψdis-opt). First, note that given any initial condition(x0, z0) ∈ R
nd × R

nd, the set

Wz0
= {(x, z) | (1T

n ⊗ Id)z = (1T
n ⊗ Id)z0} (7)

is strongly positively invariant under (6). Consider then the functionV : Rnd × R
nd → R≥0,

V (x, z) =
1

2
(x− x

∗)T (x− x
∗) +

1

2
(z − z

∗)T (z − z
∗). (8)

The functionV is smooth. Let us examine its set-valued Lie derivative. Foreachξ ∈ L̃Ψdis-optV (x, z),

there existsv = (−Lx − Lz − g̃x,Lx) ∈ Ψdis-opt(x, z), with g̃x ∈ ∂f̃(x), such that

ξ = vT∇V (x, z) = −(x− x
∗)T (Lx+ Lz + g̃x) + (z − z

∗)TLx. (9)

SinceF is convex in its first argument andLx + Lz + g̃x ∈ ∂xF (x, z), using the first-order

condition of convexity (1), we deduce(x∗−x)T (Lx+Lz+ g̃x) ≤ F (x∗, z)−F (x, z). On the

other hand, the linearity ofF in its second argument implies that(z − z
∗)TLx = F (x, z) −

F (x, z∗). Therefore,ξ ≤ F (x∗, z) − F (x∗, z∗) + F (x∗, z∗) − F (x, z∗). Since the equilibria

of Ψdis-opt are the saddle points ofF , we deduce thatξ ≤ 0. Sinceξ is arbitrary, we conclude

max L̃Ψdis-optV (x, z) ≤ 0. As a by-product, the trajectories of (6) are bounded. Consequently,

all assumptions of the set-valued version of the LaSalle Invariance Principle, cf. Theorem 2.5,

are satisfied. This result then implies that any trajectory of (6) starting from an initial condition

(x0, z0) converges to the largest weakly positively invariant setM in SΨdis-opt,V ∩Wz0
. Our final

step consists of characterizingM . Let (x, z) ∈ M . ThenF (x∗, z∗)− F (x, z∗) = 0, i.e.,

f̃(x∗)− f̃(x)− (z∗)TLx− 1

2
x
TLx = 0. (10)

Define nowG : R
nd × R

nd → R by G(x, z) = f̃(x) + z
TLx. Note thatG is convex in

its first argument and linear in its second, and that it has thesame saddle points asF . As a

result,G(x∗, z∗) − G(x, z∗) ≤ 0, or equivalently,f̃(x∗) − f̃(x) − (z∗)TLx ≤ 0. Combining

this with (10), we haveLx = 0 and−f̃(x) + f̃(x∗) = 0, i.e., x is solution to (4). SinceM

is weakly positively invariant, there exists at least a solution of (6) starting from(x, z) that

remains inM . This implies that, along the solution, the components ofx remain in agreement,
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i.e., x(t) = 1n ⊗ a(t) with a(t) ∈ R
d a solution of (3). Applying1T

n ⊗ Id on both sides of

1n ⊗ ȧ(t) + Lz ∈ −∂f̃ (x(t)), we deducenȧ(t) ∈ −∑n

i=1 ∂f
i(a(t)). Lemma A.2 then implies

that ȧ(t) = 0, i.e., Lz ∈ −∂f̃ (x) and thus(x, z) ∈ Eq(Ψdis-opt). Finally, if the set of equilibria

is finite, the last statement holds true.

Remark 4.2:(Asymptotic convergence of saddle-point dynamics):The work [20] studies saddle-

point dynamics and guarantees asymptotic convergence to a saddle point when the function’s

Hessian in one argument is positive definite and the functionis linear in the other. Such result,

however, cannot be applied to establish Theorem 4.1 becausethe generality of the hypotheses

on f mean thatF might not satisfy these conditions. Instead, our proof shows that a careful

study of the invariance properties of the flow yields the desired result. •

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON DIRECTED NETWORKS

Here, we consider the optimization problem (3) on digraphs.WhenG is directed, the gradient

of F defined in (5) is no longer distributed overG because it contains terms that involveLT and

hence requires agents to receive information from its in-neighbors. In fact, the dynamics (6),

which is distributed overG, does no longer correspond to the saddle-point dynamics ofF .

Nevertheless, it is natural to study whether (6) enjoys the same convergence properties as in the

undirected setting (as, for instance, is the case in the agreement problem [7], [8]). Surprisingly,

this turns out not to be the case, as shown in Section V-A. Thisresult motivates the introduction

in Section V-B of an alternative provably correct dynamics on weight-balanced directed graphs.

A. Counterexample

Here, we provide an example of a strongly connected, weight-balanced digraph on which (6)

fails to converge. For convenience, we letSagree= {(1n ⊗ x, 1n ⊗ z) ∈ R
nd × R

nd | x, z ∈ R
d}

denote the set of agreement configurations. Our construction relies on the following result.

Lemma 5.1:(Necessary condition for the convergence of(6) on digraphs):Let G be a strongly

connected digraph andf i = 0, i ∈ {1, . . . , n}. ThenSagree is stable under (6) iff, for any nonzero

eigenvalueλ of the LaplacianL, one has
√
3|Im(λ)| ≤ Re(λ).

Proof: By assumption, the dynamics (6) is linear with matrix( −1 −1
1 0 ) ⊗ L and hasSagree

as equilibria. The eigenvalues of the matrix are of the formλ
(−1

2
±

√
3
2
i
)
, with λ an eigenvalue

of L (because the eigenvalues of a Kronecker product are just theproduct of the eigenvalues

of the corresponding matrices). SinceL = L ⊗ Id, each eigenvalue ofL is an eigenvalue ofL.

Finally, Re
(
λ
(−1

2
±

√
3
2
i
))

= 1
2
(∓

√
3Im(λ)− Re(λ)), from which the result follows.
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It is not difficult to construct examples of convex functionsthat have zero contribution to the

linearization of (6) around the solution. Therefore, such systems cannot be convergent if they

fail the criterium identified in Lemma 5.1. The next example shows that this criterium can fail

even for strongly connected weight-balanced digraphs.

Example 5.2:Consider the strongly connected, weight-balanced digraphwith

A =




0 0.5326 0.1654 0.0004 0.0002

0.0595 0 0.6676 0.0681 0.1230

0.0213 0.0004 0 0.5809 0.3181

0.0248 0.2458 0 0 0.5587

0.5930 0.1394 0.0877 0.1799 0




as adjacency matrix. Note thatλ = 0.8833 ± 0.5197i is an eigenvalue of the Laplacian. Since
√
3|Im(λ)| − Re(λ) = 0.0171 > 0, Lemma 5.1 implies that (6) fails to converge. •

B. Provably correct distributed dynamics on directed graphs

Here, given the result in Section V-A, we introduce an alternative continuous-time distributed

dynamics for strongly connected weight-balanced digraphs. For reasons that will be made clear

later in Remark 5.5, we restrict our attention to the case when the functionsf i, i ∈ {1, . . . , n}
are continuously differentiable. Letα ∈ R>0 and consider the dynamics

ẋ+ αLx+ Lz = −∇f̃(x), (11a)

ż = Lx. (11b)

The existence of solutions is guaranteed by Lemmas 2.1 and 2.4. We first show that appropriate

choices ofα allow to circumvent the problem raised in Lemma 5.1.

Lemma 5.3:(Sufficient conditions for the convergence of(11)on digraphs with trivial objective

function):Let G be a strongly connected and weight-balanced digraph andf i = 0, i ∈ {1, . . . , n}.

If α ≥ 2
√
2, thenSagree is asymptotically stable under (11).

Proof: When allfi, i ∈ {1, . . . , n}, are identically zero, the dynamics (11) is linear and has

Sagreeas equilibria. Consider the coordinate transformation from (x, z) to (x,y) = (x, βx+z),

with β ∈ R>0 to be chosen later. The dynamics can be rewritten as
(
ẋ

ẏ

)
= A

(
x

y

)
, where A =

(
−(α− β)L −L

(−β(α− β) + 1)L −βL

)
. (12)
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Consider the candidate Lyapunov functionV (x,y) = x
T
x + y

T
y. Its Lie derivative is the

quadratic form defined by the matrix

Q = I2ndA + AT
I2nd =

(
−(α− β)(L+ LT ) −L + (−β(α− β) + 1)LT

(−β(α− β) + 1)L− LT −β(L + LT )

)
.

Selectβ now satisfyingβ2 − αβ + 2 = 0 (this equation has a real solution ifα ≥ 2
√
2). Then,

Q =

(
−(β

2+2
β

− β) −1

−1 −β

)
⊗ (L+ LT ). (13)

Each eigenvalueη of Q is of the formη = λ
−(β2+2)±

√
(β2+2)2−4β2

2β
, whereλ is an eigenvalue of

L+L
T . SinceG is strongly connected and weight-balanced,L+LT is positive semidefinite with

a simple eigenvalue at zero, and henceη ≤ 0. By the LaSalle invariance principle, the solutions

of (11) from any initial condition(x0,y0) ∈ R
nd × R

nd, asymptotically converge to the set

S = {(x,y) | Q(x,y)T = 02nd}∩Wz0
. To conclude the result, we need to show thatS ⊆ Sagree.

This follows from noting that, forβ > 0, Q(x,y)T = 02nd implies that(L + LT )x = 0nd and

(L+ LT )y = 0nd, i.e., (x,y) ∈ Sagree.

The reason behind the introduction of the parameterα in (11) comes from the following

observation: if one tries to reproduce the proof of Theorem 4.1 for a digraph, one encounters

indefinite terms of the form(x−x
∗)T (L−LT )(z− z

∗) in the Lie derivative ofV , invalidating

it as a Lyapunov function. However, the proof of Lemma 5.3 shows that an appropriate choice

of α, together with a suitable change of coordinates, makes the quadratic form defined by the

identity matrix a valid Lyapunov function. We next build on these observations to establish our

main result: the dynamics (11) solves in a distributed way the optimization problem (3) on

strongly connected weight-balanced digraphs.

Theorem 5.4:(Asymptotic convergence of(11) on weight-balanced digraphs):Let G be a

strongly connected, weight-balanced digraph and considerthe optimization problem (3), where

eachf i, i ∈ {1, . . . , n}, is convex and differentiable with globally Lipschitz continuous gradient.

Let K ∈ R>0 be the Lipschitz constant of∇f̃ and defineh : R>0 → R by

h(r) =
1

2
Λ∗(L+ L

T )



−r4 + 3r2 + 2

r
+

√(
r4 + 3r2 + 2

r

)2

− 4



 +
Kr2

(1 + r2)
, (14)

whereΛ∗(·) denotes the non-zero eigenvalue with smallest absolute value. Then, there exists

β∗ ∈ R>0 with h(β∗) = 0 such that, for all0 < β < β∗, the projection onto the first component

of any trajectory of (11) withα = β2+2
β

asymptotically converges to the set of solutions of (4).
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Moreover, if f has a finite number of critical points, the limit of the projection onto the first

component of each trajectory is a solution of (4).

Proof: For convenience, we denote the dynamics (11) byΨα-dis-opt : R
nd×R

nd → R
nd×R

nd.

Note that the equilibria ofΨα-dis-opt are precisely the set of saddle points ofF in (5). Let

x
∗ = 1n⊗x∗ be a solution of (4). First, note that given any initial condition (x0, z0) ∈ R

nd×R
nd,

the setWz0
defined by (7) is invariant under the evolutions of (11). By Proposition 3.2(i) and (iii),

there exists(x∗, z∗) ∈ Eq(Ψα-dis-opt) ∩Wz0
. Consider the functionV : Rnd × R

nd → R≥0,

V (x, z) =
1

2
(x− x

∗)T (x− x
∗) +

1

2
(y(x,z) − y(x∗,z∗))

T (y(x,z) − y(x∗,z∗)),

wherey(x,z) = βx+z andβ ∈ R>0 satisfiesβ2−αβ+2 = 0. This function is quadratic, hence

smooth. Next, we consider its Lie derivative alongΨα-dis-opt on Wz0
. For (x, z) ∈ Wz0

, let

ξ = LΨα-dis-optV (x, z) = (−αLx− Lz −∇f̃(x),Lx)T∇V (x, z)

=
1

2

(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T

)
A
(
x,y(x,z)

)T
− (x− x

∗)T∇f̃(x)

+
1

2

(
x
T ,yT

(x,z)

)
AT
(
x− x

∗,y(x,z) − y(x∗,z∗)

)T
− β(y(x,z) − y(x∗,z∗))

T∇f̃(x),

whereA is given by (12). This equation can be written as

ξ =
1

2

(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T

)
Q
(
x− x

∗,y(x,z) − y(x∗,z∗)

)T
− (x− x

∗)T∇f̃(x)

+
(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T

)
A
(
x
∗,y(x∗,z∗)

)T
− β(y(x,z) − y(x∗,z∗))

T∇f̃(x),

whereQ is given by (13). Note thatA(x∗,y(x∗,z∗))
T = −(Ly(x∗ ,z∗), βLy(x∗,z∗))

T = (∇f̃(x∗), β∇f̃(x∗))T .

Thus, after substituting fory(x,z), we have

ξ =
1

2

(
(x− x

∗)T , (z − z
∗)T
)T

Q̃
(
x− x

∗, z − z
∗
)T

− (1 + β2)(x− x
∗)T (∇f̃(x)−∇f̃(x∗))− β(z − z

∗)T (∇f̃(x)−∇f̃(x∗)), (15)

where

Q̃ =

(
−β3 − (β

2+2
β

)− β −(1 + β2)

−(1 + β2) −β

)
⊗ (L+ LT ).

Each eigenvalue of̃Q is of the form

η̃ = λ× −(β4 + 3β2 + 2)±
√

(β4 + 3β2 + 2)2 − 4β2

2β
, (16)
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whereλ is an eigenvalue ofL+ L
T . Using the cocoercivity of̃f , we can upper boundξ as,

ξ ≤ 1

2




x− x
∗

z − z
∗

∇f̃(x)−∇f̃(x∗)




T 


Q̃11 Q̃12 0

Q̃21 Q̃22 −βInd

0 −βInd − 1
K
(1 + β2)Ind




︸ ︷︷ ︸
Q




x− x
∗

z − z
∗

∇f̃(x)−∇f̃(x∗)


 , (17)

whereK ∈ R>0 is the Lipschitz constant for the gradient off̃ .

Since (x, z) ∈ Wz0
, we have(1T

n ⊗ Id)(z − z
∗) = 0d and hence it is enough to establish

thatQ is negative semidefinite on the subspaceW = {(v1, v2, v3) ∈ (Rnd)3 | (1T
n ⊗ Id)v2 = 0d}.

Using the fact that− 1
K
(1 + β2)Ind is invertible, we can expressQ as

Q = N

(
Q̄ 0

0 − 1
K
(1 + β2)Ind

)
NT , Q̄ = Q̃+

Kβ2

(1 + β2)

(
0 0

0 Ind

)
, N =




Ind 0 0

0 Ind
βK

1+β2 Ind

0 0 Ind


 .

Noting thatW is invariant underNT (i.e.,NTW = W), all we need to check is that the matrix(
Q̄ 0

0 − 1
K

(1+β2)Ind

)
is negative semidefinite onW. Clearly, − 1

K
(1 + β2)Ind is negative definite.

On the other hand, on(Rnd)2, 0 is an eigenvalue of̃Q with multiplicity 2d and eigenspace

generated by vectors of the form(1n ⊗ a, 0) and (0, 1n ⊗ b), with a, b ∈ R
d. However, on

{(v1, v2) ∈ (Rnd)2 | (1T
n ⊗ Id)v2 = 0d}, 0 is an eigenvalue ofQ̃ with multiplicity d and

eigenspace generated by vectors of the form(1n⊗a, 0). Moreover, on{(v1, v2) ∈ (Rnd)2 | (1T
n ⊗

Id)v2 = 0d}, the eigenvalues ofKβ2

(1+β2)

(
0 0
0 Ind

)
are Kβ2

(1+β2)
with multiplicity nd − d and 0 with

multiplicity nd. Therefore, using Weyl’s theorem [21, Theorem 4.3.7], we deduce that the nonzero

eigenvalues of the sum̄Q are upper bounded byΛ∗(Q̃) + Kβ2

(1+β2)
. From (16) and the definition

of h in (14), we conclude that the nonzero eigenvalues ofQ̄ are upper bounded byh(β). It

remains to show that there existsβ∗ ∈ R>0 with h(β∗) = 0 such that for all0 < β < β∗

we haveh(β) < 0. For r > 0 small enough,h(r) < 0, since h(r) = −1
2
Λ∗(L + L

T )r +

O(r2). Furthermore,limr→∞ h(r) = K > 0. Hence, the existence ofβ∗ follows from the Mean

Value Theorem. Therefore we concludeLΨα-dis-optV (x, z) ≤ 0. As a by-product, the trajectories

of (11) are bounded. Consequently, all assumptions of the LaSalle Invariance Principle are

satisfied and its application yields that any trajectory of (11) starting from an initial condition

(x0, z0) converges to the largest positively invariant setM in SΨα-dis-opt,V ∩ Wz0
. Note that if

(x, z) ∈ SΨα-dis-opt,V ∩ Wz0
, then NT

(
x−x

∗

z−z
∗

∇f̃(x)−∇f̃(x∗)

)
∈ ker(Q̄) × {0}. From the discussion

above, we knowker(Q̄) is generated by vectors of the form(1n ⊗ a, 0), and hence this implies

that x = x
∗ + 1n ⊗ a, z = z

∗, and ∇f̃(x) = ∇f̃(x∗), from where we deduce thatx is
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also a solution to (4). Finally, for(x, z) ∈ M , an argument similar to the one in the proof of

Theorem 4.1 establishes(x, z) ∈ Eq(Ψα-dis-opt). If the set of equilibria is finite, convergence to

a point is also guaranteed.

Figure 1 illustrates the result of Theorem 5.4 for the network of Example 5.2.

1

−1
5 15 2510 20 30

2

(a)

1

3

−3

−5

−1

5

5 15 2510 20 30

(b)

5

5

15

15

25

25

35

40

45

10

10

20

20

30

30

(c)

Fig. 1. Execution of (11) for the network of Example 5.2 withf1(x) = ex, f2(x) = (x−3)2, f3(x) = (x+3)2, f4(x) = x4,

f5(x) = 4. (a) and (b) show the evolution of the agent’s values inx and z, respectively, and (c) shows the value of the

Lyapunov function. Here,α = 3, x0 = (1, 2, 0.3, 1, 1)T , andz0 = 15. The equilibrium(x∗,z∗) is x
∗ = −0.2005 · 15 and

z
∗ = (1.1784, 4.3717,−4.1598, 2.2598, 1.3499)T .

Remark 5.5 (Locally Lipschitz objective functions):Our simulations suggests that the conver-

gence result in Theorem 5.4 holds true for any locally Lipschitz objective function. However, our

proof cannot be reproduced for this case because it would rely on the generalized gradient being

globally Lipschitz which, by Proposition A.1, would imply that the function is differentiable.•
Remark 5.6 (Selection ofα in (11)): According to Theorem 5.4, the parameterα is deter-

mined byβ asα = β2+2
β

. In turn, one can observe from (14) that the range of suitablevalues

for β increases with higher network connectivity and smaller variability of the gradient of the

objective function. From a control design viewpoint, it is reasonable to choose the value ofβ

that yields the smallestα while satisfying the conditions of the theorem statement. •
Remark 5.7 (Discrete-time counterpart of(6) and (11)): It is worth noticing that the discretiza-

tion of (6) for undirected graphs (performed in [12] for the case of continuously differentiable,

strictly convex functions) and (11) for weight-balanced digraphs gives rise to different discrete-

time optimization algorithms from the ones considered in [1], [2], [3], [4], [5], [6]. •

VI. CONCLUSIONS AND FUTURE WORK

We have studied the distributed optimization of a sum of convex functions over directed

networks using consensus-based dynamics. Somewhat surprisingly, we have established that the

convergence results established in the literature for undirected networks do not carry over to the
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directed scenario. Nevertheless, our analysis has allowedus to introduce a slight generalization

of the saddle-point dynamics of the undirected case which incorporates a design parameter.

We have proved that, for appropriate parameter choices, this dynamics solves the distributed

optimization problem for differentiable convex functionswith globally Lipschitz gradients on

strongly connected and weight-balanced digraphs. Our technical approach relies on a careful

combination of notions from stability analysis, algebraicgraph theory, and convex analysis.

Future work will focus on the extension of the convergence results to locally Lipschitz functions

in the weight-balanced directed case and to general digraphs, the incorporation of local and

global constraints, the design of distributed algorithms that allow the network to agree on an

optimal value of the design parameter, the discretization of the algorithms, and the study of the

potential connections with dynamic consensus strategies.
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APPENDIX

The next result shows that the differentiability hypothesis of Proposition 2.3 cannot be relaxed.

Proposition A.1 (Lipschitz generalized gradient and differentiability): Any locally Lipschitz

function with globally Lipschitz generalized gradient is differentiable.

Proof: Let f : R
d → R be a locally Lipschitz function and has a globally Lipschitz

generalized gradient map [17]. Takex ∈ R
d and let us show that∂f(x) is a singleton. Sincef

is differentiable almost everywhere, there exists a sequence of points{xn}∞n=1, where f is

differentiable such thatlimn→∞ xn = x. Using the set-valued Lipschitz property of∂f , we

have∂f(x) ⊂ ∇f(xn) + K||xn − x||B(0, 1), whereK ∈ R>0 is the Lipschitz constant and

B(0, 1) is the ball centered at0 ∈ R
d of radius one. Hence, any elementv ∈ ∂f(x) can be

written asv = ∇f(xn) + K||xn − x||un, whereun is a unit vector inRd. Now, taking the

limit, v = limn→∞∇f(xn). Hence the generalized gradient is singleton-valued. Differentiability

follows now from the set-valued Lipschitz condition.

Lemma A.2 (Generalized gradient flow from a critical point):Let f : R
d → R be locally

Lipschitz and convex, and letx∗ be a minimizer off . Then, the only solution oḟx(t) ∈ −∂f(x(t))

starting fromx∗ is x(t) = x∗, for all t ≥ 0.

Proof: We reason by contradiction. Assumex(t) is not identicallyx∗. Sincef is monotoni-

cally nonincreasing along the gradient flow, the trajectorymust stay in the set of minimizers off ,

and hencet 7→ f(x(t)) is constant. Lett′ be the smallest time such that−∂f(x∗) ∋ v = ẋ(t′) 6= 0.

Using [22, Lemma 1], we have0 = d
dt
f(x(t)) = vT ξ, for all ξ ∈ ∂f(x∗). In particular, for

ξ = −v, we get0 = −‖v‖22, which is a contradiction.
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