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Abstract

This paper studies the continuous-time distributed optitidon of a sum of convex functions over
directed graphs. Contrary to what is known in the consengesaiure, where the same dynamics
works for both undirected and directed scenarios, we shat tthe consensus-based dynamics that
solves the continuous-time distributed optimization peab for undirected graphs fails to converge
when transcribed to the directed setting. This study sedshidisis for the design of an alternative
distributed dynamics which we show is guaranteed to comyeng any strongly connected weight-
balanced digraph, to the set of minimizers of a sum of conu#grdntiable functions with globally
Lipschitz gradients. Our technical approach combinesonstiof invariance and cocoercivity with the
positive definiteness properties of graph matrices to éskathe results.

. INTRODUCTION

Distributed optimization of a sum of convex functions haplagations in a variety of scenarios,
including sensor networks, source localization, and rbbksimation, and has been intensively
studied in recent years, see e.g. [1], [2], [3], [4], [5],,[611]. Most of these works build on
consensus-based dynamics [7], [8], [9], [10] to design réigctime algorithms that find the
solution of the optimization problem. A recent exceptioa t#re works [12], [13] that deal with
continuous-time strategies on undirected networks. Tapepfurthers contributes to this body of
work by studying continuous-time algorithms for distribdtoptimization in directed scenarios.

The unidirectional information flow among agents charastier of directed networks often
leads to significant technical challenges when establistbimvergence and robustness properties
of coordination algorithms. The results of this paper pdevone more example in support of
this assertion for the case of continuous-time consenassebdistributed optimization. This is
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somewhat surprising given that, for consensus, the samantigs works for both undirected
connected graphs and strongly connected, weight-balaticected graphs, see e.g., [7], [8].

The contributions of this paper are the following. We firsbwhthat the solutions of the
optimization problem of a sum of locally Lipschitz convexnfiions over a directed graph
(or digraph) correspond to the saddle points of an aggregjective function that depends
on the graph topology through its Laplacian. This functiesnconvex in its first argument
and linear in the second. Moreover, its gradient is disteduwhen the graph is undirected.
Our second step is then to study the convergence propeftigege saddle-point dynamics and
establish its asymptotic correctness when the originattfans are locally Lipschitz (i.e., not
necessarily differentiable) and convex, extending theltesavailable in the literature [13] for
continuously differentiable, strictly convex functiomdext, we consider the optimization problem
over digraphs. We first provide an example of a strongly cotate weight-balanced digraph
where the distributed version of the saddle-point dynandimss not converge. This motivates
us to introduce a generalization of the dynamics that inm@tes a design parameter. We show
that, when the original functions are differentiable andwex with globally Lipschitz gradients,
the design parameter can be appropriately chosen so tha¢sbking dynamics asymptotically
converge to the set of minimizers of the objective functioraay strongly connected and weight-
balanced digraph. Our technical approach combines no#@adstools from set-valued stability
analysis, algebraic graph theory, and convex analysis.

[I. PRELIMINARIES

We start with notational conventions. LRtandRR~, denote the set of reals and nonnegative
reals, respectively. We lét- || denote the Euclidean norm d&f. We let1, = (1,...,1)T, 0, =
(0,...,0) € R?, andl,; denote the identity matrix ifR¥*4. For A € R%*4 and B € R *2,
A® B is their Kronecker product. A functiofi : X; x X, — R, with X; ¢ R%, X, ¢ R% closed
and convex, isconcave-convex it is concave in its first argument and convex in the second
one. Asaddle point(z], z3) € X; x Xy of f satisfiesf(xy,x3) < f(z},23) < f(z7, o) for all
x1 € X; andz, € X,. A set-valued magf : RY = R takes elements dR? to subsets ofR“.

A. Graph theory

We present basic notions from algebraic graph theory [9{lirActed graph or digraph is a
pair G = (V, ), whereV is the (finite) vertex set anfl C V x V is the edge set. A digraph is
undirectedif (v,u) € £ anytime (u,v) € £. We refer to an undirected digraph aggeph A
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path is an ordered sequence of vertices such that any paert€es appearing consecutively
is an edge. A digraph istrongly connectedf there is a path between any pair of distinct
vertices. For a graph, this notion is referred tocasmnected A weighted digraphis a triplet

G = (V,&€,A), where(V,€) is a digraph andA € RL7" is the adjacency matrix satisfying

a;; > 0 if (v;,v;) € € anda;; = 0, otherwise. The weighted out-degree and in-degree; of

i € {1,...,n}, are respectivelydy(v;) = >_7_, a;; anddji(vi) = Y 7, a;;. The weighted out-
degree matriXDo is diagonal with(Doyt)i;; = df (i), fori € {1,...,n}. ThelLaplacianmatrix is

L = Dout— A. Note thatlL1, = 0. If G is strongly connected, then zero is a simple eigenvalue of
L. G is undirected ifL = LT andweight-balancedf d%,(v) = d%%(v), for all v € V. The following
three notions are equivalent: @) is weight-balanced, (iilZL = 0, and (iii) L + L” is positive
semidefinite, see e.g., [9, Theorem 1.37]¢lis weight-balanced and strongly connected, then
zero is a simple eigenvalue af+ L. Any undirected graph is weight-balanced.

B. Nonsmooth analysis

We recall some notions from nonsmooth analysis [15]. A fiomctf : R? — R is locally
Lipschitzatx € R? if there exists a neighborhodd of z andC, € R, such that f(y)— f(2)| <
, for y,2 € U. f is locally Lipschitz onR¢? if it is locally Lipschitz atx for all

Celly — =2
r € R? and globally Lipschitzon R? if for all y,z € R? there existsC € R, such that
|f(y) — f(2)] < C||ly — z||. Locally Lipschitz functions are differentiable almosteeywhere. If
2y denotes the set of points whefefails to be differentiable, thgeneralized gradientf f is

of (z) = CO{kli_)H;OVf(CL’k) |z =z, 2, ¢ QpUSH

where S is any set of measure zero and co denotes convex hull.

Lemma 2.1:(Continuity of the generalized gradient mag)et f : R — R be a locally
Lipschitz function atz € R?. Then the set-valued mapf : R? = R is upper semicontinuous
and locally bounded at € R¢ and moreoverdf(z) is nonempty, compact, and convex.

For f : R? x R? — R andz € R?, we letd, f(z, z) denote the generalized gradientof-
f(x,2). Similarly, for z € R?, we letd. f(z, z) denote the generalized gradientof> f(z, z).
A critical point = € R? of f satisfiesO € df(x). A function f : R? — R is regular at z € R if
for all v € R? the right directional derivative of, in the direction ofv, exists atr and coincides
with the generalized directional derivative ffat = in the direction ofv, see [15] for definitions
of these notions. A convex and locally Lipschitz functionzas regular [15, Proposition 2.3.6].
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Lemma 2.2:(Finite sum of locally Lipschitz functions):et { f*}"_, be locally Lipschitz at: €
RY. Thend (Y1, f)(z) € S.r, df'(x), and equality holds iff’ is regular fori € {1,...,n}
(here, the summation of sets is the set of points of the fdrth, g;, with g; € 9f*(z)).

A locally Lipschitz and convex functiorf satisfies, for allz,2’ € R¢ and ¢ € df(x), the
first-order conditionof convexity,

fa) = fz) > €' (2" — 2). (1)

The notion of cocoercivity [16] plays a key role in our teataliapproach later. Far € R, a
locally Lipschitz functionf is §-cocoerciveif, for all z,2’ € R? andg, € 0f(z), g € df ('),

(z — x/)T(gm — Gar) 2 0(gs — g:fc’)T(g:B — Gar)-

The next result [16, Lemma 6.7] characterizes cocoercifferdntiable convex functions.
Proposition 2.3: (Characterization of cocoercivity)et f be a differentiable convex function.
Then, V f is globally Lipschitz with constani’ € R, iff f is %-cocoercive.

C. Set-valued dynamical systems

Here, we recall some background on set-valued dynamictmsgsfollowing [17]. A continuous-
time set-valued dynamical system ¥nc R? is a differential inclusion

(t) € W(x(t)) (2)

wheret € R5p and ¥ : X € R? = R? is a set-valued map. A solution to this dynamical system
is an absolutely continuous curye: [0,7] — X which satisfies (2) almost everywhere. The set
of equilibria of (2) is denoted b¥q(V) = {x € X |0 € ¥(x)}.

Lemma 2.4:(Existence of solutionsfFor ¥ : R¢ = R upper semicontinuous with nonempty,
compact, and convex values, there exists a solution to (2 fany initial condition.

The LaSalle Invariance Principle is helpful to establisk dsymptotic convergence of systems
of the form (2). A seti?’ C X is weakly positively invariantinder (2) if, for eache € W, there
exists at least one solution of (2) starting framentirely contained inl//. Similarly, W is
strongly positively invarianunder (2) if, for eachr € W, all solutions of (2) starting fronx
are entirely contained inV. Finally, the set-valued Lie derivativef a differentiable function
V : R? — R with respect tol atz € R is LoV (z) = {vTVV (z) | v € U(x)}.

Theorem 2.5:(Set-valued LaSalle Invariance Principlé)et W C X be strongly positively
invariant under (2) andf : X — R a continuously differentiable function. Suppose the etiohs
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of (2) are bounded anthax LoV (z) < 0 or LyV(z) = 0, for all z € W. Let Sy = {z €

X | 0 € LyV(x)}. Then any solution:(t), t € R, starting in1¥ converges to the largest
weakly positively invariant sefl/ contained inSy 1y N W. When M is a finite collection of
points, then the limit of each solution equals one of them.

Ill. PROBLEM STATEMENT AND EQUIVALENT FORMULATIONS

Consider a network composed hy agentsvy, ..., v, whose communication topology is
described by a strongly connected digraphAn edge(v;, v;) represents the fact that can
receive information fromv;. For eachi € {1,...,n}, let f: R? — R be locally Lipschitz and
convex, and only available to agent The network objective is to solve

minimize f(x) = Z fi(x), (3)

in a distributed way. Let’ € R? denote the estimate of agentabout the value of the solution
to (3) and lete” = ((z1)7, ..., (2™)T) € R". Next, we provide an alternative formulation of (3).

Lemma 3.1:Let L € R™" be the Laplacian ofj and defineL = L ® I; € R">*" The
problem (3) onR? is equivalent to the following problem aR"?,

minimize f(z) =Y f'(z'),  subjectto Lz =0, (4)
=1

Proof: The proof follows by noting that (iy (1, ® z) = f(x) for all z € R? and (ii) since
G is strongly connected,z = 0,,; if and only if x = 1,, ® z, for somez € R?, [ |

The formulation (4) is appealing because it brings togetherestimates of each agent about
the value of the solution to the original optimization pretl. Note thatf is locally Lipschitz
and convex. Moreover, from Lemma 2.2, the elements of itegeized gradient are of the form
Gz = (gL, ..., g™%) € Of (z), whereg, € Of(a?), for i € {1,...,n}. Since f is convex and
the constraints in (4) are linear, the constrained optitienaproblem is feasible [18].

The next result introduces a function which correspondfed.iagrangian function associated
to the constrained optimization problem (4) plus an addéloquadratic term that vanishes if
the agreement constraint is satisfied. Interestingly, #uglle points of this function correspond
to the solutions of the constrained optimization problemwa& show next.

Proposition 3.2: (Solutions of the distributed optimization problem as sagaints):Let G be
strongly connected and weight-balanced, and definéR™ x R** — R by

F(z,z)= f(x)+z"Lz + %mTLa:. (5)
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Then F' is locally Lipschitz and convex in its first argument and &nén its second, and
(i) if (z*,2*) is a saddle point of’, then so is(z*, z* + 1,, ® a), for anya € R%.
(i) if (x*,2z*) is a saddle point of’, thenx* is a solution of (4).
(i) if x* is a solution of (4), then there exist$ with Lz* € —df(z*) such that(x*, z*) is

a saddle point of'.

Proof: First, note that forG weight-balancedL + L” is positive semi-definite. Since the
sum of convex functions is convex, one deduces thais convex in its first argument. By
inspection, F’ is linear in its second argument. The statement (i) is imatediTo show (i),
using thatG is strongly connected, one can see that the saddle points afe of the form
(z*, z*) with * = 1, ® 2*, 2* € R?, andLz* € —3f(a*). The last inclusion implies that there
existgt. € df(x*), i € {1,...,n}, such thafLz* = —(gl., ..., ¢™)T. Noting that

1l @)L= 1@ 1)(L® 1) = 1TL & lg = 04xn,

we deduced, = (17 @ I;)Lz* = ="  g... As a result, using Lemma 2.2* is a solution
of (4). Finally, (iii) follows by notingz* = 1,, ® z* and the fact that € df(x*) implies that
there existsz* € R™ with Lz* € —df(z*), yielding that(x*, z*) is a saddle point of. =

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON UNDIRECTED NETWORKS

Here, we review the continuous-time solution to the optatian problem proposed in [12],
[13] for undirected graphs. I§ is undirected, the gradient df in (5) is distributed ovelg.
Given Proposition 3.2, it is natural to consider the sagigt dynamics off” to solve (3),

&+ Lz + Lz € —0f(x), (6a)
2 = La. (6b)

Note that (6) is a set-valued dynamical system. Using LemZnhsand 2.4, one can guarantee
the existence of solutions. Moreover, from Proposition #.2x*, z*) is an equilibrium of (6),
thenz* is a solution to (4). According to [13], the dynamics (6) |lsdtle network to agree on
a global minimum off for the case wher; is undirected and is both strictly convex and
the sum of differentiable convex functions. We extend héie tesult to the case wheah is
undirected and is the sum of locally Lipschitz convex functions. The prosfalso useful later
to illustrate the challenges in solving the distributedimjtation problem over directed graphs.
Theorem 4.1:(Asymptotic convergence db) on graphs):Let G be a connected graph and
consider the optimization problem (3), where egthi € {1,...,n} is locally Lipschitz and
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convex. Then, the projection onto the first component of amjecttory of (6) asymptotically
converges to the set of solutions to (4). Moreover;, thas a finite number of critical points, the
limit of the projection onto the first component of each tcapey is a solution of (4).

Proof: For convenience, we denote the dynamics (6)h).opt : R™ x R™ = R™ x R4,
Letz* = 1, ®z* be a solution of (4). By Proposition 3.2(iii), there existssuch thatz*, z*) €
Eq(Vgis-opy- First, note that given any initial conditiofxy, zo) € R™ x R™, the set

We = {(2,2) | (1, @ la)z = (1, ® la) 2o} (7)

is strongly positively invariant under (6). Consider thée functionV : R™ x R™ — R,
1 1
V(x,z) = 5(:1: —x)(x — ") + §(z — 297z - 2%). (8)
The functionV” is smooth. Let us examine its set-valued Lie derivative.damhi Eq,dis_omV(m, z),

there existe) = (—Lz — Lz — §a, L) € Ugis.op(T, 2), With §,, € df(z), such that
E=vIVV(x,2) = —(z — ) (Le + Lz + §,) + (2 — 2*) L. 9)

Since F' is convex in its first argument anble + Lz + g, € 0, F (x, z), using the first-order
condition of convexity (1), we dedudec* — )" (Lx + Lz + g,) < F(z*, 2) — F(x, 2). On the
other hand, the linearity of" in its second argument implies thet — z*)"Lx = F(x,2) —
F(x, z*). Therefore,(, < F(x*, z) — F(x*, z*) + F(x*, 2*) — F(x,z*). Since the equilibria
of Wyisopt are the saddle points df, we deduce thaf < 0. Since¢ is arbitrary, we conclude
max E\I,dis_opy(:c,z) < 0. As a by-product, the trajectories of (6) are bounded. Cqusetly,
all assumptions of the set-valued version of the LaSallariance Principle, cf. Theorem 2.5,
are satisfied. This result then implies that any trajectdr{6d starting from an initial condition
(xo, 20) converges to the largest weakly positively invariant 8ein Sy, ,.v N W,. Our final
step consists of characterizing. Let (x, z) € M. ThenF(x*, z*) — F(x,z*) =0, i.e.,

F(@") — f(z) — () La — %:I;TL:I; ~0. (10)

Define nowG : R™ x R™ — R by G(x,2) = f(x) + z"Lz. Note thatG is convex in
its first argument and linear in its second, and that it hasstmae saddle points as. As a
result, G(z*, z*) — G(x, z*) < 0, or equivalently,f(x*) — f(x) — (2*)TLz < 0. Combining
this with (10), we havd.z = 0 and —f(x) + f(z*) = 0, i.e., = is solution to (4). Since\/
is weakly positively invariant, there exists at least a sotu of (6) starting from(x, z) that
remains inM. This implies that, along the solution, the components: eémain in agreement,
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i.e., z(t) = 1, ® a(t) with a(t) € R? a solution of (3). Applyingl? @ I; on both sides of
1, ® a(t) + Lz € —9f(x(t)), we deducena(t) € — 3.1, dfi(a(t)). Lemma A.2 then implies
thata(t) = 0, i.e., Lz € —9f(x) and thus(z, z) € Eq(Ugsop). Finally, if the set of equilibria
is finite, the last statement holds true. [ ]
Remark 4.2:(Asymptotic convergence of saddle-point dynamids)e work [20] studies saddle-
point dynamics and guarantees asymptotic convergence &uldlespoint when the function’s
Hessian in one argument is positive definite and the funasdmear in the other. Such result,
however, cannot be applied to establish Theorem 4.1 bedhasgenerality of the hypotheses
on f mean that/" might not satisfy these conditions. Instead, our proof shtiat a careful
study of the invariance properties of the flow yields the ekebresult. °

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON DIRECTED NETWORKS

Here, we consider the optimization problem (3) on digraptileeng is directed, the gradient
of I defined in (5) is no longer distributed ov@rbecause it contains terms that involué and
hence requires agents to receive information from its igi®ors. In fact, the dynamics (6),
which is distributed ovelg, does no longer correspond to the saddle-point dynamicg'.of
Nevertheless, it is natural to study whether (6) enjoys #raesconvergence properties as in the
undirected setting (as, for instance, is the case in theesagget problem [7], [8]). Surprisingly,
this turns out not to be the case, as shown in Section V-A. f@ds8lt motivates the introduction
in Section V-B of an alternative provably correct dynamicsveeight-balanced directed graphs.

A. Counterexample

Here, we provide an example of a strongly connected, wediglgnced digraph on which (6)
fails to converge. For convenience, we &fyee= {(1, ® 2,1, ® 2) € R™ x R" | z, 2 € R}
denote the set of agreement configurations. Our constructiees on the following result.

Lemma 5.1:(Necessary condition for the convergencd@)fon digraphs)iet G be a strongly
connected digraph anft = 0,7 € {1,...,n}. ThenSygecis stable under (6) iff, for any nonzero
eigenvalue) of the LaplacianL, one hasy/3|Im(\)| < Re()).

Proof: By assumption, the dynamics (6) is linear with matfix' ') ® L and hasSagree
as equilibria. The eigenvalues of the matrix are of the fcxr(ﬁz—l + ?z) with A\ an eigenvalue
of L (because the eigenvalues of a Kronecker product are jugprtiauct of the eigenvalues
of the corresponding matrices). Sinke= L ® |;, each eigenvalue di. is an eigenvalue okL.
Finally, Re(A\ (5! + ¥3)) = L(F+/3Im()\) — Re())), from which the result follows. m
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It is not difficult to construct examples of convex functighsit have zero contribution to the
linearization of (6) around the solution. Therefore, sughtems cannot be convergent if they
fail the criterium identified in Lemma 5.1. The next examph@ws that this criterium can falil
even for strongly connected weight-balanced digraphs.

Example 5.2:Consider the strongly connected, weight-balanced digveigin

0 0.5326 0.1654 0.0004 0.0002
0.0595 0 0.6676 0.0681 0.1230
A= 10.0213 0.0004 0 0.5809 0.3181
0.0248 0.2458 0 0 0.5587
0.5930 0.1394 0.0877 0.1799 0

as adjacency matrix. Note that= 0.8833 + 0.5197: is an eigenvalue of the Laplacian. Since
V3|Im(A)| — Re()\) = 0.0171 > 0, Lemma 5.1 implies that (6) fails to converge. o

B. Provably correct distributed dynamics on directed graph

Here, given the result in Section V-A, we introduce an aléiue continuous-time distributed
dynamics for strongly connected weight-balanced digrapbs reasons that will be made clear
later in Remark 5.5, we restrict our attention to the casenwthe functionsf?, i € {1,...,n}
are continuously differentiable. Let € R., and consider the dynamics

&+ aoLlx +Lz=-Vf(x), (11a)
. (11b)

The existence of solutions is guaranteed by Lemmas 2.1 @ad\2 first show that appropriate
choices ofa allow to circumvent the problem raised in Lemma 5.1.

Lemma 5.3:(Sufficient conditions for the convergence(@fl) on digraphs with trivial objective
function): Let G be a strongly connected and weight-balanced digraphfard0, i € {1,...,n}.
If o > 2v/2, thenS,greeis asymptotically stable under (11).

Proof: When all f;, i € {1,...,n}, are identically zero, the dynamics (11) is linear and has

Sagree @S equilibria. Consider the coordinate transformatiomf(e, z) to (x,y) = (x, Sz + 2),
with 5 € R. to be chosen later. The dynamics can be rewritten as

()2 G) e o= )
= ,  where = . 12)
Y Yy (=fla=B)+ 1L —pL
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Consider the candidate Lyapunov functidi{z,y) = =’z + yTy. Its Lie derivative is the
guadratic form defined by the matrix

Q = loygA + ATl g = ( —(a = B)(L+LT) _L+(_5(Q_5)+1)LT>‘
(—B(a—B) + 1)L~ L" _B(L+LT)

Select now satisfyings? — af + 2 = 0 (this equation has a real solutiondf> 2+/2). Then,
(B2 1
Q=< ( 51 p) 5>®(L+LT). (13)

—(B2+2)%/(82+2)* —45°
28
L +L”. Sinceg is strongly connected and weight-balanckd; L is positive semidefinite with

Each eigenvalue of () is of the formn = A

, Where\ is an eigenvalue of

a simple eigenvalue at zero, and hence 0. By the LaSalle invariance principle, the solutions
of (11) from any initial condition(xy, yo) € R™ x R, asymptotically converge to the set
S={(z,y) | Q(z,y)" = 09,4} NW,,. To conclude the result, we need to show that Sagree
This follows from noting that, for3 > 0, Q(x, y)? = 04,4 implies that(L + L¥)z = 0,4 and
(L+L7)y = 0,4, i.e., (x,Y) € Sagree u

The reason behind the introduction of the parametan (11) comes from the following
observation: if one tries to reproduce the proof of Theorefinfdr a digraph, one encounters
indefinite terms of the fornjz — =*)” (L — L) (z — 2*) in the Lie derivative of//, invalidating
it as a Lyapunov function. However, the proof of Lemma 5.3vehthat an appropriate choice
of «, together with a suitable change of coordinates, makes uhergtic form defined by the
identity matrix a valid Lyapunov function. We next build dmese observations to establish our
main result: the dynamics (11) solves in a distributed way dptimization problem (3) on
strongly connected weight-balanced digraphs.

Theorem 5.4:(Asymptotic convergence ofl1) on weight-balanced digraphs)et G be a
strongly connected, weight-balanced digraph and consiaepptimization problem (3), where
eachf’,i € {1,...,n}, is convex and differentiable with globally Lipschitz contous gradient.
Let K € R., be the Lipschitz constant &7 f and defineh : R., — R by

1 o[ 3242 rd+3r2 +2\° Kr?

where A.(-) denotes the non-zero eigenvalue with smallest absoluteevdlhen, there exists
B* € R.o with h(8*) = 0 such that, for alb < g < *, the projection onto the first component

of any trajectory of (11) withn = % asymptotically converges to the set of solutions of (4).
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Moreover, if f has a finite number of critical points, the limit of the prdjea onto the first
component of each trajectory is a solution of (4).

Proof: For convenience, we denote the dynamics (11¥hyis.opt : R™? x R™ — R x R,
Note that the equilibria ofl,.4s.opt are precisely the set of saddle points Bfin (5). Let
x* = 1,®z* be a solution of (4). First, note that given any initial cdiat (x, zo) € R x R
the setiV,, defined by (7) is invariant under the evolutions of (11). Bggsition 3.2(i) and (iii),
there existyx*, 2*) € Eq(V ,-dis-opt) N Wa,. Consider the functio : R"? x R" — R,

1 . . 1
V(ma Z) = 5((3 - )T(m — & ) + §(y(w,z) - y(w*,z*))T(y(w,z) - y(w*,z*))a
wherey(, ) = Sz + z and§ € R, satisfies3* —a +2 = 0. This function is quadratic, hence
smooth. Next, we consider its Lie derivative aloWg.gis.op: ON W,. For (z, z) € W, let

§ = Ly ooV (T, 2) = (—aLx — Lz — Vf(z),Lz)'VV(z, 2)

1 T i}
=5 (@2 e v 2)") A (2.9100) — (@ -2 V(@)

1 T
+5 (mT’ y(j;;,z)) AT (CB —x’, Y(x,z) — y(w*,z*)) - B(y(m,z) - y(m*,z*))va(w)v

2
where A is given by (12). This equation can be written as
1 T ) .
g 25 <(w — m*)T7 (y(m,Z) - y(m*7z*))T> Q (.’,E — m*7 y(m,z) _ y(m*,z*)> — (.’E —x )va(w)

T
+ <(5B — ), (Ya,2) — y(w*,z*))T> A (:v*, ’y(m*,z*)> — B(Ywr) — Y 2r)) V()

where( is given by (13). Note thall(z*, Y5+ »+))" = —(Ly @+ 2+), BLY(@+ 2))"
Thus, after substituting foy, ), we have
1 T .

§ =3 ((m -z, (2 — z*)T> Q <:v — %z — z*)T

—(1+ ) (@ -2 (Vf(@) - Vf(@") - Bz - 2)"(Vf(x) - Vf()). (15

I
<
=
8
—
=
<
=
8
=
=

where

- (—53 ~ ()-8 1+
—(1+5?) —p
Each eigenvalue of) is of the form

(B* +36° +2) £ /(5" + 3052 +2)* — 457
23 ’

) ® (L+L").

f=AX— (16)
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where )\ is an eigenvalue of + L7. Using the cocoercivity off, we can upper boung as,

. r—x ! Qi Qu 0 r—ax"
§ < 5 z—2z" Q21 Q22 —Blng z—2z" ) (17)
V() - Vf(z*) 0 Bl —%(1+5)ha) \Vf(zx) - Vf(z")

'

Q
where K € R is the Lipschitz constant for the gradient ff
Since (x, z) € W,,, we have(1 @ 1;)(z — 2*) = 04 and hence it is enough to establish
that Q is negative semidefinite on the subspate= {(v, v2,v3) € (R™)? | (17 @ 14)ve = 04}.
Using the fact that-+ (1 + 2)l,,4 is invertible, we can expres as

lg O 0

Q 0 r o~ o~ K (00
—N NT, Q=Q+—2 _ N= e
N (0 —%<1+62)Ind> RN D) (0 w)’ 8 I’;d ”f2l”d
nd

Noting that)V is invariant undeNT (i.e., NTW = W), all we need to check is that the matrix
<§ —%(iﬁ%lnd) is negative semidefinite onV. Clearly, —+(1 + 5%)l,,4 is negative definite.
On the other hand, oiiR"?)2, 0 is an eigenvalue of) with multiplicity 2d and eigenspace
generated by vectors of the forfl, ® a,0) and (0,1, ® b), with a,b € R¢. However, on
{(v1,v2) € (R™)? | 1T @ I)v, = 04}, 0 is an eigenvalue of) with multiplicity d and
eigenspace generated by vectors of the fétm= a, 0). Moreover, on{ (v, v3) € (R")? | (17 ®

ls)vs = 04}, the eigenvalues o{fi—f;) (3.°,) are ﬂfz) with multiplicity nd — d and 0 with

0 lya (1+82
multiplicity nd. Therefore, using Weyl’s theorem [21, Theorem 4.3.7], wdude that the nonzero
eigenvalues of the sur are upper bounded by, (Q) + %. From (16) and the definition

of h in (14), we conclude that the nonzero eigenvalues)oére upper bounded bk(3). It
remains to show that there exist§ € R., with A(5*) = 0 such that for all0 < 5 < 3*
we haveh(8) < 0. For r > 0 small enough(r) < 0, sinceh(r) = —3A (L + LT)r +
O(r?). Furthermorelim,_,., h(r) = K > 0. Hence, the existence ¢f* follows from the Mean

Value Theorem. Therefore we concludg V(x,z) < 0. As a by-product, the trajectories

a-dis-opt
of (11) are bounded. Consequently, all assumptions of th®alla Invariance Principle are
satisfied and its application yields that any trajectory If)(starting from an initial condition

(xo, z0) converges to the largest positively invariant 8étin Sy, ..v N W,. Note that if

(®,2) € Sv,geamv N Wz, then NT (vf( Z):%f( *)) € ker(Q) x {0}. From the discussion
above, we knowker(()) is generated by vectors of the forfh,, ® a,0), and hence this implies

thate = z* + 1, ® a, z = 2%, and Vf(z) = Vf(z*), from where we deduce that is
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also a solution to (4). Finally, fofx, z) € M, an argument similar to the one in the proof of

Theorem 4.1 establishés, z) € Eq(V,.gisopt). If the set of equilibria is finite, convergence to

a point is also guaranteed. [ |
Figure 1 illustrates the result of Theorem 5.4 for the neknafr Example 5.2.

40
3 35

25
20
15

V - v
5
5

10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 3

@) (b) (©
Fig. 1. Execution of (11) for the network of Example 5.2 wjth(z) = €%, f2(z) = (x—3)?, f3(z) = (z+3)?, f*(z) = z*,
f3(z) = 4. (@) and (b) show the evolution of the agent’s valuescirand z, respectively, and (c) shows the value of the
Lyapunov function. Hereqr = 3, o = (1,2,0.3,1,1)7, and zo = 15. The equilibrium(z*, 2*) is * = —0.2005 - 15 and
2" = (1.1784,4.3717, —4.1598, 2.2598, 1.3499) .

Remark 5.5 (Locally Lipschitz objective function§ur simulations suggests that the conver-
gence result in Theorem 5.4 holds true for any locally Lipzcbbjective function. However, our
proof cannot be reproduced for this case because it woujcbrethe generalized gradient being
globally Lipschitz which, by Proposition A.1, would impljpat the function is differentiable.

Remark 5.6 (Selection ef in (11)): According to Theorem 5.4, the parameteris deter-
mined byg asa = %. In turn, one can observe from (14) that the range of suitablees
for B increases with higher network connectivity and smalleraklity of the gradient of the
objective function. From a control design viewpoint, it sasonable to choose the valuef
that yields the smallest while satisfying the conditions of the theorem statement. .

Remark 5.7 (Discrete-time counterpart () and (11)): It is worth noticing that the discretiza-
tion of (6) for undirected graphs (performed in [12] for these of continuously differentiable,
strictly convex functions) and (11) for weight-balancedrdphs gives rise to different discrete-

time optimization algorithms from the ones considered i [2], [3], [4], [5], [6]. .

VI. CONCLUSIONS AND FUTURE WORK

We have studied the distributed optimization of a sum of eanfunctions over directed
networks using consensus-based dynamics. Somewhatssnghyj we have established that the
convergence results established in the literature forrentéd networks do not carry over to the
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directed scenario. Nevertheless, our analysis has allasdd introduce a slight generalization
of the saddle-point dynamics of the undirected case whiclorporates a design parameter.
We have proved that, for appropriate parameter choices,dymamics solves the distributed
optimization problem for differentiable convex functiomsth globally Lipschitz gradients on
strongly connected and weight-balanced digraphs. Oumteahapproach relies on a careful
combination of notions from stability analysis, algebrgi@ph theory, and convex analysis.
Future work will focus on the extension of the convergenailts to locally Lipschitz functions
in the weight-balanced directed case and to general digraple incorporation of local and
global constraints, the design of distributed algorithimat tallow the network to agree on an
optimal value of the design parameter, the discretizatioth® algorithms, and the study of the
potential connections with dynamic consensus strategies.
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APPENDIX

The next result shows that the differentiability hypotlsesfi Proposition 2.3 cannot be relaxed.
Proposition A.1 (Lipschitz generalized gradient and défeiability): Any locally Lipschitz
function with globally Lipschitz generalized gradient igferentiable.

Proof: Let f : RY — R be a locally Lipschitz function and has a globally Lipschitz
generalized gradient map [17]. Takec R? and let us show thatf(x) is a singleton. Since
is differentiable almost everywhere, there exists a secpiesf points{z,}>2,, where f is
differentiable such thatim,_,., =, = z. Using the set-valued Lipschitz property 6f, we
havedf(x) C Vf(z,) + K||z, — z||B(0,1), where K € R, is the Lipschitz constant and
B(0,1) is the ball centered & € R? of radius one. Hence, any elementc df(z) can be
written asv = Vf(z,) + K||z, — z||u,, whereu, is a unit vector inR%. Now, taking the
limit, v = lim,,, ., V f(z,). Hence the generalized gradient is singleton-valued eBsfitiability
follows now from the set-valued Lipschitz condition. [ |

Lemma A.2 (Generalized gradient flow from a critical pointet f : R? — R be locally
Lipschitz and convex, and let be a minimizer off. Then, the only solution of(t) € —0f (x(t))
starting fromz* is x(t) = «*, for all ¢t > 0.

Proof: We reason by contradiction. Assumég) is not identicallyz*. Since f is monotoni-
cally nonincreasing along the gradient flow, the trajectonst stay in the set of minimizers ¢f
and hence — f(x(t)) is constant. Let’ be the smallest time such thadf(z*) > v = (t') # 0.
Using [22, Lemma 1], we have = % (z(t)) = vT¢, for all € € df(z*). In particular, for
¢ = —v, we get0 = —||v||3, which is a contradiction. u
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