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Abstract

Let M be a compact, oriented, even dimensional Riemannian manifold and let S be a

Clifford bundle over M with Dirac operator D. Then

Atiyah S inger : Ind D =
∫

M
Â(TM) ∧ ch(V)

where V = HomCl(TM)(/S, S).

We prove the above statement with the means of the heat kernel of the heat semigroup

e−tD2
.

The first outstanding result is the McKean-Singer theorem that describes the index in

terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local

geometric information. Moreover, if we use the asymptotic expansion of the kernel we

will see that in the computation of the index only one term matters. The Berezin formula

tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at

the end, Getzler calculus enables us to find the integral of these top parts in terms of

characteristic classes.
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Chapter 1

Introduction

October,1910 - Götingen

“In conclusion, there is a mathematical problem which perhaps will arouse the interest of

mathematicians who are present. It originates in the radiation theory of Jeans. In an enclosure

with a perfectly reflecting surface, there can form stand- ing electromagnetic waves analogous to

tones over an organ pipe: we shall confine our attention to very high overtones. Jeans asks for

the energy in the frequency interval dν. To this end, he calculates the number of overtones which

lie between frequencies ν and ν + dν, and multiplies this number by the energy which belongs

to the frequency ν, and which according to a theorem of statistical mechanics, is the same for all

frequencies. It is here that there arises the mathematical problem to prove that the number of

sufficiently high overtones which lie between ν and ν + dν is independent of the shape of the

enclosure, and is simply proportional to its volume. For many shapes for which calculations can be

carried out, this theorem has been verified in a Leiden dissertation. There is no doubt that it holds

in general even for multiply connected regions. Similar theorems for other vibrating structures,

like membranes, air masses, etc., should also hold.”

Hendrik Lorentz [22]
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Four months later, Hermann Weyl proved the above statement. In fact, he showed

that the spectrum of the Laplacian with zero condition on the boundary of a domain Ω

has the following property:

N(λ) = #{λi : λi < λ} ∼ area(Ω)

2π
λ.

This is a concrete illustration of a more general phenomenon: an elliptic operator ,to some

extent, encodes the geometry and topology of the underlying manifold. It is in fact the

main objective of this thesis to show that elliptic operators and specifically Dirac operators

contain certain information about the geometry and topology of the base manifold and

the related vector bundles. In particular, using the heat kernel, we aim to prove the

celebrated Atiyah-Singer index theorem for Dirac operators.

We shall also see that the study of Dirac operators reveals some interconnections between

the geometry and the topology of the underlying manifold. Perhaps one of the most

well-known results of this type is the Gauss-Bonnet theorem:

χ(M) =
1

4π

∫
M

κ dx.

The hidden point about this equation is that the above quantity is equal to the index of

the well-known Euler operator d + d∗, considering it as an operator from even forms to

odd forms.

In this chapter, we first briefly go through the original thoughts of Atiyah and Singer

and their motivation behind the index theorem. We will see that their early approach to

the index problem is somehow purely topological and uses different techniques from

the theory of characteristic classes and also K-theory. Afterwards we introduce another

approach to the index problem, the so called the heat kernel method, the one that we

adopt later for the study of the index, which is more geometric in essence.
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1.1 Elliptic topology

Around spring 1962 Michael Atiyah and Isadore Singer started their collaboration on the

index theory of elliptic operators. Following the works of Hirzebruch on the Riemann-

Roch theorem, they were first looking for a similar analytic interpretation of the Â-genus

of a spin manifold. They proved that the Â-genus is the difference between the dimension

of the positive harmonic spinors and the negative harmonic spinors. We shall prove this

in the last chapter.

While they were working on this problem Steve Smale drew their attention to Gelfand’s

conjecture concerning the topology of elliptic operators. We briefly explain Gelfand’s

main idea.

Suppose thatH1 andH2 are two Hilbert spaces. A linear (bounded) operator T : H1 → H2

is said to be a Fredholm operator if dim ker T and dim coker T are both finite. In this

case the index of T is defined to be the difference

Ind T := dim ker T − dim coker T.

Let F = F(H1,H2) denote the set of Fredholm operators. A notable property of the index

is that it is locally constant on F and in fact, it provides a bijection

Ind : π0(F)
≈−−−−→ Z.

(See [23] Proposition 7.1 for a proof).

Now, if we have a smooth manifold M and E, F are two vector bundles over M, a linear

map

P : C∞(E)→ C∞(F)
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that takes sections of E to sections of F is called a differential operator of order m provided

that it can be given locally as

P = ∑
|α|≤m

aα(x)∂α
x

where the coefficients aα(x) are matrices of appropriate dimension (depending on the

ranks of E and F).

Given a cotangent vector ξ ∈ T∗x M, the principal symbol of P at x ∈ M is given by

σx,ξ(P) := ∑
|α|=m

(i)|α|aα(x)ξα.

In fact it is obtained from P by replacing ∂/∂xj by iξ j in the highest order. One can check

that the symbol is an intrinsic object (does not depend on a specific local trivialization)

and provides a linear map

σx,ξ(P) : Ex → Fx.

The differential operator P is called elliptic if the above mapping is an isomorphism for

any non-zero ξ at every point.

Back to our discussion about Fredholm operators, it is well-known that for a compact,

oriented, Riemannian manifold M, a differential operator P : C∞(E)→ C∞(F) extends to

a bounded linear map P : Hs(E)→ Hs−m(F) on the Sobolev spaces for each s. Also if P

is elliptic the extensions are Fredholm and they all share the same index (the index does

not depend on s). Another important topological property of index is that the index of an

elliptic operator depends only on its homotopy class and hence it only depends on its

principal symbol. (for the proofs see [23], Chapter III.) This topological invariance of the

index led Gelfand to the conjecture that the index is expressible in terms of its principal

symbol. The first verification of this conjecture was given by Atiyah and Singer [3]. Here

is a sketch of their results in [3]:

Let S(M) and B(M) denote the unit ball and the unit sphere subbundles of the cotangent
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bundle T∗M, respectively. As we just saw the principal symbol of P gives a bundle

homomorphism

σ(P) : p∗E→ p∗F

between the pull backs of E and F by the projection p : B(M) → M. Ellipticity of

P means that σ(P) is an isomorphism on the submanifold S(M) ⊂ B(M). It follows

by some results in [2] that one can associate to (p∗E, p∗F, σ(P)) a difference bundle

d(p∗E, p∗F, σ(P)) ∈ K(B(M)/S(M)) in the K-group. Recall that for a topological space

X, the K-group of X denoted by K(X) is the abelian group associated to the semi group

(Vec(X),⊕) of all complex vector bundles on X equipped with the direct sum. Also recall

that the Chern character gives a ring homomorphism

ch : K(X)→ H∗(X, Q)

of the K-group into the rational cohomology ring. Now taking the Chern character one

obtains an element ch d(p∗E, p∗F, σ(P)) ∈ H∗(B(M)/S(M), Q). At last, by means of the

Thom isomorphism

φ : Hk(M, Q)
∼=−→ Hn+k(B(M)/S(M), Q) (n = dim M),

we obtain the element

φ−1ch d(p∗E, p∗F, σ(P)) ∈ H∗(M, Q)

in the rational cohomology of M which is denoted by ch σ(P). With the above the

Atiyah-Singer result reads
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Theorem 1.1 (Atiyah-Singer Index Theorem [3]). For any elliptic operator P on a compact

oriented smooth manifold M the index of P is given by the formula

Ind P = {ch σ(P)J(TM)}[M]

where J(TM) denotes the Todd class of the tangent bundle, and α[M] denotes the value of the top

dimensional component of α on the fundamental homology class of M for any α ∈ H∗(M, Q).

1.2 Elliptic geometry

There is another approach to the index problem that originated in the analysis of elliptic

operators and in particular the study of the heat kernel. In this section we briefly explain

this line of thought.

Around the beginning of twentieth century the spectrum of the Laplacian proved to be a

critical object that contains some geometric information of Riemannian manifolds, and the

question of to what extent the spectrum reflects the shape of the base manifold intrigued

the thoughts of many mathematicians then. (cf. M. Kac [22])

Weyl formula is perhaps one of the earliest attack to this problem. To put it in the amusing

language of Kac, Weyl showed that one can hear the area of D. It was proved by Kac

himself that it is also possible to hear the length of ∂D.

On the other hand it turned out that the study of the behavior of certain functions on the

spectrum can be a crucial step for the better understanding of Kac’s problem. There are

two functions that were mainly used for this purpose:

• The zeta function ∑λ λ−s.

• and the exponential ∑λ e−λt.

We are now trying to take a closer look at the second case.

Let M be an n-dimensional, oriented, Riemannian manifold. Let ∆p denote the restriction
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of the Laplacian (d + d∗)2 on p-forms. Note that

∆0 = − 1√
det g

∂

∂xi gij√det g
∂

∂xj

is the Laplace-Beltrami operator on functions.

Let Zp = ∑spec ∆p e−λt. It was shown by N. G. de Bruijn, V. Arnold and McKean & Singer

[25] that there is an asymptotic expansion

Z0 ∼
1

(4πt)n/2

(
vol(M) +

t
6

∫
M

κ dx +
t2

180

∫
M

10A− B + 2C dx + . . .
)

where κ denotes the scalar curvature and A, B, C are some polynomial of the curvature

tensor. For n = 2 it turns out that 10A− B+ 2C = 12κ2 and it follows by the Gauss-Bonnet

theorem that

Z0 ∼
(

area(M)

4πt
+

1
6

χ(M) +
t

60π

∫
M

κ2 dx + . . .
)

.

In particular the Euler characteristic of M (the number of holes) is audible.

The main idea behind this estimate lies on the relation between the above sum and the

heat equation. In fact the sum Zp is the trace of the heat operator e−t∆p and can be

computed via the integral of the heat kernel kp
t (x, y) over the diagonal. Indeed

Zp = tr e−t∆p =
∫

M
tr kp

t (x, x)dx. (1.1)

Regarding this idea Minakshisundaram [26] proved that there exists an asymptotic

expansion for the heat kernel

(4πt)n/2kt(x, y) ∼ 1 + a1(x, y)t + a2(x, y)t2 + . . . (1.2)

where the coefficients aj are some polynomials in the curvature and its derivatives. He

also computed the term a1 = 1
6κ as pointed out above. However Minakshisundaram
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derived the above result only for functions (zero forms) and it was shown later by McKean

and Singer [25] that the result holds for arbitrary forms as well.

Now one might consider the alternating sum

Z =Z0 − Z1 + Z2 − · · · ± Zn

=∑
λ

e−tλ(dim Heven
λ − dim Hodd

λ

)
whereHeven andHodd denote the set of even and odd λ-eigenforms. Since d+ d∗ provides

an isomorphism between Heven and Hodd for non-zero λ, the above sum turns to be

dim Heven
0 − dim Hodd

0

the difference between the dimension of even and odd harmonics. It then follows from

the Hodge theorem that

Z = dim Heven
0 − dim Hodd

0 = χ(M).

On the other hand dim Heven
0 − dim Hodd

0 is equal to the index of d + d∗ considering it

as an operator from even forms to odd forms. Hence one obtains

Ind d + d∗ = χ(M).

For several reasons the above observation was a breakthrough in the development of the

index theory from the heat equation point of view. For one thing because it relates an

analytic object to a topological invariant.

For another thing in view of Chern’s discovery

χ(M) =
1

(2π)n/2

∫
M

Pf(Ω) (1.3)
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and paying attention to the Equations 1.1, 1.2 McKean and Singer suggested, on an a

priori, that a remarkable cancellation might take place in the alternating sum

∑
P
(−1)ptr ap

n/2(x, x),

for n even and the remaining term must coincide with the Pfaffian Pf(Ω) which is an

algebraic expression -in fact a characteristic form- in terms of the curvature Ω and only

the curvature and not its derivatives. They themselves proved that this guess is true for

n = 2. Note that this gives an alternative proof of the Gauss-Bonnet theorem. It took

a few years until Patodi [27] verified that the McKean and Singer’s optimism is true

for any even n. Later Peter Gilkey [12] and Atiyah-Bott-Patodi [1] improved the result

for a more general type of elliptic differential operators which are said to be Dirac type

operators.

Let us put these ideas in the context of elliptic operators. Let P : C∞(E)→ C∞(F) be an

elliptic operator and let P′ denote its adjoint. Then P and PP′ are both Fredholm and one

can show that (see Section 5.2 for more details)

Ind P =dim ker P− dim ker P′

=dim ker P′P− dim ker PP′

=tr e−tP′P − tr e−tPP′ .

Let k+t and k−t be the heat kernel for the heat operators e−tP′P and e−tPP′ respectively. It

then follows from the asymptotic expansions

k±t ∼ (4πt)−n/2 ∑
j

a±j tj

that

Ind P =
∫

M
tr a+n/2(x, x)− tr a−n/2(x, x)dx (1.4)
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where all the coefficients a±j as well as k±t are sections of F� E∗.

For a general elliptic operator P there is no clue how one can compute the coefficients

a±n/2(x, x) and how it can be related to the characteristic forms appearing in the Atiyah-

Singer index theorem. However, there is hope that this can be done for those operator

that come from the geometric structures on M. Some instances of these geometric elliptic

operators are:

• The Euler operator E = d + d∗ : Ωeven(M) → Ωodd(M) that takes even forms to

odd forms.

• The Hirzebruch signature operator S = d + d∗ : Ω+(M)→ Ω−(M) where Ω±(M)

are the ±1 eigenspaces for τ = (i)p(p−1)+n/2? : Ωp(M)→ Ωn−p(M) (n = 4k) and ?

denotes the Hodge star operator.

• The Dirac operator /D+ : C∞(/S+)→ C∞(/S−) that acts on the sections of spinors.

As it was mentioned earlier, for the Euler operator following the McKean-Singer

conjecture [25] it was shown by Patodi [27] that the integrand in the right hand side of

Equation 1.4 coincides with the Pfaffian polynomial of the curvature. Hence this gives

another proof of the Chern equation 1.3 since Ind E = χ(M).

For the signature operator S it was proved by Gilkey [12] and Atiyah-Bott-Patodi [1]

that the right hand side integrand of 1.4 is in fact the L-polynomial of the curvature. In

this case Equation 1.4 reads

sign(M) =
∫

M
L

since Ind S = sign(M).

At last, for the case of the Dirac operator it was shown by Gilkey [12] and Atiyah-

Bott-Patodi [1] that the characteristic polynomial on the right hand side is Â(TM) and
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we have

Ind /D+ =
∫

M
Â(TM)

The above operators are all typical of a large class of elliptic operators called Dirac

operators. In this thesis we are planning to study this type of operators. We are

going in detail through the algebraic and geometric structures required to construct

Dirac operators on manifolds. We will start by introducing Clifford algebras and their

representation which is the algebraic foundation of Dirac operators structure. In chapter

3 we introduce Clifford bundles and Dirac operators. This is in fact the geometric facet of

our constructions. Then we study the analysis of Dirac including the heat equation and

the asymptotic expansion of the heat kernel. In the last chapter we go through Getzler’s"

idea to prove the index theorem and we will see that Equation 1.4 for Dirac operators

becomes

Ind D =
∫

M
Â(TM) ∧ ch(V), (1.5)

the Atiyah-Singer index theorem. This is also equivalent to Theorem 1.1 for the case of

Dirac operators on Clifford bundles.

We assume as background basics of differential geometry in particular Chern-Weyl

theory of characteristic classes.

In our study we borrow many ideas from the references [6], [11], [13], [19], [23], [28].

In particular most of our proofs are a slight variation of the proofs in the references.
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Chapter 2

Clifford Algebras and Their

Representations

In the introduction we saw the significance of elliptic operators from the geometric and

topological point of view. Now we are going to see how Clifford algebras and Clifford

modules come in to the stage. Here we shall give two motivations that reveal the role of

Clifford structures in our work. The first one is a mathematical idea and the second one

comes from physics. Indeed that is the idea that led Dirac to introduce a new equation

(known as Dirac equation) that describes the relativistic motion of a particle in the context

of quantum theory.

Example 2.1. As we saw in the first chapter the study of d + d∗ which is simply the

square root of the Laplacian can be beneficial to a better understanding of geometry and

topology. Now one might ask what is the square root of Laplacian in the case of a trivial

vector bundle on a flat space? For instance We are looking for a first order differential

operator

P =
N

∑
i=1

γi∂i (2.1)
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acting on the vector valued functions f : RN → V on the euclidean space, that satisfies

the condition

P2 = ∆ = −
N

∑
i=1

∂2
i .

For the above equation to be satisfied, we get

γiγj + γjγi = −2δij 1 ≤ i, j ≤ N.

One can prove that for N ≥ 2 there are neither real nor complex scalars that satisfy this

condition. However the above equation is exactly the algebraic equation that defines the

generators of the Clifford algebra associated to RN. Hence we would be able to find the

desired differential operator P if we had a representation of the Clifford algebra. In this

case the meaning of γi in 2.1 is the Clifford action on V.

Now we see another evidence that shows the importance of the square root of the

Laplacian and the Clifford algebra structure. This time from the physics point of view.

Example 2.2 (Dirac’s discovery). Dirac’s main idea in [10] is to find a Schrödinger type

equation i∂tψ = Hψ that describes the relativistic motion of a point-charge electron of

mass m moving in the presence of an arbitrary electro-magnetic field. Here ψ = ψ(t)

denotes the state of the particle at time t (the wave function) and H is the Hamiltonian.

The aim is to find an appropriate Hamiltonian consistent with the special theory of

relativity. Let us only consider the case of a free particle.

Let qµ = (E/c, p1, p2, p3) be the momentum-energy 4-vector. Dirac’s starting point was

the fundamental equation of special relativity

qµqµ = (mc)2

13



where qµ = gµνqν and gµν = diag(1,−1,−1,−1) is the Lorentz metric. For the sake of

simplicity let c = 1. Then the above equation, in terms of the components, reads

E2 = p2
1 + p2

2 + p2
3 + m2. (2.2)

Note that in the Schrödinger equation the Hamiltonian H is the infinitesimal generator of

the time translation and it represents the total energy E. On the other hand according to

the basic axioms of Quantum mechanics, H which is an observable corresponding to the

energy has to be a self-adjoint operator. A plausible candidate for the Hamiltonian takes

the form

H =
1
i
(α1∂1 + α2∂2 + α3∂3) + mα4. (2.3)

Besides, Equation 2.2 quantized to

H2 = −∂2
1 − ∂2

2 − ∂2
3 + m2, (2.4)

as the quantization procedure sends pi to −i∂i, and m to the point wise multiplication

operator by m itself. Now plugging 2.3 into 2.4 yields

αiαj + αjαi = 2δij for 1 ≤ i, j ≤ 4.

As we shall see later in this chapter the above equation is exactly the condition for the

generators of the Clifford algebra of R4 with the negative definite quadratic form

Q(x) = −(x1)2 − (x2)2 − (x3)2 − (x4)2.

In contrast with the prevalent view among physicists in the early days of quantum theory,

Dirac’s insight was that the wave function ψ does not necessarily need to be complex

valued and it can be a vector space valued function. This enables him to find the desired
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coefficients αi in 2.3. In the modern terminology he in fact found out the irreducible

representation of Cl4 which is C4 along with the following actions

αi =

 0 σi

σi 0

 for i = 1, 2, 3 and, α4 =

I 0

0 −I


where σi are Pauli matrices. So in Dirac’s theory wave functions are C4-valued.

As it became evident to us that the study of Clifford algebras and Clifford modules

are somehow indispensable for a better understanding of the geometry of the elliptic

operators, our aim now is to study these algebraic structures in details. Moreover, these

structures are not only an essential part of constructing Dirac operators and the bundle

of spinors, but also they play a critical role in the Getzler proof of the index theorem.

2.1 Clifford algebras

Throughout this chapter, K denotes either the field of real or complex numbers.

Let V be a real or complex vector space with a quadratic form Q. Roughly speaking,

the Clifford algebra Cl(V, Q) is the associative K-algebra with unit generated by the

elements of V subject to the relations

v.v = −Q(v)1 for each v ∈ V. (2.5)

It follows, from the above equation that

u.v = −v.u− 2Q(u, v) (2.6)

holds in Cl(V, Q) for any u, v ∈ V where Q(., .) is the inner product on V induced by Q.
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Here is a more concrete definition of the Clifford algebra given by Chevalley [7],

however he uses a different sign convention v.v = Q(v)1.

Definition 2.3. Let T (V) = K+V +V
⊗

V + . . . be the tensor algebra of V. The Clifford

algebra Cl(V, Q) is the quotient of T (V) by the two-sided ideal IQ generated by all

elements of the form v⊗ v + Q(v)1 for v ∈ V.

If j : V ↪→ T (V) is the embedding of V into the tensor algebra and π : T (V) →

Cl(V, Q) is the canonical projection, one can compose π with j to obtain the natural

embedding of V into Cl(V, Q):

ι : V
j

↪−→ T (V)
π−→ Cl(V, Q).

We shall show that ι is an injection:

Suppose ι(φ) = 0 then φ can be written in the form φ = ∑n
i=1 ai ⊗ (vi ⊗ vi + Q(vi))⊗ bi.

Without loss of generality we may assume that ai and bi are homogeneous tensors.

Since φ ∈ V we have ∑i∈J ai ⊗ (vi ⊗ vi)⊗ bi = 0 where J is the set of indices for which

degai + degbi is maximum. The above equation implies that ∑i∈J Q(vi)ai ⊗ bi must be

in the ideal IQ. Therefore ∑i∈J Q(vi)ai ⊗ bi = 0 and repeating this argument shows that

φ = 0.

The following proposition gives a very useful characterization of Clifford algebras.

Proposition 2.4 ( [23] Proposition 1.1.). Let f : V → A be a linear map into an associative

K-algebra with unit, such that

f (v). f (v) = −Q(v)1, (2.7)

for all v ∈ V. Then f extends uniquely to a K-algebra homomorphism f̃ : Cl(V, Q) → A

Furthermore, Cl(V, Q) is the unique associative K-algebra with this property.

Proof. It is clear that any linear map f : V → A extends uniquely to an algebra homo-

morphism f̄ : T (V)→ A and by property 2.7 f̄ descends to an algebra homomorphism
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f̃ : Cl(V, Q) → A . Now suppose that C is an associative unital K-algebra and that

i : V ↪→ C is an embedding with the property that for any linear map f : V → A we

have the following extension

C

V A

i

f

f̃

For the uniqueness note that the isomorphism Cl(V, Q) ⊃ V i−→ i(V) ⊂ C can be lifted to

the algebra isomorphism Cl(V, Q)
ĩ−→ C . Indeed ĩ−1 ◦ ĩ = idCl(V,Q), and ĩ ◦ ĩ−1 = idC .

This characterization of Clifford algebras shows that any linear map f : (V, Q) →

(V′, Q′) that preserves the quadratic forms (e.g. f ∗Q′ = Q) can be extended to an algebra

homomorphism f̃ : Cl(V, Q)→ Cl(V′, Q′). Moreover given another map g : (V′, Q′)→

(V′′, Q′′) since both g̃ ◦ f and g̃ ◦ f̃ are extensions of g ◦ f by the uniqueness property, we

have g̃ ◦ f = g̃ ◦ f̃ . In particular if f , g ∈ O(V, Q) this argument shows that there is an

embedding

O(V, Q) ↪→ Aut(Cl(V, Q))

where

O(V, Q) = {L ∈ GL(V) : L∗Q = Q}

is the orthogonal group of Q.

Remark 2.5. Since, later on, we are going to use the theory of Clifford algebras on

Riemannian manifolds (in particular we will talk about the Clifford algebra of the tangent

spaces and the bundle of Clifford modules) it suffices for our purposes to assume that the

underlying vector space is of finite dimension and the quadratic form Q is non-degenerate.
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Remark 2.6. If (e1, e2, . . . , en) is a Q−orthonormal basis of V then the set

{eI : I ⊂ {1, 2, . . . , n}}

forms a basis of Cl(V, Q) where

eI =


ei1 . . . eik If I = {i1 < · · · < ik}

1 If I = ∅

Suppose that V is an inner product space for any v ∈ V the interior product

ιv :
k∧

V →
k−1∧

V

ξ 7→ ιαξ

is defined by

ιv(v1 ∧ · · · ∧ vk) =
k

∑
i=1

(−1)i+1〈v, vi〉v1 ∧ . . . v̂i · · · ∧ vk

where the hat denotes deletion.

There is a canonical vector space isomorphism between the exterior algebra and the

Clifford algebra that identifies ei1 ∧ · · · ∧ eik with ei1 . . . eik and one can check that this

identification is indeed independent of the choice of the orthonormal basis. The following

proposition describes the Clifford action of a vector under this identification.

Proposition 2.7. With respect to the canonical vector space isomorphism Cl(V, Q) ∼=
∧∗ V the

Clifford multiplication of a vector v ∈ V and any element φ ∈ Cl(V, Q) is of the following form

in the exterior algebra

v.φ ∼= (v ∧−ιv)φ
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Proof. Suppose that (e1, . . . , en) is an orthonormal basis for V. Let v = er and φ = ei1 . . . eim .

Then

v.φ =



erei1 . . . eim
∼= (v ∧−ιv)φ If r < i1

(−1)qei1 . . . êiq . . . eim
∼= (v ∧−ιv)φ If r = iq

(−1)qei1 . . . eiq ereiq+1 . . . eim
∼= (v ∧−ιv)φ If iq < r < iq+1

(−1)mei1 . . . eim er ∼= (v ∧−ιv)φ If r > im

The results immediately follows if one writes any vector and an element of the Clifford

algebra in terms of the basis elements.

The above argument suggests that we can think of the exterior algebra as a Cl(V, Q)-

module. Using the identification V [−→ V∗ induced by the inner product on V, we can say

that
∧∗ V∗ is also a Cl(V, Q)-module. In this case the Clifford action of a vector v ∈ V on

φ ∈ ∧∗ V∗ turns out to be

v.φ = (v[ ∧−ιv[)φ. (2.8)

Remark 2.8. The interior product defined above is different from the standard interior

product in the sense that for a covector α ∈ V∗ the standard interior product

ια :
k∧

V →
k−1∧

V

ξ 7→ ιαξ

is defined by

ιαξ(α1, . . . , αk−1) = ξ(α, α1, . . . , αk−1) for α1, . . . , αk−1 ∈ V∗.
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Consequently,

ια(v1 ∧ · · · ∧ vk) =
k

∑
i=1

(−1)i+1〈α, vi〉v1 ∧ . . . v̂i · · · ∧ vk.

With respect to this notation Equation 2.8 becomes

v.φ ∼= (v[ ∧−ιv)φ.

The Clifford algebra inherits a natural filtration from the tensor algebra. Indeed if we

let F r :=
⊕

k≤r
⊗k V then the projections Clr := π(F r) give the filtration

Cl0 ⊂ Cl1 ⊂ Cl2 ⊂ · · · ⊂ Cl(V, Q)

with the property

Clr.Cls ⊂ Clr+s

and we can show that

Proposition 2.9 ( [23] Proposition 1.2.). The associated graded algebra of the Clifford algebra is

the exterior algebra. i.e. ⊕
r

Clr/Clr−1
∼=
∗∧

V

Proof. Consider the family of maps

λr :
r∧

V → Clr/Clr−1

defined by

[v1 ⊗ · · · ⊗ vr] 7→ [v1 . . . vr].
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These are clearly well-defined surjective homomorphisms that give rise to the map

λ :
∗∧

V →
n⊕

r=1

Clr/Clr−1.

We need to check that this is an injective mapping.

Any zero element in Clr/Clr−1 is a finite sum of terms of the form

[a⊗ (v⊗ v + Q(v))⊗ b] = [a⊗ v⊗ v⊗ b]

where we can assume that a and b are homogeneous elements with deg(a) + deg(b) ≤

r− 2. But the above expression is obviously zero in the exterior algebra
∧r V, thus the

kernel of λ is trivial and it must be injective.

Another fact of high importance about Clifford algebras is that they have the structure

of a Z2 graded algebra. Indeed consider the automorphism α̃ : Cl(V, Q) → Cl(V, Q)

which extends the mapping

α :V → V

v 7→ −v.

Since α̃2 = idCl(V,Q) one can define Cl0(V, Q), and Cl1(V, Q) to be the eigenspaces

corresponding to the ±1 eigenvalues respectively. Consequently we get the decomposition

Cl(V, Q) = Cl0(V, Q)⊕ Cl1(V, Q)

along with the relations

Cli(V, Q).Cl j(V, Q) ⊂ Cli+j(V, Q) i, j ∈ {0, 1}

that provide a Z2 grading for a Clifford algebra.
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2.2 The groups Pin and Spin

In this section we shall construct double coverings for the classical groups O(n) and

SO(n). To this end we first need to study the multiplicative group of units in Cl(V, Q)

and its representation into the algebra automorphisms of the Clifford algebra.

As we mentioned before, we are assuming from now on that (V, Q) is a finite dimensional

vector space equipped with a non-degenerate quadratic form. This assumption allows us

to use some significant results from linear algebra.

Let Cl×(V, Q) denotes The multiplicative group of units in the Clifford algebra

Cl×(V, Q) = {φ ∈ Cl(V, Q) : φ is invertible}.

If Q(v) 6= 0 for v ∈ V then v.
−v

Q(v)
= 1 and

v−1 =
−v

Q(v)
. (2.9)

Therefore, Cl×(V, Q) contains of all vectors v ∈ V with Q(v) 6= 0.

There is a natural representation of Cl×(V, Q) into the group of algebra automorphisms

of Cl(V, Q)

Ad : Cl×(V, Q)→ Aut(Cl(V, Q))

φ 7→ Adφ

given by

Adφ(x) = φxφ−1.
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We shall see that this representation has certain geometric properties. If v, w ∈ V are

non-zero vectors using 2.6 and 2.9 we have

Adv(w) = v−1wv =
−v

Q(v)
wv =

−1
Q(v)

(−wv− 2Q(v, w))v

= −(w− 2Q(v, w)v)

= −ρv(w)

where ρv : V → V denotes the reflection across the hyperplane v⊥.

To get rid of the negative sign above, we consider the twisted adjoint representation

Ãd : Cl×(V, Q)→ GL(Cl(V, Q))

defined by

Ãdφ(x) = α̃(φ)xφ−1

where α̃ denotes the grading operator and GL(Cl(V, Q)) denotes the group of the vector

space isomorphisms of Cl(V, Q).

With this definition we see that for v1, v2, . . . , vr ∈ V

Ãdv1v2...vr = ρv1 ◦ ρv2 ◦ · · · ◦ ρvr . (2.10)

The above observation leads us to consider the subgroup P(V, Q) ⊂ Cl×(V, Q) consisting

of all elements of the form

P(V, Q) = {v1v2 . . . vr ∈ Cl×(V, Q) : vi ∈ V, Q(vi) 6= 0}.
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In fact P(V, Q) is the subgroup generated by all vectors v ∈ V with Q(v) 6= 0. Moreover it

is clear from 2.10 that the twisted adjoint representation gives rise to the homomorphism

P(V, Q)
Ãd−→ O(V, Q).

It is clear from 2.10 and the definition of P(V, Q) that the image of P(V, Q) under

the mapping Ãd is the subgroup of O(V, Q) generated by all reflections. However the

Cartan-Dieudonné Theorem says that this subgroup is exactly the entire group O(V, Q).

Theorem 2.10 (Cartan-D ieudonné). [ [23] Theorem 2.7.] Let Q be a non-degenerate

form on a finite dimensional vector space V. Then any element g ∈ O(V, Q) can be written as a

product of a finite number of reflections

g = ρv1 ◦ ρv2 ◦ · · · ◦ ρvr .

In order to achieve the double coverings of O(n) and SO(n) we shall examine certain

subgroups of of P(V, Q) as follows.

Definition 2.11. The Pin group of (V, Q) is the subgroup of P(V, Q) which is generated

by all vectors v ∈ V with Q(v)) = ±1 and denoted by Pin(V, Q).

The spin group of (V, Q) denoted by Spin(V, Q) is the even part of Pin(V, Q)

Spin(V, Q) = Pin(V, Q) ∩ Cl0(V, Q).

We shall also consider the subgroup SP(V, Q) ⊂ P(V, Q) which is the even part of P(V, Q)

SP(V, Q) = P(V, Q) ∩ Cl0(V, Q).
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Using Theorem 2.10, one can show that the restriction of Ãd to the subgroup SP(V, Q)

gives the surjective homomorphism

SP(V, Q)
Ãd−→ SO(V, Q) (2.11)

where

SO(V, Q) = {L ∈ O(V, Q) : det(L) = 1}.

To see this, first note that det(ρv) = −1 for each v ∈ V. Indeed if we choose a Q-

orthogonal basis (v, v2, . . . , vn) of V then ρv(v) = −v and ρv(vj) = vj for j ≥ 2 therefore

det(ρv) = −1.

Also if L ∈ SO(V, Q) by Theorem 2.10 there exist v1, . . . , vr ∈ V such that

L = ρv1 ◦ · · · ◦ ρvr .

Since det(L) = 1 we conclude that r must be even and the mapping 2.11 is surjective.

At this point we have two surjective homomorphisms

P(V, Q)
Ãd−→ O(V, Q) SP(V, Q)

Ãd−→ SO(V, Q);

One might ask whether the twisted adjoint representation Ãd maps the groups Pin(V, Q)

and Spin(V, Q) onto O(V, Q) and SO(V, Q) respectively. Since ρtv = ρv and one can

always normalize any vector v ∈ V, it is clear that the answer to this question is positive.

However the fact that we are working with real or complex scalars is of crucial importance

here. Indeed in order to normalize a vector we get

t2Q(v) = Q(tv) = 1
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and we need to solve the equation t2 = 1 which is solvable both in R and C.

Therefore we have two homomorphisms:

Pin(V, Q)
Ãd−→ O(V, Q) Spin(V, Q)

Ãd−→ SO(V, Q).

Having in mind that the main objective of this discussion is to find the covering of the

Lie group SO(n), what we need to do at this point is to look for the kernel of the above

mappings. The following theorem gives the main result:

Theorem 2.12 ( [23] Theorem 2.9.). Let V be a finite dimensional vector space over K with a

non-degenerate quadratic form Q. Then there are short exact sequences

0→ F → Spin(V, Q)
Ãd−→ SO(V, Q)→ 1

0→ F → Pin(V, Q)
Ãd−→ O(V, Q)→ 1

where

F =


Z2 if

√
−1 /∈ K

Z4 otherwise

In particular when V = Rn with the standard quadratic form we have

0→ Z2 → Spin(n) Ãd−→ SO(n)→ 1.

Moreover, the map Spin(n) Ãd−→ SO(n) is the universal double covering of SO(n) for n ≥ 3.

Proof. Let (e1, e2, . . . , en) be a Q-orthogonal basis for V. It follows from the definition of

Clifford algebra and Equation 2.6 that

eiej = −eiej for i 6= j and e2
i = −Q(ei).
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Suppose that φ ∈ Pin(V, Q) is in the kernel of Ãd. We can decompose φ into its even and

odd parts φ = φ0 + φ1. Since Ãd(φ) = 1 we have α̃(φ)vφ = v and the following equations

must be satisfied for any v ∈ V:

φ0v = vφ0 and φ1v = −vφ1. (2.12)

We are going to show that both φ0 and φ1 do not involve any basis element. This

implies that φ1 = 0 and φ = φ0 = k for some scalar k ∈ K. To this end we first consider

φ0. We can write φ0 = θ0 + e1θ1 where none of θ0 and θ1 involve e1. Since θ1 is an odd

element which does not have e1 we have e1θ1 = −θ1e1. Considering this equation and the

first equation in 2.12 we conclude that θ1 = 0 and that φ0 does not involve e1. Repeating

this argument with other basis elements shows that φ0 does not involve any basis element.

Since φ0 is even it must be a scalar. With the same logic one can verify that neither φ1

involves any basis element and because it’s odd it has to be zero. Hence φ = φ0 = k can

only be scalar. Furthermore considering the fact that Q(φ) = 1 we get k2 = Q(k) = 1

which determines the kernel both in real and complex cases.

Now we have to show that π1Spin(n) is trivial for n ≥ 3. We have the exact sequence

0→ Z2 → Spin(n) Ãd−→ SO(n)→ 1

which gives us the long exact sequence in homotopy

π1Z2 → π1Spin(n)→ π1SO(n)→ π0Z2 → π0Spin(n)→ π0SO(n).

We know that π1Z2 and π0SO(n) are trivial, π0Z2 is Z2 and π1SO(n) is Z2. Therefore

from the above sequence it suffices to show that π0Spin(n) is trivial. In other words,

Spin(n) is path connected.
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If x ∈ Spin(n) then

x = u1u2 . . . u2m where ui ∈ Sn−1.

Since Sn−1 is path connected we can connect every ui to E1 through a path γi. So we can

connect x to E1 . . . E1 (2m times) in Spin(n) via the path γ1 . . . γ2m.

Since E1 . . . E1 (2m times) is either +1 or −1 it is enough to find a path in Spin(n)

connecting ±1. This can be done using

γ(t) = (E1 cos
π

2
t + E2 sin

π

2
t)(E1 cos

π

2
t− E2 sin

π

2
t).

2.3 The Algebras Clr,s and Cln

Let us consider now the Clifford algebras Clr,s := Cl(Rr+s, Qr+s) of euclidean spaces with

non-degenerate quadratic forms of different signatures

Qr+s(x) = (x1)2 + · · ·+ (xr)2 − (xr+1)2 − · · · − (xr+s)2.

In order to simplify the notations we often write Cln instead of Cln,0 for the Clifford

algebra of Rn with the standard positive definite form.

Recall from Equation 2.6 that given any Qr,s-orthonormal basis of Rr+s we have the

relations

eiej + ejei =


−2δij if i ≤ r

2δij if i > r
(2.13)

Also recall that for any Clifford algebra we have the decomposition Cl = Cl0 + Cl1

into the even and odd parts.
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Theorem 2.13 ( [23] Theorem 3.7.). There is an algebra isomorphism

Clr,s ∼= Cl0
r+1,s.

In particular

Cln ∼= Cl0
n+1.

Proof. Let (e1, . . . , er+s+1) be a basis for Rr+s+1 such that

Q(ei) =


1 if i ≤ r + 1

−1 if i > r + 1

Also let Rr+s = span{ei : i 6= r + 1}. We can define the linear mapping

f : Rr+s → Cl0
r+1,s

ei 7→ er+1ei.

Now, for x = ∑i 6=r+1 xiei we observe that

f (x)2 =∑
i,j

xixjer+1eier+1ej

=∑
i,j

xixjeiej

=x.x = −Q(x).

Hence by the universal property, f extends to an algebra homomorphism

f̃ : Clr,s → Cl0
r+1,s.
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It is clear, from the definition that f̃ is surjective. Moreover, one can see that

dim(Clr,s) = dim(Cl0
r+1,s).

In fact

Clr,s = span{eI : I ⊂ {1, 2, . . . , r + s}}

where eI = ei1ei2 . . . eik for I = {i1 < i2 < · · · < ik} hence dim(Clr,s) = 2r+s.

On the other hand, dim(Cl0
r+1,s) = 2r+s = dim(Clr,s) since ∑r+s+1

k=1 (r+s+1
k )(−1)k = 0.

Therefore, f̃ is an isomorphism.

It is quite useful, both for the classification and the representation theory of Clifford

algebras, to identify Clr,s algebras as a matrix algebra over some well-known field. The

following example is the first step towards this goal.

Example 2.14.

Cl0,1
∼= R⊕R Cl1 ∼= C Cl2 ∼= H.

The first identity is pretty obvious and the rest follows from the fact that Cl1 = R⊕

span{e1} and Cl2 = R⊕ span{e1, e2, e1e2} subject to the relations

(e1)
2 = (e2)

2 = −1 and e1e2 = −e2e1.

Also one can show that

Cl0,2
∼= R(2),

considering the linear mapping φ : Cl0,2 → R(2) defined by

e1 7→

1 0

0 −1

 e2 7→

0 1

1 0


where R(2) denotes the algebra of real 2× 2 matrices.
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Theorem 2.15 ( [23] Theorem 4.1.). There exist isomorphisms

Cln,0 ⊗ Cl0,2
∼= Cl0,n+2

Cl0,n ⊗ Cl2,0
∼= Cln+2,0

Clr,s ⊗ Cl1,1
∼= Clr+1,s+1.

(2.14)

Proof. In order to prove the first identity let (e1, . . . , en+2) be an orthonormal basis for

Rn+2 with respect to the standard inner product. Also let (e′1, . . . , e′n) and (e”1, e”2) be

standard generators for Cln,0 and Cl0,2 respectively (in the sense of Equation 2.13).

Let f : Rn+2 → Cln,0 ⊗ Cl0,2 be the map defined by

f (ei) =


e′i ⊗ e”1e”2 1 ≤ i ≤ n

1⊗ e“i−n i = n + 1, n + 2

One can easily check that

f (ei) f (ej) + f (ej) f (ei) = 2δij1⊗ 1.

It then follows that

f (x) f (x) = −Q0+(n+2)(x)1⊗ 1.

Therefore, by the universal property, f extends to the algebra homomorphism f̃ :

Cl0,n+2 → Cln,0 ⊗ Cl0,2. It also follows from the construction of f̃ that it is surjective.

Counting the dimensions shows that f̃ must be a bijection. Similar arguments establish

the next two identities as well.

Let Clr,s denotes the complexification of Clr,s i.e.

Clr,s = Clr,s ⊗C.
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We will show that Clr,s is isomorphic to Cl(Cr+s, QC
r,s) where QC

r,s denotes the extension

of the real quadratic form Qr,s over complex scalars. (e.g. QC
r,s(z⊗ u) = z2Qr,s(u) for any

vector u ∈ Rr+s and any complex number z.)

To see this, first consider the inclusion

f : Cr+s ↪→ Clr,s.

One can easily verify that f (w)2 = QC
r,s(w).1. Hence by Proposition 2.4 f extends to a

homomorphism

f̃ : Cl(Cr+s, QC
r,s)→ Clr,s.

The result follows by dimension counting and the fact that f̃ is surjective.

In particular we get the isomorphism

Cln ∼= Cl(Cn, QC)

where

QC(z) =
n

∑
j=1

z2
i .

But we should note that the complexification of the quadratic form Qr,s ignores the

signature. Hence we will have the following identities

Cl(Cn, QC) ∼= Cln ∼= Cln−1,1
∼= . . . ∼= Cl0,n. (2.15)

Example 2.16. Recall from Example 2.14 that

Cl0,1
∼= R⊕R and Cl0,2

∼= R(2)
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hence

Cl1 ∼= C⊕C and Cl2 ∼= C(2)

The following periodicity theorem is the key to the classification of complex Clifford

algebras.

Theorem 2.17 ( [23] Theorem 4.3.).

Cln+2
∼= Cln ⊗C Cl2.

Proof. Using the identities 2.15 and the Theorem 2.15 we see that

Cln+2
∼= Cl0,n+2

∼= (Cln ⊗ Cl0,2)⊗C

∼= Cln ⊗Cl2

∼= Cln ⊗C Cl2.

The above periodicity theorem, along with Example 2.16, completely determine the

classification of complex Clifford algebras:

Theorem 2.18.

Cln =


C(2m) for n = 2m

C(2m)⊕C(2m) for n = 2m + 1

2.4 Representations of Cln

In this section we study (complex) representations of Cln and Spin(n) group. At the end

we will discover the irreducible graded representation of Cl2m which becomes crucial in

our study of the index theorem.
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Definition 2.19. A (complex) representation of the Clifford algebra Cln is a C-linear

algebra homomorphism

ρ : Cln → Hom(W, W)

where W is a complex finite-dimensional vector space. The space W is called a Cln-

module over C.

We often use the notation φ.w for the action ρ(φ)(w) of the Clifford algebra on W.

Definition 2.20. Two representations ρi : Cln → Hom(Wi, Wi) (i = 1, 2) are said to be

equivalent if there exists a C-linear isomorphism F : W1 → W2 such that the following

diagram commutes for any φ ∈ Cln

W1 W1

W2 W2

ρ1(φ)

ρ2(φ)

F F

Recall from the classification of complex Clifford algebras that there are isomorphisms

Cl2m ∼= C(2m) and Cl2m+1
∼= C(2m)⊕C(2m).

Now we may borrow a classical fact from the representation theory of matrix algebras

which states:

Theorem 2.21 ( [23] Theorem 5.6.). The natural representation of C(n) on Cn is -up to

isomorphism- the only irreducible representation of C(n). Moreover the algebra C(n)⊕C(n) has

exactly two equivalence classes of irreducible representations given by

ρ1(φ1, φ2) = ρ(φ1) and ρ2(φ1, φ2) = ρ(φ2)

where ρ is the representation of C(n) acting on Cn.

34



Therefore using the above theorem we conclude that

Theorem 2.22 ( [23] Theorem 5.7.). Let νC
n be the number of inequivalent irreducible complex

representations of Cln. Then

νC
n =


2 if n is odd

1 if n is even

Furthermore, for both n = 2m and n = 2m + 1 the dimension of any irreducible representation of

Cln is 2m.

There is an element of Cln namely the volume element which is denoted by ω and is

defined by

ω = e1 . . . en.

If (e′1, . . . , e′n) is another orthonormal basis then using Equation 2.13 it follows that

e1 . . . en = det(g)e′1 . . . e′n

where g is the change of basis matrix. Therefore, ω does not depend on the choice of

basis. For the complex case the volume element of Cln is given by

ωC = i[
n+1

2 ]e1 . . . en.

We may immediately observe that ω2
C = 1 and that ωC is central when n is odd. We also

obtain the decomposition

Cln = Cl+n ⊕Cl−n

where

Cl±n = (1±ωC)Cln.

35



Proposition 2.23 ( [23] Proposition 3.6.). Suppose n is even and let W be any representation of

Cln. Then there is a decomposition

W = W+ ⊕W−

into the ±1 eigenspaces of ρ(ωC). In fact

W+ = (1 + ρ(ωC))W and W− = (1− ρ(ωC))W.

Furthermore, the action of any vector v ∈ Cn gives the isomorphisms

ρ(v) : W+ →W− and ρ(v) : W− →W+.

Proof. The decomposition follows from the fact that ω2
C = 1 and that

ωC(1±ωC) = ±(1±ωC).

The isomorphisms follows by observing that

v(1±ωC) = (1∓ωC)v

and

ρ(v) ◦ ρ(−v) = id.

Proposition 2.24 ( [23] Proposition 5.9.). Let ρ : Cln → Hom(W, W) be any irreducible

representation where n is odd. Then either

ρ(ωC) = Id or ρ(ωC) = −Id.

Both possibilities can occur and the corresponding representations are inequivalent.
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Proof. Since ωC is central, the possibilities of the two cases follow from the fact that both

Cl±n are Cln-modules.

To see that ρ(ωC) = id or ρ(ωC) = −id, first note that ρ2(ωC) = 1. Therefore we can let

W± to be the ±1 eigenspaces for ρ(ωC). Since ωC is central both W± are Cln-invariant

and it follows from the irreducibility of W that W+ = W or W− = W.

Let ρ± be the two representations above with ρ±(ωC) = ±Id; since for any isomorphism

F : W →W we have F ◦ ρ±(ωC) ◦ F−1 = ρ±, the two representations can not be equivalent.

Proposition 2.25 ( [23] Proposition 5.10.). Let ρ : Cln → Hom(W, W) be any irreducible

representation where n is even. And consider the decomposition

W = W+ ⊕W−

where W± = (1± ρ(ωC))W as in Proposition 2.23 above. Then each W+ and W− is invariant

under the even subalgebra Cl0
n. Under the isomorphism Cl0

n
∼= Cln−1 (Theorem 2.13), these

spaces are the two irreducible representations of Cln−1 discussed in the previous proposition.

Proof. Since any even element of the Clifford algebra commutes with the volume element

ωC both W± are invariant under the action of the even subalgebra Cl0
n.

Furthermore by Theorem 2.22 and Proposition 2.23 W± are irreducible representations

of Cl0
n
∼= Cln−1.

Under the isomorphism Cln−1
'−→ Cl0

n the volume element ω′C ∈ Cln−1 is sent to the

volume element ωC ∈ Cl0
n. Hence ρ(ω′C) = id on W+ and ρ(ω′C) = −id on W− and it

follows by the previous proposition that these two representations are inequivalent.

Now we get to the main concept of this section, that of Spin representation.

Definition 2.26. Suppose that ∆ is an irreducible representation of Cln. The Spin Rep-

resentation of the group Spin(n) is the homomorphism Spin(n) → GL(∆) given by

restricting the representation Cln → Hom(∆, ∆) to Spin(n) ⊂ Cl0
n ⊂ Cln.

37



Since Cln has two irreducible representations when n is odd one has to check that

there is no ambiguity in the above definition. In fact we have

Proposition 2.27 ( [23] Proposition 5.15.). When n is odd, the above definition is independent of

which irreducible Representation of Cln is used. Furthermore when n is odd the Spin representation

is irreducible and when n is even there is a decomposition

∆ = ∆+ ⊕ ∆−

into a direct sum of two inequivalent irreducible representations of Spin(n).

Proof. Suppose that n is odd we saw that the two irreducible representations of Cln are

basically the inner action of the Clifford algebra on Cl±n . First note that both Cl±n are

invariant under the action of Cl0
n. Moreover we have the automorphism α : Cln → Cln

that interchanges Cl+n with Cl−n and vise versa. One can see that any even element x ∈ Cl0
n

can be written as x = φ + α(φ) with respect to the decomposition Cln = Cl+n ⊕Cl−n .

Now let c(x) denotes the Clifford action of x on Cl+n or on Cl+n since c(x) commutes with

α the actions of Cl0
n on Cl±n are equivalent.

On the other hand if n is even, by the previous proposition, restricting the action of the

Clifford algebra to the even subalgebra Cl0
n splits the irreducible representation ∆ into

two parts

∆ = ∆+ ⊕ ∆−

each of which are inequivalent irreducible representations of Cl0
n
∼= Cln−1.

Finally, since any element of Cl0
n can be written as a finite sum of elements in Spin(n),

restricting an irreducible representation of Cl0
n to Spin(n) remains irreducible.

At the end of this section we will prove that any representation of Cln has a natural

inner product with respect to which the Clifford action of any vector is skew-adjoint.
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Proposition 2.28 ( [23] Proposition 5.16.). Let W be a representation of Cln. Then there exists

an inner product on W such that the Clifford action of any unit vector e ∈ Rn is unitary. i.e.

〈e.w, e.w′〉 = 〈w, w′〉.

Proof. Let Fn ⊂ Cl×n be the finite group generated by an orthonormal basis (e1, . . . , en) of

Rn. Choose a Hermitian inner product on W and average it over the action of Fn. Now if

e = ∑i aiei with ∑i a2
i = 1, then

〈ew, ew′〉 = ∑
i

a2
i 〈eiw, eiw′〉+ ∑

i 6=j
aiaj〈eiw, ejw′〉 = 〈w, w′〉

since 〈eiw, eiw′〉 = 〈w, w′〉, and 〈eiw, ejw′〉 = 〈ejeiw,−w′〉 = 〈eiejw, w′〉 = −〈ejw, eiw′〉 for

i 6= j.

Corollary 2.29. Let 〈., .〉 be the inner product defined in the above proposition. Then the Clifford

action of any v ∈ Rn is skew-adjoint with respect to 〈., .〉.

Proof. Assume that v 6= 0. Then

〈v.w, w′〉 = 〈 v
‖v‖ .v.w,

v
‖v‖ .w′〉 = 1

‖v‖2 〈v
2.w, v.w′〉 = −〈w, v.w′〉.

2.5 The Lie algebra of Spin(n)

As the universal covering of SO(n) the Lie group Spin(n) inherits its Lie algebra from

the Lie algebra of SO(n) which is the algebra of skew-symmetric matrices. However it is

worthwhile, for some computional purposes, to see how this Lie algebra structure relates

to the Clifford structure.
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The group of invertibles

Cl×n = {φ ∈ Cln : φ is invertible}

is an open subset of the Clifford algebra and consequently a Lie group of dimension 2n.

Its Lie algebra is the Clifford algebra cl×n = Cln with the Lie bracket

[x, y] = xy− yx.

The adjoint representation is given by

Ad : Cl×n → Aut(Cln)

Adφ(x) = φxφ−1

and the corresponding adjoint representation at the level of Lie algebras is

ad : cl×n → End(Cln)

ady(x) = [y, x].

Proposition 2.30 ( [23] Proposition 6.1.). The Lie subalgebra of (Cln, [., .]) corresponding to

the subgroup Spin(n) ⊂ Cl×n is

spin(n) =
2∧

Rn.

Proof. Let (E1, . . . , En) be the standard basis of Rn and consider the family of curves

{(Ei cos t + Ej sin t)(−Ei cos t + Ej sin t)}i<j.

These curves lie in Spin(n) and are tangent to 1 at t = 0.

Let γ(t) = (Ei cos t + Ej sin t)(−Ei cos t + Ej sin t) = cos 2t + EiEj sin 2t. Since

d
dt |t=0γ(t) = 2EiEj, the Lie algebra spin(n) contains span{EiEj}i<j =

∧2 Rn.
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On the other hand as dim spin(n) = dim
∧2 Rn = n(n − 1)/2 we get the desired

equality.

There is natural correspondence between so(n) and
∧2 Rn that sends the element

v ∧ w to the orthogonal transformation vfw defined by

vfw(x) = 〈v, x〉w− 〈w, x〉v.

The set {Ei f Ej}i<j constitutes a natural basis for so(n).

Proposition 2.31 ( [23] Proposition 6.2.). let ξ : Spin(n) → SO(n) be the double covering.

Then the corresponding isomorphism at the level of the Lie algebras is given by

Ξ := ξ∗ :spin(n)→ so(n)

EiEj 7→ 2Ei f Ej.

Consequently for v, w ∈ Rn

Ξ−1(vfw) =
1
4
[v, w].

Proof. Let γ(t) = cos t+ EiEj sin t = exp(tEiEj) as in the proof of the previous proposition.

Since ξ(φ)(x) = Adφ(x)

Ξ(EiEj)(x) =
d
dt
|t=0ξ(γ(t))(x) =

d
dt
|t=0Adγ(t)(x) = adEiEj(x) = [EiEj, x].

Ξ(EiEj)(x) =EiEjx− xEiEj

=EiEjx + (Eix + 2〈Ei, x〉)Ej

=EiEjx− EiEjx− 2〈Ej, x〉Ei + 2〈Ei, x〉Ej

=2Ei f Ej(x).
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Chapter 3

Dirac Operators and Spin Structures on

Manifolds

3.1 Clifford Bundles and Dirac Operators

In this chapter, we start our study of Dirac operators on vector bundles. In order to define

the Dirac operator, the vector bundle under consideration needs to carry some special

structure namely the Clifford module structure. For our purposes, we always assume

that the base manifold is a closed oriented Riemannian manifold.

Before we start our study of Clifford bundles we briefly recall some notions from the

theory of vector bundles and connections.

Let S→ M be a vector bundle. A covariant derivative on S is a linear map

∇ : C∞(S)→ C∞(T∗M⊗ S)

that satisfies the following equation:

∇( f s) = d f ⊗ s + f∇(s) for all f ∈ C∞(M), s ∈ C∞(S).

42



Remark 3.1. Since any covariant derivative is induced from a connection on the corre-

sponding principal bundle the words "covariant derivative" and "connection" are used

interchangeably for the above mapping when the context is clear.

Using the contraction between TM and T∗M, for any X ∈ C∞(TM), we obtain a linear

operator

∇X : C∞(S)→ C∞(S)

which is basically the directional derivative along X.

A connection can be extended to all types of tensor fields by the following properties:

• It acts on functions (e.g. (0, 0) tensor fields) as the exterior derivative ∇ f = d f for

any f ∈ C∞(M).

• It satisfies the Leibniz rule ∇(a ⊗ b) = ∇(a) ⊗ b + a ⊗ ∇(b). i.e. it defines a

derivation

∇ : C∞(T (S)⊗ T (S∗))→ C∞(T∗M⊗ T (S)⊗ T (S∗))

• It commutes with any contraction.

In particular, if 〈, 〉 ∈ C∞(S∗⊗ S∗) is a metric on S, we say that the connection is metric

(or compatible with the metric) if ∇〈, 〉 = 0. This is equivalent to saying that

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉,

for any sections s1, s2 ∈ C∞(S).

Another equivalent characterization of a metric connection is that the induced parallel

transports along any curve preserve the inner product on the corresponding fibers.
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Note that a connection is a linear map

∇ : Ω0(M; S)→ Ω1(M; S)

and it can be extended to the family of maps

. . . ∇−→ Ωr(M; S) ∇−→ Ωr+1(M; S) ∇−→ . . .

by enforcing the Leibniz rule

∇(α ∧ σ) = dα ∧ σ + (−1)deg α ∧∇σ.

Also recall that an operator of high significance is

K := ∇2 : Ω0(M; S)→ Ω2(M; S)

which is called the curvature tensor operator. In fact, since

K( f s) = f Ks for any f ∈ C∞(M) , s ∈ C∞(S)

the value of Ks at any point p ∈ M depends only on s(p). Therefore K is a two form with

values in the algebra End(S). One can show that for any X, Y ∈ C∞(TM) and s ∈ C∞(S)

we have

K(X, Y)s = [∇X,∇Y]s−∇[X,Y]s.

Furthermore, if the connection is metric, K is an element of Ω2(M; AdS), where AdS

denotes the set of skew-adjoint endomorphisms of S.
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Suppose that M is an oriented Riemannian Manifold. Since at each point the tangent

space Tx M is endowed with a nondegenerate (in fact positive definite) inner product it

makes sense to talk about the bundle of Clifford algebras over M. Let Cl(TM) denotes

the bundle of Clifford algebras. i.e. a complex vector bundle whose fiber over x ∈ M is

the Clifford algebra Cl(Tx M).

Let S be a bundle of Clifford modules. This means each fiber Sx is a Cl(Tx M)-module.

Definition 3.2. We call S a Clifford module bundle (or briefly a Clifford bundle) if it is

equipped with a Hermitian metric and a metric connection such that

1. The Clifford action of any tangent vector is skew-adjoint. i.e. For each v ∈ Tx M and

any s1, s2 ∈ Sx

〈vs1, s2〉 = −〈s1, vs2〉

2. The connection on S is compatible with the Levi-Civita connection on TM in the

following sense:

∇X(Ys) = (∇XY)s + Y∇Xs

for any X, Y ∈ C∞(TM), and s ∈ C∞(S).

Remark 3.3. We can think of the Clifford action c : X 7→ c(X) as an element of

Ω1(M; End(S). In this respect the second property above is saying that ∇c = 0.

Remark 3.4. Using the second property in the definition of a Clifford bundle above, one

can show that the connection on S is a derivation with respect to the Cl(TM)-module

structure. i.e. in a Clifford bundle we have

∇(φs) = (∇φ)s + φ∇s for φ ∈ C∞(Cl(TM)) , s ∈ C∞(S)

To verify this we first observe that the exterior bundle
∧∗ TM inherits a connection from

the Levi-Civita connection and the covariant derivative is an even derivation of the graded
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algebra C∞(
∧∗ TM). The above result follows once we use the canonical identification

Cl(TM) ∼=
∧∗ TM.

Definition 3.5. The Dirac operator of a Clifford bundle S which is denoted by D is

defined by the following compositions

C∞(S)→ C∞(T∗M⊗ S)→ C∞(TM⊗ S)→ C∞(S)

where the first map is given by the connection of S, the second map is just identification

of the cotangent bundle with the tangent bundle, and the third map is the Clifford action

of TM on S.

Given a local orthonormal frame (e1, . . . , en) of TM, the Dirac operator can be written

locally in the following form

D = ∑
i

ei∇ei .

Remark 3.6. In a local coordinate (x1, . . . , xn) the Dirac operator has the following expres-

sion:

D = gji∂j∇∂i = ∂i∇∂i .

Now we shall show that D2 is equal-modulo a zero order differential operator- to the

Laplacian. Before going through the study of the general case it is worthwhile to see this

fact in a trivial example.

Example 3.7. Let M be the flat euclidean space Rn and let S be the trivial flat bundle

Rn ×V, where V is a Cln-module given by the map

γ : Cln → Hom(V, V)

We first observe that γ commutes with the partial derivatives. Moreover, by Corollary

2.29, we can always choose a Hermitian inner product on V so that the Clifford action of
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vectors becomes skew-adjoint therefore S is Clifford bundle.If (E1, . . . , En) is the standard

orthonormal basis of Rn, the Dirac operator can be written as

D =
n

∑
i=1

γi∂i

where γi = γ(Ei). We obtain:

D2 = ∑
i,j

γj∂j(γi∂i) = ∑
i,j

γjγi∂j∂i = ∑
i

γ2
i ∂2

i + ∑
i<j

(γjγi + γiγj)∂j∂i

= −∑
i

∂2
i ,

which is the standard Laplacian.

Definition 3.8. Let K be the the curvature tensor. The Clifford contraction of the curvature

denoted by K is the element of End(S) given by

K = ∑
i<j

eiejK(ei, ej)

where (e1, . . . , en) is a local orthonormal frame for the tangent bundle.

Note that since K(Y, X) = −K(X, Y) for any X, Y ∈ TM the right hand side of the

above equation is equal to
1
2 ∑

i,j
eiejK(ei, ej).

Also one has to verify that this definition is independent of the choice of an orthonormal

frame. If (e′1, . . . , e′n) is another orthonormal frame then e′i = ∑r gr
i er and

1
2 ∑

i,j
e′ie
′
jK(e

′
i, e′j) =

1
2 ∑

i,j,r,s
(gr

i )
2(gs

j )
2eresK(er, es) =

1
2 ∑

r,s
eresK(er, es)

since (gi
j) ∈ O(n).

We now proceed to compute D2, to this aim we prefer to work in a synchronous frame
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at some point x ∈ M. i.e. we pick an orthonormal basis of Tx M and then we extend it

to a neighborhood via parallel transports along geodesics. The frame field obtained is

the so called synchronous frame field for TM centered at x. Then by definition it has the

property that (∇ei ej) = 0 at x. The pairwise Lie bracket of the fields also vanishes at x.

Therefore, at x we have

D2s = ∑
i,j

ej∇j(ei∇i)s

= ∑
i,j

ejei∇j∇is

= −∑
i
∇2

i s + ∑
i<j

ejei(∇j∇i −∇i∇j)s

= −∑
i
∇2

i s +Ks.

We will show that the term −∑i∇2
i in the above formula is equal to ∇∗∇, where ∇∗

is the formal adjoint of ∇.

Lemma 3.9 ( [28] Lemma 3.9. ). In a local coordinate the operator ∇∗ : C∞(T∗M ⊗ S) →

C∞(S) can be given by the fomula

∇∗(dxj ⊗ sj) = −gjk(∇jsk − Γi
jksi).

Therefore, if we choose normal coordinates,

∇∗(dxj ⊗ sj) = −∇jsj

at the origin.(We have used the Einstein summation convention.)

Proof. Using the given expression for ∇∗ we have to show that

(s, φ) = (s,∇∗φ) for any s ∈ C∞(S), φ ∈ C∞(T∗M⊗ S).
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Note that the above inner products are actually the global L2-inner products on C∞(S) ,

and C∞(T∗M⊗ S).

By the divergence theorem it suffices though to show that the difference between the

fiber-wise inner products 〈∇s, φ〉 − 〈s,∇∗φ〉 is equal to div(Z) for some vector field Z.

Let s ∈ C∞(S) and φ = dxj ⊗ sj ∈ C∞(T∗M ⊗ S). Since ∇s = dxi ⊗∇is and ∇∗φ =

−gjk(∇jsk − Γi
jksi) we have

〈∇s, φ〉 − 〈s,∇∗φ〉 = −gij〈∇is, sj〉 − gjk〈s,∇jsk〉+ gjkΓi
jk〈s, si〉

= −gjk∂j〈s, sk〉+ gjkΓi
jk〈s, si〉

= −div(Z)

where Z = gij〈s, sj〉∂i. More precisely the global expression for the vector field Z is

Z[(Y) = 〈Y⊗ s, φ〉.

The above discussion leads to the following formula:

Theorem 3.10 (Weitzenbock Formula).

D2 = ∇∗∇+K.

Remark 3.11. We saw that ∇∗∇ is a positive operator:

〈∇∗∇s, s〉 = ‖∇s‖2 ≥ 0.

Remark 3.12. Since the curvature tensor is a two form with value in AdS and the Clifford

action of vectors is also skew-adjoint, the curvature contraction operator is a self-adjoint

endomorphism of S.

Now we are ready to state and prove a theorem that shows how the geometry of the

Clifford bundle can affect the existence of harmonic sections.
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Theorem 3.13 (Bochner). ( [28] Theorem 3.10. ) If the least eigenvalue of K at each point of

M is positive, then the equation D2s = 0 does not have any non-trivial solution.

Proof. Let Λx be the least eigenvalue of K at point x. Since K ∈ C∞(End), it follows from

Rouche’s theorem that Λx continuously depends on x. Hence we may define

Λ := min
x∈M

Λx.

By the assumption, Λx is positive everywhere thus Λ must be positive as well. Using the

Weitzenbock formula we get

〈D2s, s〉 = 〈∇∗∇s, s〉+ 〈Ks, s〉

= ‖∇s‖2 + 〈Ks, s〉

≥ 〈Ks, s〉

≥ Λ‖s‖2.

The result immediately follows as Λ > 0.

The next proposition shows that the Dirac operator is formally self-adjoint.

Proposition 3.14 ( [28] Proposition 3.11. ). Let s1 and s2 be two sections of S, then

〈Ds1, s2〉 = 〈s1, Ds2〉.

Proof. Similar to the argument in 3.9 we shall show that

〈Ds1, s2〉 − 〈s1, Ds2〉 = div(V),
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for some vector field V.

Choose an orthonormal frame (e1, . . . , en) synchronous at x. We have

〈Ds1(x), s2(x)〉 = 〈ei∇is1(x), s2(x)〉

= −〈∇is1(x), eis2(x)〉

= −(ei〈s1, eis2〉)x + 〈s1(x),∇i(eis2)(x)〉

= −(ei〈s1, eis2〉)x + 〈s1(x), ei∇is2(x)〉

= −(ei〈s1, eis2〉)x + 〈s1(x), Ds2(x)〉

= −div(V)(x) + 〈s1(x), Ds2(x)〉

where V is the vector field whose components are 〈s1(x), eis2(x)〉. i.e

V[(W) = 〈s1, Ws2〉.

To verify this we notice that

div(V)(x) = ∑
j
〈∇jV, ej〉x = ∑

j,i
〈∇j〈s1, eis2〉ei, ej〉x = ∑

j,i
〈ej〈s1, eis2〉ei, ej〉x

= ∑
i
(ei〈s1, eis2〉)x.

We saw that the connection does not commute with the Clifford action. e.g.

[∇Y, c(X)] = c(∇YX).

Now we might ask whether the curvature tensor commutes with the Clifford action or

not? Although (as we will see shortly) the answer to this question is negative in general,

it is always possible to decompose the curvature into two parts K = RS + FS so that FS

always commutes with the Clifford action.
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Lemma 3.15 ( [28] Lemma 3.13. ). Let R denote the (Riemannian) curvature corresponding to

the Levi-Civita connection on TM. And let K be the curvature operator of S. Then

[K(X, Y), c(Z)] = c(R(X, Y)Z),

for any tangent vectors X, Y, Z.

Proof. Let (e1, . . . , en) be an orthonormal frame for TM synchronous at a point p ∈ M.

We can assume that X = ei|p, Y = ej|p, Z = ek|p. The result follows by noticing that at

point p

∇i∇j(eks) = (∇i∇jek)s + ek∇i∇js.

Definition 3.16. For a Clifford bundle S, the Riemann endomorphism of S denoted by

RS is an End(S)-valued two form defined by

RS(X, Y) =
1
4 ∑

k,l
c(ek)c(el)〈R(X, Y)ek, el〉.

It is easy to check that this definition is independent of the choice of orthonormal

basis.

Lemma 3.17 ( [28] Lemma 3.15. ).

[RS(X, Y), c(Z)] = c(R(X, Y)Z)

Proof. The Riemannian curvature R is a 3-covariant, 1-contravariant tensor. Recall that

the corresponding 4-covariant tensor is given by

Rlkij = 〈R(ei, ej)ek, el〉.
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This means

R(ei, ej)ek = ∑
k

Rlkijel.

We can assume that X = ei, Y = ej, Z = ea, then

RS(ei, ej) =
1
4 ∑

k,l
c(ek)c(el)Rlkij.

Therefore,

RS(ei, ej)c(ea) =
1
4 ∑

k,l
Rlkij{c(ek)c(el)c(ea)− c(ea)c(ek)c(el)}.

The above expression vanishes when k = l, or when k, l, a are all distinct. So the only

remaining terms are those where a = k 6= l or a = l 6= k and the above expression reduces

to
RS(ei, ej)c(ea) =

1
2 ∑

l
Rlaijc(el)−

1
2 ∑

k
Rakijc(ek)

= ∑
l

Rlaijc(el)

= c(R(ei, ej)ea)

since Rla∗∗ = −Ral∗∗.

From Lemma 3.15 and Lemma 3.17 we can conclude that

Proposition 3.18 ( [28] Proposition 3.16. ). The curvature of a Clifford bundle can be written

as

K = RS + FS

where RS is the Riemann endomorphism of S and FS is an an End(S)-valued two form that

commutes with the Clifford action.

Lemma 3.19.

∑
i,j,k

Rlkijeiejek = −2 ∑
j

Ricl jej
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where

Ricl j = ∑
i

Rilij

is the Ricci tensor.

Proof. Suppose that i, j, k are distinct then

eiejek = ekeiej = ejekei.

Using the first Bianchi identity

Rlkij + Rlijk + Rl jki = 0,

we get

Rlkijeiejek + Rlijkejekei + Rl jkiekeiej

+Rlkjiejeiek + Rl jikeiekej + Rlikjekejei = 0.

Also the terms with i = j vanish since R∗∗ij = −R∗∗ji. Therefore,

∑
i,j,k

Rlkijeiejek = ∑
i,j

Rliijej + ∑
i,j

Rl jijei

= −2 ∑
i,j

Rilijej

= −2 ∑
j

Ricl jej.

Now we can obtain a more refined version of Weitzenbock formula 3.10

Theorem 3.20 (L ichnerowicz-Schrödinger). ( [28] Proposition 3.18.)

D2 = ∇∗∇+FS +
1
4

κ
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where FS = ∑i<j eiejFS(ei, ej) is the Clifford contraction of the twisting curvature, and κ is the

scalar curvature of the Riemannian manifold.

Proof. Comparing with the Weitzenbock formula it is enough to show that

∑
i<j

eiejRS(ei, ej) =
1
4

κ.

Using the definition of RS (Definition 3.16), we have

∑
i<j

eiejRS(ei, ej) =
1
2 ∑

ij
eiejRS(ei, ej) =

1
8 ∑

ijkl
eiejekel〈R(ei, ej)ek, el〉 =

1
8 ∑

ijkl
eiejekelRlkij

=− 1
4 ∑

l j
Ricl jejel

=+
1
4 ∑

l
Ricll

=
1
4

κ.

3.2
∧∗ TM∗ ⊗C as a Clifford bundle

In this section we get to a well-known example of a Clifford bundle namely the exterior

bundle. In fact Proposition 2.7 suggests that
∧∗ TM∗ ⊗C is a Clifford bundle. Recall that∧∗ V∗ is a Cl(V, Q)- module and the action of a vector v ∈ V on φ ∈ ∧∗ V∗ is given by

v.φ = (v[ ∧−ιv)φ.

Proposition 3.21 ( [28] Lemma 3.21. ). The exterior bundle
∧∗ TM∗ ⊗C equipped with its

natural metric, the Levi-Civita connection, and the above Clifford action is a Clifford bundle.

Proof. We have to check two things:
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i. The Clifford action of any tangent vector is skew-adjoint.

ii. The Clifford action is compatible with the connection.

Suppose dim(M) = n. For part (i) let ω1 be a k− 1-form, ω2 be a k-form, and X ∈ TM.

Since 〈ξ, η〉 = ∗(ξ ∧ ∗η) and if ω is a p -form ιvω = (−1)n(p+1) ∗ (v[ ∧ ∗ω) we have

〈ω1, ιXω2〉 = ∗ (ω1 ∧ ∗ιXω2) = (−1)n(k+1) ∗ (ω1 ∧ ∗ ∗ (X[ ∧ ∗ω2))

=(−1)n(k+1)+(n−k+1)(k−1) ∗ (ω1 ∧ X[ ∧ ∗ω2)

=(−1)n(k+1)+(n−k+1)(k−1)+(k−1) ∗ (X[ ∧ω1 ∧ ∗ω2) = 〈X[ ∧ω1, ω2〉.

The above observation shows that the interior product is the adjoint of the wedge product

and accordingly the Clifford action is skew adjoint.

Part (ii) is obvious since both wedge product and interior product are compatible with

the connection.

Considering
∧∗ TM∗⊗C as a Clifford bundle one might ask what is the corresponding

Dirac operator. The following proposition answers this question.

Proposition 3.22 ( [21] Lemma 4.3.4.). The Dirac operator of the Clifford bundle
∧∗ TM∗ ⊗C

is equal to

D = d + d∗.

Consequently D2 is the Laplace-Beltrami operator dd∗ + d∗d.

Proof. Let (e1, . . . , en) be an orthonormal frame and (η1, . . . , ηn) be the dual coframe. We

will prove that

d = ηi ∧∇ei and, d∗ = −ιei∇ei .

First let

d̃ := ηi ∧∇ei and, d̃∗ := −ιei∇ei (3.1)

We are going to show that d = d̃ and d∗ = d̃∗ in two main steps:
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1- The definition of d̃ and d̃∗ is independent of the choice of frame.

2- The desired equalities hold at the centre of a normal coordinate.

1- Suppose that ( f1, . . . , fn) is another orthonormal frame with dual (ζ1, . . . , ζn)

then

fi = ak
i ek , ζ i = bi

kηk

with

ak
i bi

l = δk
l , ak

i al
i = δkl

We have

ζ i ∧∇ fi = ak
i bi

lη
l ∧∇ek = ηk ∧∇ek

and

−ι fi∇ fi = −ak
i al

i ιek∇el = −ιek∇ek

2 Choose a normal coordinated (x1, . . . , xn) centred at x0. Let ei = ∂
∂xi and

ηi = dxi. These frames are orthonormal at the centre. Also at the centre we

have

∇ ∂

∂xi
dxj = 0

Therefore we get, at the point x0,

d̃(φ(x)dx1 ∧ · · · ∧ dxp) =dxi ∧ (∇ ∂

∂xi
φ)dx1 ∧ · · · ∧ dxp

=
∂φ

∂xi dxi ∧ dx1 ∧ · · · ∧ dxp

=d(φ(x)dx1 ∧ · · · ∧ dxp)
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and

d̃∗(φ(x)dx1 ∧ · · · ∧ dxp) =− ι ∂

∂xi
(

∂φ

∂xi )dx1 ∧ · · · ∧ dxp

=(−1)i(
∂φ

∂xi )dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp

=d∗(φ(x)dx1 ∧ · · · ∧ dxp)

3.3 Spin Structures on Manifolds

Now we are going to study a significant example of Clifford bundle namely the bundle of

spinors, or spinor bundle. In order to prepare the setting we first recall some basic facts

and ideas about the theory of principal bundles and their associated bundles briefly.

Let P π−→ M be a G−principal bundle. For each element A ∈ g of the Lie algebra the

infinitesimal action of the one-parameter subgroup {exp(tA)}t∈R defines a vector field

Ã ∈ C∞(TP) in some literature called the fundamental vector field of A. For instance

Ãp f =
d
dt
|t=0 f (p.exp(tA)) for any f ∈ C∞(P)

The mapping A 7→ Ã is a Lie algebra homomorphism from g to C∞(TP).

Definition 3.23 (Vertical subspace). For each p ∈ P the vertical subspace VpP ⊂ TpP of

the tangent space at point p is defined to be the kernel of the map

π∗ : TpP→ Tπ(p)M

In fact it consists of all vectors X ∈ TpP such that

X(π∗ f ) = 0 for every f ∈ C∞(M)
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Lemma 3.24. Let A ∈ g and Ã be the fundamental vector field of A. Then

For each p ∈ P Ãp ∈ VpP

It follows by the above lemma that we have a family of isomorphisms

ıp : g→ VpP

Definition 3.25. Let P → M be a G−principal bundle a connection on P is a smooth

distribution that assigns to each tangent spaceTpP a subspace HpP ⊂ TpP called the

horizontal subspace in a way that

• HpP is complement to VpP : HpP⊕VpP = TpP.

• It is G− invariant: Hp.gP = g∗HpP.

Such a distribution defines for any vector field X ∈ C∞(TP) two smooth vector fields

XV and XH which are the vertical and the horizontal parts of X.

Definition 3.26 (connection form). Given a connection on P the connection form ω is

constructed as follows

ωp : TpP→ g X 7→ ı−1
p (XV)

where ıp is the isomorphism defined by Lemma 3.24. In fact ω takes any tangent vector

to the corresponding Lie algebra element of its vertical part.

One can check that the connection form is smooth and hence defines a g-valued one

form ω ∈ Ω1(P; g). Furthermore the connection form adequately encodes the information

about the connection. For instance given ω one can recover HpP by

HpP = ker ωp
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Proposition 3.27. The connection form ω has the following properties

• ω(Ã) = A for any A ∈ g.

VpP

g g

ıp

id

ωp

• g∗ω = Adg−1ω

where Ad : G → Aut(g) is the adjoint representation of the Lie group G.

Definition 3.28. Let φ ∈ Ωk(P; W) be a differential k-form with values in a vector space

W. The exterior covariant derivative of φ is a W-valued k + 1-form given by

Dφ(X1, . . . , Xk+1) := dφ(XH
1 , . . . , XH

k+1)

Since the connection form ω is a g-valued one form one might consider Dω which is

an important geometric object called the curvature form of the connection.

Definition 3.29 (Curvature form). Let P equipped with a connection. The curvature form

of the connection denoted by Ω is defined to be the exterior covariant derivative of the

connection form

Ω := Dω

So Ω is an element of Ω2(P; g).

Proposition 3.30. The following identities hold:

1. Ω = dω + [ω, ω].

2. Bianchi identity DΩ = 0.

where [ω1, ω2](X, Y) := [ω1(X), ω2(Y)].
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In practice one wishes to pull these global objects down to an open subset U ⊂ M of

the base manifold. If we choose a local section σ : U → P this induces two local objects:

1- a local connection form A := σ∗ω ∈ Ω1(U; g) (sometimes called the gauge field)

2- a local curvature form F := σ∗Ω ∈ Ω2(U; g) (sometimes called the gauge field

strength)

It follows then by Proposition 3.30 that

Proposition 3.31.

F = dA + [A, A]

Now if we have two local sections σ : U → P and σ′ : U′ → P one might ask how

the corresponding local connection and curvature forms (A, F), and (A′, F′) relate to one

another. Given the transition functions

g : U ∩U′ → G

we will have

Proposition 3.32.

A′ =Adg−1ω + g∗ΘM-C

F′ =Adg−1 F

where ΘM-C is the Maurer-Cartan form of the Lie group G. In particular if G is a group of

matrices the above equations take the form

A′ =g−1Ag + g−1dg

F′ =g−1Fg
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We will see later that the family of local connection forms determines a covariant

derivative on any associated vector bundle.

Now let V be a linear representation of G given by

ρ : G → GL(V)

and let E = P ×G V be the associated vector bundle. We shall proceed to define a

covariant derivative on E using the connection form of P. This can be done globally if

one considers a section s ∈ C∞(E) as a G-equivariant vector valued function

fs : P→ V

i.e.

fs(p.g) = g−1 f (p)

In general let Ωk(P; W) denotes the set of W-valued k-forms on P that satisfy the following

properties:

(H) ιXα = 0 for any vertical vector X.

(E) g∗α = g−1α.

Note that for a zero-form the property (E) automatically implies the property (H). With

this notation, Ω0(P; W) is the set of G-equivariant W-valued functions on P.

We call θ ∈ Ωk(P; W) a basic k-form. An important result says that the set of basic

forms is invariant under the exterior covariant derivative and we have the map below

well-defined

D : Ωk(P; W)→ Ωk+1(P; W)
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Back to our discussion about an associated vector bundle. In this case we have a linear

representation of G say V and the operator D takes the following expression

Proposition 3.33. For a representation ρ : G → GL(V) and θ ∈ Ωk(P; V) we have

Dθ = dθ + ρ∗(ω) ∧ θ

Also recall that there is a natural correspondence

Ωk(P; V) ∼= Ωk(M; E)

in particular

Ω0(P; V) ∼= Ω0(M; E)

as we mentioned before.

With this setting if the principal bundle P carries a connection one can define a covariant

derivative ∇ on E as follows

Ω0(P; V) Ω1(P; V)

Ω0(M; E) Ω1(M; E)

D = d + ρ∗(ω)

∇

We wish to give a local expression for ∇:

Choose a local section σ : U → P. Then any section s ∈ C∞(E) takes a local expression

s = [σ, f ] where f : U → V

and

∇s = [σ, d f + ρ∗(σ
∗ω) f ]
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since σ∗(ω) = A we can say that locally

∇ = d + A

Moreover if we take a basis ( f1, . . . , fN) of V to get the local sections ψα := [σ, fα] then

the action of ∇ is determined by its action on each ψα.

Remark 3.34. It follows by Proposition 3.32 (the transformation rule for curvature) that

the curvature two form on the principal bundle (globally) defines an End(E)-valued two

form on any associated vector bundle E which is called the curvature operator of the

vector bundle as we introduced before.

Definition 3.35 (Spin Structure). Let M be an n-dimensional oriented Riemannian mani-

fold. Let SO(M) denotes the SO(n)-principal bundle of the orthonormal frames of TM.

A spin structure on M denoted by Spin(M) is a double covering of SO(M) and also a

Spin(n)-principal bundle over M so that the diagram below commutes

Spin(M)× Spin(n) Spin(M)

SO(M)× SO(n) SO(M)

η × ξ η

where η : SO(M) → Spin(M) is a double cover of SO(M) and ξ : Spin(n) → SO(n) is

the double cover of SO(n) discussed in Section 2.2.

Remark 3.36. The existence of a spin structure on M relates to the question that whether

the transition functions gαβ : Uα ∩Uβ → SO(n) have a lift g̃αβ ∈ Spin(n)

Spin(n)

Uα ∩Uβ SO(n)

ξ

gαβ

g̃αβ
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so that they satisfy the cocycle condition

g̃αβ g̃βγ g̃γα = 1

This is a standard problem in algebraic topology and we just state a theorem that provides

us with an answer to this question.

Theorem 3.37 ( [6] Proposition 3.34.). An oriented manifold M has a spin structure if and only

if its second Stieffel-Whitney class w2(M) ∈ H2(M, Z2) vanishes. If this is the case, then the

different spin structures are parametrized by elements of H1(M, Z2).

Definition 3.38. The Spinor bundle (or bundle of spinors) which we denote by /S is the

associated vector bundle of Spin(M) with respect to the spin representation Spin(n)→

GL(∆).

/S = Spin(M)×Spin(n) ∆

Any section s ∈ C∞(/S) can be written locally as

s = [σ̃, f ]

where

σ̃ : U → Spin(M) and f : U → ∆

We shall show that a spinor bundle is a Clifford bundle.

The action of SO(n) on Rn induces an action on Cln since the ideal generated by the

elements v⊗ v + 〈v, v〉 is invariant under the orthogonal transformations.

Hence we have the representation

SO(n)→ Aut(Cln) (3.2)
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This observation leads us to the view that the bundle of Clifford algebras Cl(TM) can be

described as the associated bundle of SO(M) with the above representation.

Cl(TM) = SO(M)×SO(n) Cln

On the other hand we have also the adjoint representation of Spin(n):

Ad : Spin(n)→ Aut(Cln)

g 7→ Adg

Adg(φ) = gφg−1

Since Ad1 = Ad−1 = 1 this representation descends to a representation of SO(n)

Ad′ : SO(n)→ Aut(Cln)

which is the same as the representation in 3.2.

Indeed we can see this if we think of elements of Spin(n) as even numbers of reflections

that generate the group of rotations as we discussed before.

Put all these together we obtain that Cl(TM) is the associated bundle of Spin(M) with

the adjoint representation

Cl(TM) = Spin(M)×Spin(n) Cln.

In particular the tangent space itself is also an associated bundle of Spin(M) if one restrict

the adjoint representation to Rn.

TM = Spin(M)×Spin(n) Rn
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The above discussion prepares the adequate setting to introduce the Clifford bundle

structure of the bundle of spinors.

In fact given s = [σ̃, f ] ∈ /S and X = [σ̃, v] ∈ TM the Clifford action of X on s is

X.s = [σ̃, v. f ]

If we equipped /S with the natural Hermitian metric discussed in 2.28 the above action

becomes skew-adjoint as we wish.

Definition 3.39. The Spinorial connection form on Spin(M) is the unique one-form ω̃

that lifts the Levi-Civita connection form ω of SO(M) so that the following diagram

commutes.

TSpin(M) spin(n)

TSO(M) so(n)

ω̃

ω

η∗ ξ∗

Choose a local section (frame) E = (e1, . . . , en) : U → SO(M) and let A = E∗ω and

F = E∗Ω be the local expressions for the connection and curvature forms of SO(M).

A = −∑
i<j

AijEi f Ej , F = −∑
i<j

FijEi f Ej

The local section E lifts to the section Ẽ : U → Spin(M)

Spin(M)

U SO(M)

η

E

Ẽ

and it is clear from the above diagrams and Proposition 2.31 that
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Proposition 3.40 ( [19] Proposition 4.3.). i. Let Ã = Ẽ∗ω̃ be the gauge field of ω̃, then

Ã = −1
2 ∑

i<j
AijEiEj

ii. Choose an orthonormal basis ( f1, . . . , fN) of ∆ and set ψα := [Ẽ , fα], then

∇ψα =
1
4 ∑

i,j
Ajieiejψα

iii. Let F̃ = Ẽ∗Ω̃ then

F̃ =
1
4 ∑

i,j
FjiEiEj

Consequently the curvature operator K of /S is

K =
1
4 ∑

i,j
Fjieiej =

1
4 ∑

i,j
〈Rei, ej〉eiej

Where R is the (Riemannian) curvature operator of TM.

Proposition 3.41 ( [19] Proposition 4.4.). The spinorial connection is compatible with the

Hermitian metric of /S and the Clifford action. For instance

X〈s1, s2〉 = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉 (3.3)

∇X(Y.s) = (∇XY).s + Y.∇Xs (3.4)
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Proof. To verify 3.3 first suppose that s1 = ψα and s2 = ψβ, then

〈∇Xψα, ψβ〉 =
1
4 ∑

i,j
Aji〈eiejψα, ψβ〉

=
1
4 ∑

i,j
Aji〈ψα, ejeiψβ〉

= −1
4 ∑

i,j
Aji〈ψα, eiejψβ〉

=− 〈ψα,∇Xψβ〉+ X〈ψα, ψβ〉 (since 〈ψα, ψβ〉 = δαβ)

Since

X〈 f s1, s2〉 = X( f )〈s1, s2〉+ f X〈s1, s2〉

Equation 3.3 holds for arbitrary sections as well

The above arguments shows that the spinor bundle with its natural Hermitian metric

and the spinorial connection is a Clifford bundle.

At the end, it follows from Definition 3.16 , Proposition 3.18, and Proposition 3.40

(iii) that

Theorem 3.42. The twisting curvature of the spinor bundle is zero.
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Chapter 4

Analysis of the Dirac Operator and the

Heat Equation

4.1 Sobolev Spaces on Vector Bundles

There are several approaches to define Sobolev spaces of sections. We take advantage

of the assumption that the base manifold is compact and we define the Sobolev spaces

without any direct appeal to the local trivialization. However our definition is local in

essence and one can go back and forth to the vector valued functions on Rn in order to

carry out some calculations.

Let S→ M be a Hermitian vector bundle equipped with a metric connection.

Definition 4.1. We define the space L2(S) to be the completion of C∞(S) with respect to

the L2 inner product

〈s1, s2〉 =
∫

M
〈s1(x), s2(x)〉dx

We are using the Riemann volume measure for integration on M.

Definition 4.2. Since the bundle
⊗p T∗M⊗ S inherits an inner product from the Rieman-

nian metric of M and the Hermitian metric of S we can similarly define, for a positive
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integer k, the Hk inner product on C∞(S)

〈s1, s2〉k =
∫

M
〈s1(x), s2(x)〉+ 〈∇s1(x),∇s2(x)〉+ · · ·+ 〈∇ks1(x),∇ks2(x)〉dx

=〈s1, s2〉+ 〈∇s1,∇s2〉+ · · ·+ 〈∇ks1,∇ks2〉

The Sobolev space Hk(S) is the completion of C∞(S) with respect to the above norm.

We denote the Hk norm or inner product by the subscript k. The absence of subscript

refers to L2.

It is clear from the definitions that

Proposition 4.3. There is a bounded inclusion

Hk′(E) ↪→ Hk(E) for k′ > k

More precisely if φ ∈ Hk′(E) then φ ∈ Hk(E) and ‖φ‖k ≤ ‖φ‖k′ .

Proposition 4.4 ( [11] Proposition 3.1.9. ). If ‖ ‖′k is the Sobolev norm for different choices

of metric on M, metric on S, and connection on S then ‖ ‖′k is equivalent to ‖ ‖k. i.e. there are

constants c1 and c2 such that for any s ∈ C∞(S)

c1‖s‖k ≤ ‖s‖′k ≤ c2‖s‖k

Proof. One can see that the different choices of Riemannian and Hermitian metrics yield

an equivalent norm since

•
√

det g′ dx1 ∧ · · · ∧ dxn =
√

det(g′g−1)
√

det g dx1 ∧ · · · ∧ dxn

• Any two norms on a finite dimensional vector space are equivalent.

• The base space M is compact.
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Now we work out the case that we are given a different connection ∇′ on S. This can

also resembles somehow the nature of the precise proof for the above argument.

We know that the difference ∇′ −∇ is an End(S)-valued one form on M. For instance

∇′ = ∇+ A

where A ∈ Ω1(M; End(S)).

Since M is compact there exists a positive number c such that ‖A(x)s(x)‖ ≤ c‖s(x)‖ for

every s ∈ C∞(S) and x ∈ M. Indeed we can let c = maxx∈M ‖A(x)‖.

Now it follows from the Cauchy-Schwarz inequality that

〈∇′s,∇′s〉 =〈∇s,∇s〉+ 2Re〈∇s, As〉+ 〈As, As〉

≤‖∇s‖2 + c‖∇s‖‖s‖+ c2‖s‖2

Consequently

‖s‖′1 =‖s‖2 + ‖∇′s‖2

≤‖s‖2 + ‖∇s‖2 + c‖∇s‖‖s‖+ c2‖s‖2

≤‖s‖2
1 + c‖s‖2

1 + c2‖s‖2
1

=(1 + c + c2)‖s‖2
1

=c1‖s‖2
1

The proof for the higher Sobolev norms follows by a similar logic.

Proposition 4.5 ( [11] Proposition 3.1.13. ). a. The covariant derivative extends to a

bounded mapping

∇ : Hk(S)→ Hk−1(T∗M⊗ S) for any k ≥ 1
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b. Any vector bundle map L : S→ S′ extends to a bounded map

L : Hk(S)→ Hk(S′) for any k ≥ 0

Proof. The first assertion immediately follows from the definition.

To prove (b) we will show that there exists a constant c such that for any s ∈ C∞(S)

‖Ls‖′k ≤ c‖s‖k (4.1)

We proceed to prove the above statement by induction on k. At the same time we show

that for k ≥ 1

‖[L,∇k]s‖′ ≤ c‖s‖k−1 (4.2)

For k = 0, Equation 4.1 is obvious since M is compact. Similarly, since the commutator

[∇, L] is a bundle map, Equation 4.2 holds for k = 1.

Now, assume that both 4.1 and 4.2 hold for m < k. We can write

[L,∇k] = [L,∇]∇k−1 +∇[L,∇]∇k−2 + . . .∇k−1[L,∇] (4.3)

Since [L,∇] is a bundle map, [L,∇] : Hm → Hm is bounded for m < k by the induction

hypothesis. Hence the above equation along with part (a) imply that [L,∇k] : Hk → L2 is

bounded.

Furthermore
‖∇kLs‖ ≤ ‖L∇ks‖+ ‖[L,∇k]s‖

≤ c(‖∇ks‖+ ‖s‖k−1)

≤ c‖s‖k

and using the induction hypothesis, we obtain
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‖Ls‖k ≤ ‖∇kLs‖+ ‖Ls‖k−1

≤ C(‖s‖k + ‖s‖k−1)

≤ 2C‖s‖k

Remark 4.6. One needs to be careful through the above computations. For instance the

commutators in Equation 4.3 are all different in terms of their domains and codomains,

or the commutator [L,∇k] is including the tensor product of L with the identity map if it

is required.

Theorem 4.7 (Rellich Lemma). ( [13] Lemma 1.1.5.) The inclusion Hk′ ↪→ Hk is compact for

k′ > k.

Proof. As we mentioned before because the Sobolev norms are local objects, in practice

one can imply local reduction to the trivial bundle. So cover M by finite number of charts

(Uα, xα)α with the trivialization of the vector bundle over each Uα. We can choose the

coordinate charts so that xα(Uα) = Bn(1) the unit ball centred at the origin. With the

means of a partition of unity subordinate to our cover any section can be written as

s = ∑m
1 sα where each sα is represented by a vector valued function

sα : Rn → CN

with compact support in Bn(1).

With this preparation the study of sections of S is reduced to the study of sections of the

trivial bundle with compact support.

In fact since the Sobolev norms do not depend on a particular choice of connection one

can use the trivial (flat) connection ∇ = d on the trivial bundle Rn ×CN and it is clear
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that in this case the Hk norm of our compactly supported sections become

‖s‖2
k = ∑

|α≤k
‖Dαs‖2

It is straightforward to show that the above norm is equivalent to the standard Hk norm

which is defined with the means of Fourier transform on the Schwartz class sections as

follows

‖s‖2
k =

∫
Rn

(1 + |ξ|)2k|û(ξ)|2 dξ

Now we get back to the original problem. We have to show that for a bounded sequence

(sn) ⊂ Hk′(Rn) (e.g. ‖sn‖k′ ≤ C ) with compact support in Bn(1), there is a subsequence

that converges in Hk(Rn) for k′ > k. Since Hk′ is complete it suffices to find a Cauchy

subsequence.

If φ is an bump function such that φ|Bn(1) = 1, then sn = φsn and so ŝn = φ̂ ∗ ŝn

ŝn(ξ) =
∫

Rn
φ̂(ξ − η)ŝn(η)dη

It follows by Cauchy-Schwarz that

|ŝn(ξ)|2 ≤
∫

Rn
(1 + |η|)2k′ |ŝn(η)|2 dη

∫
Rn

(1 + |η|)−2k′ |φ̂(ξ − η)|2 dη

= ‖sn‖2
k′K(ξ) ≤ C2K(ξ)

where K is a continuous function defined by the second integral.

The above trick shows that the sequence (ŝn) is equibounded and equicontinuous on

compact sets. Hence by Arzela-Ascoli theorem there is a subsequence, we still denote it

by (ŝn), that converges uniformly on compact sets.
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Then for any positive r

‖sn − sm‖2
k =

∫
|ξ|>r

(1 + |ξ|)2k|ŝn(ξ)− ŝm(ξ)|2 dξ

+
∫
|ξ|≤r

(1 + |ξ|)2k|ŝn(ξ)− ŝm(ξ)|2 dξ

Since

(1 + |ξ|)2k ≤ (1 + r)−2(k′−k)(1 + |ξ|)2k′ for |ξ| > r,

the first integral is bounded by

‖sn − sm‖2
k′

(1 + r)2(k′−k)
≤ 2C

(1 + r)2(k′−k)

which in turn can be made small enough by choosing r large enough.

On the other hand since (ŝn) is uniformly Cauchy on the closed ball Bn(r), the second

integral can also be made small enough by choosing n, m large enough.

Theorem 4.8 (The Sobolev Embedding Theorem). ( [13] Lemma 1.1.4. ) If k′ > k + n
2 , then

there is a continuous embedding

Hk′ ↪→ Ck

Proof. Using the same line of reasoning as we did at the beginning of the previous proof,

it is enough to show that there exists a constant C such that for any s ∈ S(Rn) belonging

to the Schwartz class

‖s‖Ck ≤ C‖s‖k′ for k′ > k +
n
2

where ‖.‖Ck denotes the sup norm on Ck(Rn) defined by

‖s‖Ck = ‖s‖∞,k = sup
Rn

∑
α≤k
|Dαs(x)| for s ∈ S
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First assume that k = 0, we have then for s ∈ S

s(x) =
∫

Rn
eix.ξ ŝ(ξ)dξ

=
∫

Rn
eix.ξ ŝ(ξ)(1 + |ξ|)k′(1 + |ξ|)−k′ dξ

Using Cauchy-Schwarz and the assumption that k′ > n
2 , we obtain

|s(x)| ≤ C‖s‖k′

which implies the desired result for k = 0.

For k > 0, it follows by the above result that

‖Dαs‖∞,o ≤ C‖Dαs‖k′−|α| for |α| ≤ k and k′ > k +
n
2

Moreover

‖Dαs‖k′−|α| ≤ ‖s‖k′

Putting these two inequalities together and summing over α gives the required result.

4.2 Analysis of the Dirac operator

Our goal in this section is to prove that the Dirac operator admits spectral decomposition

on L2(S) and the eigenvectors are smooth (elliptic regularity). We begin by proving two

crucial estimates known as Garding and Elliptic estimates. These are somehow backwards

to the Sobolev and Rellich estimates in the sense that they provide us with some Hk

regularity information of φ in terms of L2 regularities of φ and Dφ.

First recall that the Dirac operator is defined by the composition of three maps

C∞(S)→ C∞(T∗M⊗ S)→ C∞(TM⊗ S)→ C∞(S)
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It then follows from 4.5 that the Dirac operator extends to a bounded operator

D : Hk(S)→ Hk−1(S)

for any k ≥ 1.

Theorem 4.9 (Garding). ( [11] Proposition 3.2.4.) There exists a positive constant C such that

for any u ∈ H1(S)

〈D2u, u〉+ C〈u, u〉 ≥ ‖u‖2
1

Proof. It suffices to establish the above statement for an arbitrary s ∈ C∞(S).

It follows by the Weitzenbock formula

D2s = ∇∗∇s +Ks

that

s +∇∗∇s = D2s− (K− 1)s

Since K is a bundle map , we have

‖s‖2
1 = 〈s, s〉+ 〈∇s,∇s〉 ≤ 〈D2s, s〉+ C〈s, s〉

as we want.

Theorem 4.10 (Elliptic Estimate). ( [11] Proposition 3.2.15.) For any k ≥ 0 there exits a

positive constant Ck such that for any u ∈ Hk+1(S)

‖u‖k+1 ≤ Ck(‖u‖k + ‖Du‖k) (4.4)

Proof. The case k = 0 follows immediately by the Garding’s inequality. We proceed to

prove the general case by induction on k.
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We first claim that the commutator [D,∇] is a bundle map. To see this choose a syn-

chronous frame (e1, . . . , en) with the dual (η1, . . . , ηn). Then at the centre we have

[D,∇] =ηl ⊗ c(ek)∇k∇l − ηl ⊗ c(ek)∇l∇k

=ηl ⊗ c(ek)K(ek, el)

Now we assume that Equation 4.4 holds for m < k and let u ∈ Hk+1(S). By the induction

hypothesis there is Ck−1 > 0 such that

‖∇u‖k ≤Ck−1(‖∇u‖k−1 + ‖D∇u‖k−1)

≤Ck−1(‖∇u‖k−1 + ‖[D,∇]u‖k−1 + ‖∇Du‖k−1)

≤C′k−1(‖u‖k + ‖u‖k−1 + ‖Du‖k)

≤C′′k−1(‖u‖k + ‖Du‖k)

The result will follow if one adds ‖u‖k to the both sides.

Definition 4.11. Let A be an operator on a Hilbert space H. The graph of A is the

subspace of H⊕H defined by

GA := {(x, Ax) : x ∈ Dom(A)}

Lemma 4.12 ( [28] Lemma 5.18. ). Let G denote the graph of the Dirac operator then G is also

a graph.

Proof. Suppose that G is not a graph. This means that there is an obstruction to define

AGx = y for some (x, y) ∈ G. For instance there exists y′ ∈ H = L2(S) such that both

(x, y), (x, y′) lie in G.

Since G is a linear subspace of H⊕H we have got an element (0, z) ∈ G where z is
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non-zero. So there must be a sequence (sn) ⊂ C∞(S) of smooth sections with

sn → 0 and Dsn → z in L2(S)

then for any smooth s,

〈sn, D†s〉 → 0 and 〈Dsn, s〉 → 〈z, s〉 in L2(S)

We can conclude that

〈z, s〉 = 0 for any s ∈ C∞(S)

Hence z = 0, as C∞(S) is dense in L2(S), which is a contradiction.

We denote by D the operator that G defines. The next lemma shows that D is actually

the extension of D to H1(S).

Lemma 4.13. The domain of D is H1(S).

Proof. Let x ∈ Dom(D), then there must be a sequence (sn) ⊂ C∞(S) such that

sn → x and Dsn → y in L2(S)

for some y ∈ L2(S).

By Garding’s inequality 4.9,

‖sn‖1 ≤ C(‖sn‖+ ‖Dsn‖)

which implies that (sn) is a Cauchy sequence with respect to the H1 norm and so defines

an element x′ = [(sn)] ∈ H1(S). Since H1(S) ⊂ L2(S), x′ lies also in L2(S). But x′ = x

since they have a common element, say (sn). We have shown that x ∈ H1(S).

On the other hand if x ∈ H1(S), then x is the equivalence class of some Cauchy sequence
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(sn) ⊂ C∞(S). To put it another way

sn → x in H1(S)

therefore

sn → x in L2(S)

Moreover, ‖Dsn‖ ≤ C‖sn‖1 hence there is some y ∈ L2(S) so that

Dsn → y in L2(S)

Thus x ∈ Dom(D).

Since we do not make any distinction between D and its extensions, we occasionally

drop the bar and we write simply D instead of D.

Definition 4.14 (Weak Solution of a PDE). For x, y ∈ L2(S) we say that Dx = y weakly if

〈x, D†s〉 = 〈y, s〉 for all s ∈ C∞(S)

Definition 4.15 (Smoothing Operators). A bounded operator A ∈ L(L2(S)) is called a

smoothing operator if there exists a smooth kernel k ∈ C∞(S� S∗) such that for any

u ∈ L2(S)

Au(p) =
∫

M
k(p, q)u(q)dq

where S� S∗ := π∗1 S⊗ π∗2 S∗ is the bundle over M×M defined by using the pull backs

of the projections

M×M
π1,π2−−−→ M

Definition 4.16 (Friedrich Mollifier). A Friedrich mollifier for S is a family of self-adjoint,

bounded operators {Fε}ε∈(0,1) on L2(S) such that
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(i) [B, Fε] extends to a bounded family of operators on L2(S), for any first order

differential operator B on S.

(ii) Fε → 1 in the weak topology of L(L2(S)). More precisely for any x, y ∈ L2(S),

〈Fεx, y〉 → 〈x, y〉 as ε→ 0

One can show that a Friedrich mollifier exists for S.

Proposition 4.17 ( [28] Proposition 5.22. ). Suppose that Dx = y weakly. Then x ∈ H1(S)

and D(x) = y.

Proof. Let Fε be a Friedrich mollifier, and let xε = Fεx. Then xε is smooth and for any

smooth section s we have

|〈Dxε, s〉| =|〈xε, D†s〉|

=|〈x, FεD†s〉|

≤|〈x, D†Fεs〉|+ |〈x, [Fε, D†]s〉

≤|〈y, Fεs〉|+ |〈x, [Fε, D†]s〉

≤c1‖y‖‖s‖+ c2‖x‖‖s‖

This shows that there exists a constant C such that

|〈Dxε, s〉| ≤ C‖s‖ for any ε ∈ (0, 1)

Since for any element x ∈ E of a Banach space

‖x‖ = sup
l∈E′,‖l‖≤1

|〈l, x〉|
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and C∞(S) is dense is L(S), we can conclude that

‖Dxε‖ ≤ C for any ε ∈ (0, 1)

Now it follows by Garding’s inequality 4.9 that {xε}ε∈(0,1) is a bounded subset of

H1(S). Since any closed ball is compact in the weak topology of H1(S), there must be a

subsequence xn = xεn with εn → 0 so that xn → x0 weakly in H1(S). Weak convergence

in H1 implies weak convergence in L2 since the map u 7→ 〈 f , u〉 defines a bounded

functional on H1 for any f ∈ L2. So we can deduce that

xn → x0 weakly in L2(S).

On the other hand, for any y ∈ L2(S)

〈xn, y〉 = 〈Fεn x, x〉 → 〈x, y〉

hence x = x0 ∈ H1(S).

Remark 4.18. For A an unbounded operator on a Banach space X, Let A′ denote the

adjoint of A. Recall that φ ∈ Dom(A′) if there exists ψ ∈ X′ such that

ψ(x) = φ(Ax) for every x ∈ Dom(A)

In Section 3.1 we saw that the Dirac operator is symmetric. Now the above lemma

implies that the Dirac operator is in fact self adjoint in the sense of unbounded operators

on a Hilbert space.

Indeed as we are working on the Hilbert space H = L2(S), if x ∈ Dom(D′) there must be
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y ∈ H such that

〈x, Ds〉 = 〈y, s〉 for any s ∈ C∞(S)

that is Dx = y weakly. Hence by the above lemma x ∈ H1(S) and so Dom(D′) ⊂ H1(S).

Similarly one can also show that H1(S) ⊂ Dom(D′).

Let ker(D) = {x ∈ H1(S) : Dx = 0}, Then we have an important regularity result:

Theorem 4.19 (Elliptic Regularity). ( [28] Proposition 5.24. ) The kernel of Dirac operator

consists of smooth sections.

Proof. Let u ∈ ker(D). We use induction to show that

u ∈ Hn(S) for all n

which implies - by the Sobolev embedding- that u is smooth.

We already know that u ∈ H1. Now assume that u ∈ Hn−1. One can show (by induction

and using the elliptic estimate) that Fε and [D, Fε] both define bounded operators on each

Sobolev space Hk(S). If u = [(sn)] We can use the elliptic estimate to obtain

‖Fεsn‖k ≤Ck(‖Fεsn‖k−1 + ‖DFεsn‖k−1)

=Ck(‖Fεsn‖k−1 + ‖[D, Fε]sn‖k−1) since Dsn = 0

which shows that Fεu ∈ Hk for any ε ∈ (0, 1).

With the same logic as in the proof of Proposition 4.17 the sequence un = Fεn u -for some

appropriate εn → 0- weakly converges to some element of Hk both in Hk and in L2.

But un → u weakly in L2 by the second property of a mollifier. Hence u ∈ Hk as

desired.

Remark 4.20. One can modify the proof of the elliptic estimate for the Dirac operator so

that the statement holds for any generalized Dirac operator as well. By a generalized

84



Dirac operator we mean a first order differential operator D such that

D2 = ∇∗∇+ B

where B is a first order differential operator. Consequently elliptic regularity also holds

for a generalized Dirac operator. For more details see [28] chapter 5.

Lemma 4.21 ( [28] Lemma 5.25. ). Let H = L2(S) and J : H⊕H → H⊕H denotes the map

(x, y) 7→ (y,−x). Then there exists an orthogonal decomposition

H⊕H = G⊕ JG (4.5)

where G is the graph of the Dirac operator.

Proof. If (x, y) ∈ G⊥, then

〈(x, y), (s, Ds)〉 = 0 for every s ∈ C∞(S)

In other words,

〈x, s〉+ 〈y, Ds〉 = 0 for every s ∈ C∞(S)

But this means that Dy = −x weakly since the Dirac operator is self adjoint. Hence

Dy = −x and (x, y) ∈ JG.

Now using the above lemma, we define the operator

Q : H → H

x 7→ Qx

where Qx is determined so that (Qx, DQx) is the orthogonal projection of (x, 0) onto G

in the decomposition 4.5.
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First we note that Q is a bounded operator. In fact by the above decomposition

‖Qx‖ ≤ ‖x‖ and so ‖Q‖L(H) ≤ 1.

Furthermore, it is clear that Q maps H = L2(S) into H1(S) and it follows by Garding’s

inequality that

‖Qx‖1 ≤ C(‖Qx‖+ ‖DQx‖) ≤ C‖x‖

Therefore, Q is a bounded map from L2(S) to H1(S) and by Rellich’s lemma it must be a

compact operator on L2(S).

This is a fantastic result for us towards obtaining the spectral decomposition of D.

One can also verify that Q is an injection. Indeed if Qx = Qy, then by the above

decomposition

(x, 0) = (Qx, DQx) + (D2Qx,−DQx) = (y, 0)

which shows that y = x.

Moreover since x = Qx + D2Qx,

〈Qx, x〉 = 〈Qx, Qx + D2Qx〉 =〈Qx, Qx〉+ 〈Qx + D2Qx〉

=‖Qx‖2 + ‖DQx‖2 ≥ 0

which shows that Q is positive and self-adjoint.

The above argument enables us to get into the main result of this section:

Theorem 4.22 (Spectral Theorem). ( [28] Theorem 5.27.) There is a direct sum decomposition

of H into a countable number of orthogonal subspaces Hλ. Each Hλ is a finite dimensional

subspace of smooth sections, and is an eigenspace for D with eigenvalue λ. The eigenvalues form a

discrete subset of real numbers.
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Proof. It follows by the spectral theorem for compact, self-adjoint operators that

H =
∞⊕

i=1

Hλi

where each Hλi is a finite dimensional eigenspace of Q and the set of eigenvalues is a

discrete subset of R with the accumulation point zero. The eigenvalues are in fact positive

since Q is a positive injection.

If x is eigenvector for Q, with eigenvalue ρ > 0, by lemma 4.21 there exists y ∈ H1(S)

such that

(x, 0) = (Qx, DQx) + (−Dy, y)

In fact y = −DQx = −ρDx ∈ H1 and we get

(x, 0) = ρ2(x, Dx) + ρ2(D2x,−Dx).

Now, let λ =
√

1−ρ
ρ and z = 1

λ Dx, then we will have

Dx = λz and Dz = λx.

Therefore, x + z and x− z are eigenvectors of D with eigenvalues λ and −λ respectively.

Thus we can write H as an orthogonal direct sum of eigenspaces of D.

Furthermore each eigenvector must be smooth since it belongs to the kernel of the

generalized Dirac operator D− λ. (see Remark 4.20.)

Once we obtain the above spectral decomposition for the Dirac operator we can write

any section s ∈ L2(S) as a Fourier expansion

s = ∑
n

cnφn = ∑
n
〈s, φn〉φn
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or simply

s = ∑
λ∈σ(D)

sλ

where sλ is the orthogonal projection of s into the span{φλ}.

We proceed to develop an appropriate functional calculus using the Fourier expansion.

Proposition 4.23 ( [28] Proposition 5.29. ). A section s ∈ L2(S) is smooth if and only if

‖sλ‖ = O(|λ|−k) for any k.

Proof. Suppose that ‖sλ‖ = O(|λ|−k) for each k. It follows by the elliptic estimate that

‖sλ‖p ≤ C(1 + λ)p‖sλ‖ ≤ C′(1 + λp)‖sλ‖

Since ‖sλ‖ is a rapidly decreasing function of λ the Fourier expansion converges in each

Hp space which implies that s is smooth.

Now for a function f which is bounded on σ(D) we can define the operator f (D) by

setting

f (D)s = ∑
λ∈σ(D)

f (λ)sλ

It is clear that f (D) is a bounded operator on L2(S), and by the above proposition it

maps smooth sections to smooth sections.

A crucial question for us to study is that whether and under what conditions f (D) is

a smoothing operator.

We first note that we can write f (D) in terms of projections

f (D) = ∑
λ

f (λ)Pλ
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Moreover each projection Pλ is a smoothing operator. In fact

Pλs(x) =〈φλ, s〉φλ(x)

=
∫

M
φλ(x)〈φλ(y), s(y)〉dy

=
∫

M
Kλ(x, y)s(y)dy

where Kλ(x, y) = φλ(x)⊗ φ[
λ(y) is the kernel of Pλ.

We claim that if f is rapidly decreasing then f (D) will be a smoothing operator. To justify

this we first note that we can formally write

f (D)s(x) =
∫

M
K f (x, y)s(y)dy

where K f = ∑λ f (λ)Kλ.

Since ‖Kλ‖p ≤ ‖φλ‖2
p ≤ C(1+ |λ|2p) and f is rapidly decreasing the above sum converges

in each Hp space. So K f is smooth as we asserted. We can now summarize the above

discussion in the following theorem:

Theorem 4.24 ( [28] Proposition 5.30. ). (i) The map f 7→ f (D) is a homomorphism from

the ring of the bounded functions on σ(D) to B(H). Moreover f (D) maps C∞(S) to

C∞(S).

(ii) If f is rapidly decreasing the operator f (D) is a smoothing operator and the mapping

f 7→ K f is continuous from S(R) to C∞(S� S∗).

4.3 Hodge Theorem and Bochner Theorem

In this section we will show that how the study of Dirac operator reveals some intercon-

nections between the geometry and topology of the base manifold. In fact Bochner’s

theorem says that if the first Betti number of a compact Riemannian manifold is not zero,
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then the manifold has no metric of positive Ricci curvature. The main ingredients to

prove this are Weitzenbock’s formula and the Hodge theorem.

We begin first by defining Dirac complexes which are a generalization of the de Rham

complex.

Definition 4.25 (Dirac complex). Let M be a compact oriented Riemannian manifold,

and let S0, S1, . . . , Sk be a sequence fn Hermitian vector bundles over M equipped with

metric connections. Suppose given differential operators dj : C∞(Sj) → C∞(Sj+1) such

that dj+1dj = 0. This is called a Dirac complex if S =
⊕

Sj is a Clifford bundle whose

Dirac operator is d + d∗.

As we saw in Section 3.2 the de Rham complex is an example of a Dirac complex.

Theorem 4.26 (Hodge Theorem). ( [28] Theorem 6.2.) Each cohomology class of a Dirac

complex contains a unique harmonic representative. (e.g. a section s ∈ C∞(Sj) thats satisfies

D2s = 0.)

In fact the cohomology class H j is isomorphic as a vector space to the space of harmonic sections of

Sj.

Proof. Let Hj be the subspace of harmonic sections of C∞(Sj). Then the H’s form a

subcomplex of the Dirac complex with trivial differential.

Since any harmonic section is closed the inclusion map ı : Hj → C∞(Sj) defines a chain

map. We shall show that it is also a chain equivalence between these two complexes.

Hj−1 Hj Hj+1

C∞(Sj−1) C∞(Sj) C∞(Sj+1)

0 0

dj−1 dj

ı ı ı
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Let P : C∞(Sj)→ Hj be the restriction to C∞(Sj) of the orthogonal projection L2(Sj)→ Hj.

Then Pı = 1, and ıP = 1− f (D). Where

f (λ) =


1 If λ 6= 0

0 If λ = 0

Although ıP is not equal to identity, it is enough to find a chain homotopy between ıP

and 1.

To this end we define G = g(D) where

g(λ) =


λ−2 If λ 6= 0

0 If λ = 0

Then D2G = f (D) = 1− ıP. We note that G commutes with d since D commutes with

d. So D2G = (dd∗ + d∗d)G = dδ + δd, where δ = d∗G. This shows that δ defines a chain

homotopy between ıP and 1.

C∞(Sj−1) C∞(Sj) C∞(Sj−1)

C∞(Sj−1) C∞(Sj) C∞(Sj+1)

dj−1 dj

dj−1 dj

ıP ıP ıP1 1 1
δ δ

Now we have everything we need to prove Bochner theorem. We first state and prove

a helpful lemma.

Lemma 4.27 ( [28] Lemma 6.8. ). Consider the bundle
∧∗ T∗M as a Clifford bundle. Then the

restriction of the Clifford contraction of the curvature (see 3.8 for the definition) to one-forms is

the Ricci curvature operator.
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Proof. Let (e1, . . . , en) be an orthonormal frame for the tangent bundle with the dual

(η1, . . . ηn).

Note that we have the natural isomorphisms

Cl(TM)
θ−→
∗∧

TM [−→
∗∧

T∗M

In fact these three vector bundles are all the same Clifford bundle but with different

Clifford actions. For clarity let us denote the Clifford actions of a vector e on
∧∗ TM, and∧∗ T∗M by c(e) and c′(e) respectively. Also let K and K′ denote the Clifford contraction

of the curvature for these two bundles. Using the above identifications it follows by

Lemma 3.19 that

K′ηk = (K(ek))
[ ={1

2 ∑
i,j

c(ei)c(ej)R(ei, ej)ek}[

={1
2 ∑

i,j,l
c(ei)c(ej)Rlkijel}[

={1
2 ∑

i,j,l
Rlkijθ(eiejel)}[

{∑
j

Rickjej}[

∑
j

Rickjηj

Theorem 4.28 (Bochner). ( [28] Theorem 6.9.) Let M be a compact oriented manifold whose first

Betti number is nonzero. Then M does not have any metric of positive Ricci curvature.

Proof. Since H1
dR is not trivial, by Hodge theorem there should exist a harmonic one form

ω. It then follows by Weitzenbock formula that

〈Kω, ω〉 = −‖∇ω‖2 ≤ 0
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We can conclude, using the above lemma, that there is no metric of positive Ricci

curvature.

4.4 The Heat Kernel and Its Asymptotic Expansion

Definition 4.29. Let S be a Clifford bundle. The heat equation for D is the partial

differential equation
∂

∂t
s + D2s = 0

Proposition 4.30. For any given intial data ψ ∈ L2(S) the Cauchy problem for the heat equation

has a unique smooth solution st. The solution exists for all t > 0 and it satisfies ‖st‖ ≤ ‖ψ‖.

Moreover

lim
t 7→0+

st = ψ in L2

and if ψ is smooth, then

lim
t→0+

st = ψ

in the C∞ topology.

Proof. Using the operational calculus we developed at the end of previous section, let

st = e−tD2
ψ = ∑

λ

e−tλ2
ψλ (4.6)

for t > 0. Then st ∈ C∞(S) since the function λ 7→ exp(−tλ2) is rapidly decreasing for

t > 0.

We have to first verify that one can differentiate Equation 4.6 with respect to t to find

that st depends smoothly on t and satisfies the heat equation.
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Using the Elliptic estimate we get

‖[ e
−(t+h)D2 − e−tD2

h
− D2e−tD2

]ψ‖k

≤ C(‖[ e
−(t+h)D2 − e−tD2

h
− D2e−tD2

]ψ‖+ ‖Dk[
e−(t+h)D2 − e−tD2

h
− D2e−tD2

]ψ‖

But

‖Dk[
e−(t+h)D2 − e−tD2

h
− D2e−tD2

]ψ‖2 = ∑
λ

[λk+2e−tλ2
(

e−hλ2 − 1
hλ2 − 1)]2‖ψ‖2

Since [λk+2e−tλ2
( e−hλ2−1

hλ2 − 1)]2 is bounded and also approaches zero uniformly in λ as h

goes to zero, and ∑λ ‖ψλ‖2 < ∞ we can use Lebesgue’s dominated convergence theorem

to conclude that the above sum goes to zero as h → 0 for any k ∈ N. This argument

establishes the convergence of the heat equation in every Hk and Consequently in C∞

topology.

For the uniqueness part we note that

‖st‖2 = ∑
λ

e−2tλ2‖ψλ‖ ≤ ‖ψ‖2

which actually implies the uniqueness.

Now we study the behavior of the solution st when t approaches zero.

‖st − ψ‖2 = ‖(e−tD2 − 1)ψ‖2 = ∑
λ

(e−tλ2 − 1)2‖ψλ‖2 ≤∑
λ

‖ψλ‖2 < ∞

Therefore by the Lebesgue’s dominated theorem we can conclude that

lim
t→0+

st = ψ
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in L2.

If ψ is smooth, using the same techniques, we can show that

lim
t→0+

st = ψ

in each Hk and therefore in C∞ topology.

From Theorem 4.24 we know that e−tD2
is a smoothing operator and there is a

time-dependent kernel kt ∈ C∞(S� S∗) called the heat kernel such that

e−tD2
ψ(p) =

∫
M

kt(p, q)ψ(q)dq

for all t > 0.

Proposition 4.31 ( [28] Proposition 7.6. ). The heat kernel kt has the following properties.

(i) For each fixed q the section p 7→ kt(p, q) of S
⊗

S∗q satisfies the heat equation

(
∂

∂t
+ D2

)
kt(., q) = 0

(ii) For each smooth section s, ∫
M

kt(p, q)s(q) dq→ s(p)

uniformly in p as t→ 0+.

Moreover, the heat kernel is the unique time-dependent section of S� S∗ which is C2 in the

spatial variables, C1 in time, and has the above properties.

Proof. Since

Kt(p, q) = ∑
λ

e−tλ2
φλ(p)⊗ φ[

λ(q)
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applying the same logic as we used in the previous proof shows that the heat kernel

satisfies the heat equation

[
∂

∂t
+ D2]kt(., q) = 0

Furthermore if s ∈ C∞(S), then

lim
t→0+

∫
M

kt(p, q)s(q)dq = lim
t→0+

∫
M

∑
λ

e−tλ2
φλ(p)⊗ φ[

λ(q)s(q)dq

=∑
λ

〈φλ, s〉φλ(p) = s(p)

In fact

∑
λ

〈φλ, s〉φλ → s

in C∞ topology. In particular

‖∑
λ

〈φλ, s〉φλ(p)(e−tλ2 − 1)‖ → 0 as t→ 0+

uniformly in p.

For the uniqueness, suppose that kt has theses properties and let {Kt}t>0 be the family of

smoothing operators with kernels kt. Then it follows by the uniqueness for solutions of

the heat equation that

Kts = e−(t−ε)D2
Kεs

for every positive ε.

By property (ii) above, for any smooth section s, Kεs → s uniformly as ε → 0 also

e−(t−ε)D2 → e−tD2
in the norm topology of B(L2(S)) as ε→ 0, So we have

Kts = e−(t−ε)D2
Kεs→ e−tD2

s
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for any smooth s.

Since smooth sections are dense in L2(S), we have proved that Kt = e−tD2
.

Definition 4.32. Let m be a positive integer. An approximate heat kernel of order m is a

time-dependent section k′t of S� S∗ which is C1 in time and C2 in spatial variables and

satisfies property (ii) in the previous proposition, and also approximately satisfies the

heat equation in the sense that

(
∂

∂t
+ D2

)
k′t(., q) = tmrt(., q)

where rt is a Cm section of S� S∗ and depends continuously on t for t ≥ 0.

Proposition 4.33 (Duhamel’s Principle). [ [28] Proposition 7.9. ] Let st be a continuously

varying C2 section of S. Then there is a unique smooth section s̃t of S, differentiable in t and with

s̃0 = 0, satisfying the inhomogeneous heat equation

(
∂

∂t
+ D2

)
s̃t = st

In fact s̃t is given by the integral formula:

s̃t =
∫ t

0
e−(t−t′)D2

st′ dt′

Proof. uniqueness follows from the uniqueness of the homogeneous heat equation. For

the existence we can differentiate the integral formula to get

∂

∂t
s̃t = st +

∫ t

0

(
− D2e−(t−t′)D2

st′
)

dt′ = st − D2s̃t
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Corollary 4.34 ( [28] Corollary 7.10. ). For each k ∈N there is an estimate in Sobolev norms

for the solution of the inhomogeneous heat equation of the form

‖s̃t‖k ≤ tCk sup
t′∈[0,t]

‖st′‖k

Proof. This follows once we know that the operators e−tD2
are uniformly bounded in each

Hk for t ≥ 0.

To justify the latter we can use the elliptic estimate and we get

‖e−tD2
φ‖k ≤ C

(
‖e−tD2

φ‖+ ‖Dke−tD2
φ‖
)

≤ C
(
|λ 7→ e−tλ2 |∞ + |λ 7→ λke−tλ2 |∞

)
‖φ‖

≤ C′‖φ‖

≤ C′‖φ‖k

Proposition 4.35 ( [28] Proposition 7.11. ). Let kt denote the true heat kernel. For every m

there exists m′ ≥ m such that, if k′t is an approximate heat kernel of order m′, then

kt − k′t = tmet

where et ∈ Cm(S� S∗), and it depends continuously on t ≥ 0.

Proof. Take m′ > m + 1
2dim M. By definition, the approximate heat kernel k′t satisfies the

equation (
∂

∂t
+ D2

)
k′t(., q) = tmrt(., q)
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where tt is a Cm error term.

Let st(., q) be the unique solution (depending on q) to the inhomogeneous heat equation

(
∂

∂t
+ D2

)
st(., q) = −tmrt(., q)

with s0 = 0. It follows by the uniqueness of the heat kernel that

k′t(p, q) + st(p, q) = kt(p, q)

as k′t(p, q) + st(p, q) satisfies both properties of Proposition 4.31.

It suffices to define

et =


st

tm t 6= 0

0 t = 0

The Sobolev embedding completes the proof since ‖st‖m′ ≤ Ctm′+1 by the above corollary.

We are going to build an asymptotic expansion for the heat kernel from the local data.

Before that we need to do some helpful calculations.

Let us fix a point q, and take the normal coordinate
(
U, x = (x1, . . . , xn)

)
around q.

Let r2 = ∑(xi)2, and ht(p, q) = (4πt)−n/2e−r2(p)/4t. One can show that:

Lemma 4.36 ( [28] Lemma 7.12. ). We have the following expressions for the derivatives of h.

(a) grad(h) = − h
2t

r
∂

∂r

(b)
∂

∂t
h + ∆h =

rh
4gt

∂

∂r
g, where g = det(gij) is the determinant of the metric.

We need also some calculations about the commutator of the Dirac operator with the

(pointwise) multiplication operator by smooth functions.

Lemma 4.37 ( [28] Lemma 7.13. ). For any smooth function f ∈ C∞(M) we have
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(a) [D, f ] = c(grad( f )), where c denotes the Clifford action.

(b) [D2, f ] = ∆ f − 2∇grad( f ).

Proof. Choose an orthonormal frame synchronous at a point p ∈ M, then for any smooth

section s, we have

D( f s) = ∑ ei∇i( f s) = f ∑
i

ei∇is + ∑
i

ei( f )ei.s = f Ds + c(grad( f ))s

at the point p.

For part (b), a similar computation gives

D2( f s) = f ∑
i,j

eiej∇i∇js + ∑
i,j

ei(ej( f ))eiejs + ∑
i,j

eiej
(
ei( f )∇js + ej( f )∇is

)
= f D2s + ∆ f s− 2∇grad( f )s

since eiej + ejei = −2δij.

Definition 4.38. Let f be a function on R+ with values in a Banach space E. A formal

series

f (t) ∼
∞

∑
k=0

ak(t)

where ak : R+ → E, is called an asymptotic expansion for f near t = 0 if for each positive

integer n there exists an ln such that for all l ≥ ln there is a constant Cl,n such that

‖ f (t)−
l

∑
k=0

ak(t)‖ ≤ Cl,ntn

for sufficiently small t.

Now one can show how to build an asymptotic expansion for the heat kernel.

Theorem 4.39 ( [28] Theorem 7.15. ). Let M be a compact Riemannian manifold equipped with

a Clifford bundle S and Dirac operator D. Let kt denote the heat kernel of M. Then
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(i) There is an asymptotic expansion for kt, of the form

kt(p, q) ∼ ht(p, q)
(
Θ0(p, q) + tΘ1(p, q) + t2Θ2(p, q) + . . .

)
where Θj are smooth sections of S� S∗.

(ii) The expansion is valid in the Banach space Cr(S� S∗) for any r ∈N.

(iii) The values Θj(p, p) of the sections Θj along the diagonal can be computed by algebraic

expressions involving the metric and connection coefficients, and their derivatives, of which

the first is Θ0(p, q).
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Chapter 5

Getzler Calculus and the Index Problem

5.1 Super Structure on Clifford Modules

In this section we pay careful attention to the Z/2Z grading of Clifford modules. This

enables us to define the supertrace of both the global heat semi-group operator e−tD2

and the local heat kernel operator kt and eventually yields huge cancellations in the

asymptotic terms of the heat kernel. The remaining term turns out to give important

topological invariants namely the Â genus of M coupled with its Chern character.

From now on we assume that the dimension of the base manifold is even. We first recall

that when n is even the Spin(n) representation ∆ admits a super grading

∆ = ∆+ ⊕ ∆−

The grading operator is given by

ω = i
n
2 e1 . . . en

an involution of ∆ with ∆± its ±1 eigenspaces.

The super structure of ∆ naturally induces a super structure on any Clifford module.
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Indeed if W is a Clifford module we can decompose it as

W = ∆⊗V

where V is an axillary vector space that can obtained via V = HomCln(∆, W).

Now we can build a super structure on W as follows

W = W+ ⊕W− = (∆+ ⊗V)⊕ (∆− ⊗V)

Accordingly for any a ∈ End(W) the super trace of a, denoted by Str(a), is defined to be

Str(a) = tr(εa)

where ε denotes the grading operator of W. In terms of matrix notation we have

Str

a11 a12

a21 a22

 = tr(a11)− tr(a22)

If a, b are homogeneous elements of End(W) the super commutator [a, b]s is defined by

[a, b]s = ab− (−1)|a||b|ba

where |a| = 0 if a ∈ End(W)+, and |a| = 1 if a ∈ End(W)−.

Proposition 5.1 ( [11] Lemma 5.1.7.). The super trace vanishes on super commutators.

Proof.

Str[a, b]s =tr
(
εab− (−1)|a||b|εba

)
=tr
(
εab− bεa + bεa− (−1)|a||b|εba

)
=
(
(−1)|b| − (−1)|a||b|

)
tr(εba)
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The first term above vanishes unless b is odd and a is even, in which case tr(εba) is

zero.

The parallel constructions go on on the level of Clifford bundles and their sections.

For instance, if S is a Clifford bundle

Sx = ∆⊗V = (∆+ ⊗V)⊕ (∆− ⊗V)

and

S = /S ⊗ V where V = HomCl(TM)(/S, S)

Also

End(Sx) = Cl(Tx M)⊗ End(V), End(V) = EndCl(Tx M)(Sx)

It is clear from this setting that

Proposition 5.2. If a = c⊗ F ∈ End(Sx), where c ∈ Cl(Tx M) and F ∈ End(V), then

Str(a) = Str(c)tr(F)

The next result gives the super trace of an element of a Clifford algebra. This is a

crucial part of the index problem as it is revealed later.

Proposition 5.3 (Berezin Formula). ( [28] Lemma 11.5.) Let c = ∑I⊂{1,...,n} cIeI be an element

of Cln. If we consider c as an element of End(∆), then

Str(c) = (−2i)
n
2 c{1,2,...,n}
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Proof. Since n is even we let n = 2k. We will show that

Str(eI) =


(−2i)k if I = {1, 2, . . . , n}

0 otherwise

When I = {1, 2, . . . , n} by the definition of the supertrace we have

Str(eI) = tr(ωeI) = tr(ikeIeI) = (−i)ktr(1) = (−i)kdim ∆ = (−2i)k

Now if I 6= {1, 2, . . . , n} choose i ∈ {1, 2, . . . , n}r I. One can show that

eI = −
1
2
[ei, eieI ]s

It then follows by Proposition 5.1 that Str(eI) = 0.

5.2 McKean-Singer Formula

Now we are going to investigate how the Dirac operator adjusts itself to this new

superstructure. If S is a Clifford bundle we saw that S has a Z/2Z grading S = S+ ⊕ S−,

where S± = S = /S ⊗ V and V = HomCl(TM)(/S). In accordance with this decomposition

we get a decomposition for the sections

C∞(S) = C∞(S+)⊕ C∞(S−)

and

L2(S) = H = H+ ⊕H−
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Since the Clifford action of any vector switches the grading, the Dirac operator is an odd

operator and takes the form

D =

 0 D−

D+ 0


where D± are the restrictions of Dirac to C∞(S±) respectively. Moreover D− = D† as

Dirac is self adjoint. For the sake of simplicity we use the notation D = D+. Then we

have

D =

0 D†

D 0

 and D2 =

D†D 0

0 DD†


It follows by the ellipticity of D†D and DD† that D is a Fredholm operator and

Ind D = dim ker D− dim ker D† (5.1)

Indeed one can show that H+ and H− enjoy spectral decompositions with respect to the

elliptic operators D†D : H+ → H+ and DD† : H− → H−. Also the eigenspaces consist of

smooth sections and have finite dimension. Since ker D = ker D†D and ker D† = ker DD†,

they are both finite.

The operator D provides an isomorphism between the non-zero eigenspaces of D†D

and the non-zero eigenspaces of DD†. In fact if we let H±λ denote the λ- eigenspaces of

H±, for λ 6= 0. Then s ∈ H±λ implies that Ds ∈ H∓λ . So we get the maps D : H±λ → H
∓
λ

which are clearly injective and therefore must be isomorphisms.

Intuitively

dim H+
0 − dim H−0 =(dim ker D+ ∑

λ 6=0
dim H+

λ )− (dim ker D† + ∑
λ 6=0

dim H−λ )

=dim ker D− dim ker D†

=Ind D
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We provide a more rigorous proof of this idea:

Proposition 5.4 (McKean-Singer). ( [28] Proposition 11.9.) Let f : R+ → R be a function that

belongs to the Schwartz class with f (0) = 1. Then Ind D = Str( f (D2)), in particular

Ind D = Str(e−tD2
)

for t > 0.

Proof. Since the spectrum of D is discrete we can write the projection P onto the kernel

of D as P = α(D) where α ∈ C∞
0 (R) and is even, for instance α(x) = β(x2) for some

β ∈ C∞
0 (R) with β(0) = 1. Now for f explained above we have

Str( f (D2)) = Str( f (D2)− β(D2) + β(D2)) =Str( f (D2)− β(D2)) + Str(β(D2))

=Str(β(D2))

=Ind D

provide that Str(g(D2)) = 0 for g rapidly decreasing with g(0) = 0.

To prove the latter we can write g(x) = xh(x) = xh1(x)h2(x) where h, h1, h2 are rapidly

decreasing. Then

g(D2) = D2h(D2) =
1
2
[Dh1(D), Dh2(D)]s

and it follows by Proposition 5.1 that Str(g(D2)) = 0.

The significance of McKean-Singer formula lies in the idea that it describes the index

which is a purely analytic object in terms of the trace of the heat equation smoothing

operator which is still analytic. However once we can relate the trace of a smoothing

operator to the trace of its heat kernel we then can see the interconnection between

analysis of D with the geometry of the base manifold and the Clifford bundle; as the heat

kernel is computed from local geometric data.
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In the remaining part of this section, our aim is to study the relation between the trace of

a smoothing operator and the trace of its heat kernel.

Proposition 5.5 ( [11] Proposition 5.2.5.). Let k+t (q, q) : S+
q → S+

q be the restriction of the

heat kernel kt(q, q) to S+
q . Then

tr e−tD†D =
∫

M
tr k+t (q, q) dq

Proof. As we mentioned before H+ has an orthonormal basis {s+λ }λ∈spec(D†D) consisting

of the (smooth) eigensections of D†D.

Since for any e ∈ S+
q

k+t (p, q)e = ∑
λ

e−tλs+λ (p)〈s+λ (q), e〉

we can compute the local trace

tr k+t (q, q) =
n

∑
i=1
〈k+t (q, q)ei, ei〉 = ∑

λ

e−tλ|s+λ (q)|
2

Integrating the above expression over M and switching the sum with the integral leads to

∫
M

tr k+t (q, q)dq =∑
λ

e−tλ
∫

M
|s+λ (q)|

2 dq

=∑
λ

e−tλ

=tr e−tD†D

Doing the same type of computation for the negative part and subtracting the results,

we obtain
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Theorem 5.6 (McKean-Singer). ( [11] Corollary 5.2.11.)

Ind D = Str(e−tD2
) = tr e−tD†D − tr e−tDD†

=
∫

M
tr k+t (q, q)− tr k−t (q, q) dq

=
∫

M
Str kt(q, q) dq

Using the heat kernel asymptotic 4.39 gives us

Ind D = Str(e−tD2
) ∼ 1

(4πt)n/2

( ∫
M

Str Θ0(q, q)dq + t
∫

M
Str Θ1(q, q)dq + . . .

)

At this point something quite fascinating happens: The index is obviously a constant

integer; as a result , there is a huge amount of cancellations in the above integral and only

one term will remain.

Proposition 5.7. The index of the operator D = D+ can be computed by the means of local

geometric data:

Ind D =
1

(4π)n/2

∫
M

Str Θn/2(q, q) dq

5.3 Filtered Algebras and Symbols

So far we know that Ind D can be computed from the local data once we have the Clifford

top part of the asymptotic term Θn/2(q, q) ∈ End(Sq). The Getzler calculus provides us

with an organized way of this crucial computation with the means of defining symbols

for both differential and integral operators. The basic ideas lie on the notions of filtered

and graded algebras and the symbol maps between them.

Definition 5.8. A graded algebra is an algebra A with a direct sum decomposition

A =
⊕

m∈Z Am such that Am Am′ ⊂ Am+m′ .

Example 5.9. The exterior algebra
∧∗ V and the polynomial algebra C[t] are two examples

of graded algebras.
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Definition 5.10. An algebra A is said to be a filtered algebra if there is a nested family of

subspaces {Am}m∈Z with Am ⊂ Am+1, and such that Am Am′ ⊂ Am+m′ .

Example 5.11. In Section 2.1 we saw that a Clifford algebra is a filtered algebra.

Example 5.12. The algebra D(S) of differential operators on a vector bundle S is another

example of a filtered algebra. This algebra is generated by the elements of Ω0(M, End(S))

as zero ordered terms, and the covariant derivatives as first ordered terms. So we have

the filtration

Dm = Ω0(M, End(S)) span{∇X1 , . . . ,∇Xj}j≤m

Example 5.13 (Weyl Algebra). The Weyl algebra is another important example of a graded

algebra. It is denoted by P(V) and it consists of all differential operators on the vector

space V with polynomial coefficients. The degree of the operator xα ∂

∂xβ
is |β| − |α|. To

put in another way the Weyl algebra is the algebra generated by

{∂1, . . . , ∂n, x1, . . . , xn}

subject to the relations

∂i∂j = ∂j∂i, ∂ixi − xi∂i = 1, xixj = xjxi

Example 5.14. Recall the Riemann curvature R is an Ad(TM)-valued two form on M.

Given X ∈ C∞(TM) the map

TpM→
2∧

T∗p (M) v 7→ 〈RpXp, v〉

defines a section of P(TM)⊗∧∗ TM which we denote it by 〈RX, .〉. Indeed identifying

TM with T∗M the above map is a one form with values in
∧2 Tp(M) so it is an element

of P(TM)⊗∧∗ TM.
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Remark 5.15. If A and B are two filtered algebras we can define a filtration on A⊗ B by

letting

(A⊗ B)m = ∑
k+l=m

AkBl

Remark 5.16. Any graded algebra A has a filtration. In fact we can define

Am =
⊕
k≤m

Ak

Definition 5.17 (Symbol Map). Let A be a filtered algebra and G be a graded algebra. A

symbol map σ• : A → G is a family of linear maps σm : Am → Gm with the following

properties:

(i) If a ∈ Am−1, then σm(a) = 0.

(ii) If a ∈ Am and a′ ∈ Am′ , then σm+m′(aa′) = σm(a)σm′(a′).

Definition 5.18. For a filtered algebra A, the associated graded algebra G(A) is defined

by

G(A) =
⊕

m
Am/Am−1

Moreover the projections Am
πm−→ Am/Am−1 give rise to a natural symbol map.

Example 5.19. In section 2.1 we showed (Proposition 2.9) that the exterior algebra is the

associated graded algebra for the Clifford algebra. In this case the canonical symbol map

(the projection map) gives the top part of Clifford algebra elements.

5.4 Getzler Symbols

Now we have the required background to introduce the Getzler symbols. It is a way of

defining symbols for the differential operators of a Clifford bundle and the heat kernels.

As it was mentioned before we assume that the base manifold is of even dimension. Let
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S be a Clifford bundle. Recall that

End(S) = Cl(TM)⊗ End(V) = Cl(TM)⊗ EndCl(TM)(S)

It follows from the above isomorphism that End(S) is a bundle of filtered algebras. The

filtration on each End(Sx) comes from the filtration of Cl(Tx M), and we assign degree

zero to the elements of EndCl(TM)(S). The algebra D(S) of differential operators on S is

then generated by

(i) Cl(TM)-Endomorphisms of S.

(ii) Clifford actions of vector fields.

(iii) Covariant derivatives.

Definition 5.20 (Getzler Filtration). The Getzler filtration on D(S) is determined by the

following assignments of degrees to the generators:

(i) A Clifford module endomorphism of S has degree zero.

(ii) Clifford action of a vector field has degree one.

(iii) Covariant derivative along a vector field has degree one.

In fact the above idea comes from a general situation in which one has an algebra A

generated by B ∪V, where B is a subalgebra of A and V is a vector subspace of A. Then

one can give degree zero to the elements of B and degree one to the elements of V. If we

let ⊗
B

V = B⊕ (B⊗V ⊗ B)⊕ (B⊗V ⊗ B⊗V ⊗ B)⊕ . . .

It is clear that there is a surjective map

⊗
B

V → A
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and therefore the algebra A inherits a filtration from
⊗

B V.

For the algebra D(S) of differential operators we can let B to be Ω0(M; EndCl(TM)(S))

and V = C∞(TM)⊕ C∞(TM) where the first component represents the Clifford action

c(X) of a vector field , and the second component represents the covariant derivative ∇Y.

We proceed to define the Getzler symbols on D(S).

Proposition 5.21 ( [28] Proposition 12.13.). There is a unique symbol map

σ• : D(S)→ C∞(P(TM)⊗
∗∧

TM⊗ EndCl(TM)(S))

called the Getzler symbol such that

(i) σ0(F) = F for F ∈ Ω0(M; EndCl(TM)(S)).

(ii) σ1(c(X)) = e(X), that is the exterior multiplication by X ∈ C∞(TM).

(iii) σ1(∇X) = ∂X +
1
4
〈RX, .〉.

Since we have specified the action of symbol map on the generators, one just has to

check that the symbol map factors through the quotient
⊗

B V → D(S) explained above.

D(S)

⊗
B V C∞(P(TM)⊗∧∗ TM⊗ EndCl(TM)(S))

σ•

∃?σ•

Put it another way we have to make sure that the symbol is compatible with the inter-

relations of the algebra elements. We will address this problem later. (See Proposition

5.28.)

Example 5.22. For instance we are going to justify that the symbol respects the relation

∇X∇Y −∇Y∇X −∇[X,Y] = K(X, Y) = RS(X, Y) + FS(X, Y)
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proved in Proposition 3.18.

We shall compute the Getzler symbols of the two sides to see if they agree.

For the left hand side, we can ignore ∇[X,Y] since it is of first degree and we are computing

σ2. We choose an orthonormal basis (e1, . . . , en) of TqM with the coordinate functions

xi = e∗i . Then at the point q we have

σ1(∇i) =
∂

∂xi +
1
4
〈Rei, .〉

=
∂

∂xi −
1
8 ∑

j,k,l
〈R(ek, el)ei, ej〉xjek ∧ el

=
∂

∂xi −
1
8 ∑

j,k,l
〈R(ei, ej)ek, el〉xjek ∧ el

and some straightforward computations shows that

σ2(∇i∇r −∇r∇i) =[σ1(∇i), σ1(∇r)]

=
1
8 ∑

k,l
〈R(ei, er)ek, el〉ek ∧ el −

1
8 ∑

a,b
〈R(er, ei)ea, eb〉ea ∧ eb

=
1
4 ∑

k,l
〈R(ei, er)ek, el〉ek ∧ el

But this is exactly σ2(RS(ei, er)) (see Definition 3.16). The desired result follows as

σ2(FS) = 0.

Example 5.23. The Getzler degree of the Dirac operator is 2 since D = c(ei)∇i. We shall

show that σ2(D) is the exterior derivative at any vector space TqM. Indeed

σ2(D) =∑
i

σ1(c(ei))σ1(∇i)

=∑
i

ei
∂

∂xi −
1
8 ∑

ijkl
〈R(ei, ej)ek, el〉xjei ∧ ek ∧ el

=∑
i

ei
∂

∂xi by Bianchi identity

=dTq M
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Example 5.24. Since d2 = 0 it is obvious that D2 must be of Getzler degree ≤ 3. Surpris-

ingly the Getzler degree of D2 is 2 and we have, at point q,

σ2(D2) = −∑
i

(
∂

∂xi +
1
4 ∑

j
Rijxj

)2

+ FS

where Rij and FS are the Riemann curvature and the twisting curvature two-froms at

point q.

To verify this we first recall Lichnerowicz-Schrodinger equation 3.20

D2 = ∇∗∇+FS +
1
4

κ

where FS = ∑i<j c(ei)c(ej)FS(ei, ej). Also recall from Lemma 3.9 that

∇∗∇ =∑
ijk
−gjk(∇j∇k − Γi

jk∇i)

=−∑
i
∇i∇i at the origin

Hence we can conclude that

σ2(D2) =σ2(∇∗∇) + σ2(FS)

=σ2(−∑
i
∇i∇i) + σ2(FS)

=−∑
i

(
∂

∂xi +
1
4 ∑

j
Rijxj

)2

+ FS

We are going to extend our study of differential operators to the smoothing operators

on S. Our aim is to define the Getzler symbol

σ• : C∞(S� S∗)→ C∞(C[[TM]]⊗
∗∧

TM⊗ EndCl(TM)(S))
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Although there is an appropriate multiplication on C∞(S� S∗) with respect to which the

Getzler symbol will satisfy the homomorphism-like property of symbols, our study does

not concern this problem. What our study rather concerns is the D(S)-module structure

of C∞(S� S∗) and we want the symbol map respects this module structure in the sense

of Proposition 5.27.

Definition 5.25. For a vector space V, we denote by C[[V]] the algebra of formal power

series on V. This is in fact a graded P(V)-module if we give a monomial xα the degree

−|α|.

Now we are going to define the symbol of a section s ∈ C∞(S� S∗). For this purpose

we fix a point q ∈ M and we choose a normal coordinate x = (x1, . . . , xn) centered at q.

Then there is a local Taylor expansion for the section p 7→ s(p, q) in the form

∑
α

xαsα

Where sα are parallel transportations of sα(0) ∈ End(Sq) to sα(x(p)) ∈ Sp⊗ S∗q . Since each

sα is determined by its value sα(0) at the origin, the above Taylor series defines an element

in C[[TqM]]⊗End(Sq). If we vary q we then obtain a section Σs ∈ C∞(C[[TM]]⊗End(S)).

Since both C[[TqM]] and End(Sq) are filtered, the algebra C[[TqM]]⊗End(Sq) has a tensor

product filtration mentioned in Remark 5.15.

Definition 5.26. We say that s ∈ C∞(S � S∗) has degree ≤ m if the degree of Σs ∈

C∞(C[[TM]]⊗ End(S)) is ≤ m. We call this degree the Getzler degree of s.

Also if we compose the Taylor series map Σ with the Clifford symbol map End(Sq) =

Cl(TqM)⊗ EndCl(Tq M)(Sq)→
∧∗ TqM⊗ EndCl(Tq M)(Sq), we obtain a symbol map

σ• : C∞(S� S∗) Σ−→ C∞(C[[TM]]⊗ End(S))→ C∞(C[[TM]]⊗
∗∧

TM⊗ EndCl(TM)(S))

116



which is called the Getzler symbol. We also let σ0
m(s) denote the constant term in the

Taylor series σm(s).

Proposition 5.27 ( [28] Proposition 12.22. ). Let T ∈ D(S) be one of the generators we listed

in 5.20. Let m ∈ {0, 1} be the Getzler degree of T. Then for any smoothing operator Q with

Getzler degree ≤ k, the smoothing operator TQ has Getzler degree ≤ m + k, and the relation

σm+k(TQ) = σm(T)σk(Q) (5.2)

holds between the symbols.

Proof. Let Q be an smoothing operator with kernel s ∈ C∞
k (S� S∗). We fix a point q ∈ M

and choose a normal coordinate centered at q. Also let sq(x) ∼ ∑α xαsα(x) be the Taylor

expansion of p 7→ s(p, q). We split the proof into three cases for the three types of

generators of D(S).

Case 1. When T = F ∈ C∞(EndCl(TM)(S)).

Suppose that F is synchronous at q and let s′ = Fs. Since ∇Y(Fs) = F∇Ys we get

s′α(0) = Fsα(0)

which implies equation σk(Fs) = σ0(F)σk(s) as desired.

If F does not happen to be synchronous we can parallel transport it to the near

points to obtain a synchronous section F0. But σ0(F) = σ0(F0) since the constant

term in the Taylor expansion of F− F0 is zero. Therefore,

σk(Fs) = σk(F0s) = σ0(F0)σk(s) = σ0(F)σk(s).

Case 2. The same logic shows that Equation 5.2 holds when T = c(X) the Clifford action of

some vector field X ∈ C∞(TM).
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Case 3. When T = ∇X.

Let (∂1, . . . , ∂n) be the local frame associated to the normal coordinate x =

(x1, . . . , xn), and Y = ∑j xj∂j. Without loss of generality, we can assume that X = ∂i.

Suppose that s is synchronous and let

∑
α

xαtα

be the Taylor series of ∇Xs. Then

K(X, Y)s =∇X∇Ys−∇Y∇Xs−∇[X,Y]s

=−∇Y∇Xs−∇Xs (since ∇Ys = 0, and [X, Y] = X)

The above equation implies that the section K(X, Y)s has the Taylor expansion

−∑
α

(|α|+ 1)xαtα

and that the degree of ∇Xs and its Taylor coefficients are determined by those of

K(X, Y)s.

On the other hand it follows from Proposition 3.18 that

K(X, Y)s = ∑
j

xjK(∂i, ∂j)s = ∑
j

xjRS(∂i, ∂j)s + ∑
j

xjFS(∂i, ∂j)s

Notice that the Getzler degree of xjRS(∂i, ∂j) is 1 and xjFS(∂i, ∂j) has the Getzler

degree ≤ −1. This shows that ∇Xs has the Getzler degree ≤ k + 1 as we want.

Furthermore, it follows from the Taylor expansion of K(X, Y)s that

∇Xs = −1
2 ∑

j
xjRS(∂i, ∂j)s + lower degree terms.
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Therefore, using the results of case (2) and Example 5.22 we can compute the

symbol

σk+1(∇Xs) =σk+1(−
1
2 ∑

j
xjRS(∂i, ∂j)s)

=σ1(−
1
2 ∑

j
xjRS(∂i, ∂j))σk(s)

=− 1
8 ∑

j,k,l
〈R(ei, er)ek, el〉xjek ∧ elσk(s)

=σ1(∇X)σk(s)

Now we can prove Proposition 5.21.

Proposition 5.28 ( [28] Proposition 12.23.). The Getzler symbol is well-defined on D(S), and

satisfies the equation

σm+k(TT′) = σm(T)σm′(T′)

for any T ∈ Dm(S), and any T′ ∈ Dm′(S).

Proof. It suffices to show that the symbol is well-defined. The multiplicative property

follows then from the definition of symbol.

Suppose that the operator T has two representatives T∈Dm(S) and T′∈Dm′(S). Iterating

the previous proposition for T, T′, and an arbitrary smoothing operator Q yields

σm(T)σk(Q) = σm+k(TQ) = σm′+k(T′Q) = σm′(T′)σk(Q)

Since Q is arbitrary, multiplying the exterior algebra parts of σm(T) and σm′(T′) with

the same type part of σk(Q) in the above equation implies that σm(T) and σm′(T′) must

agree on the exterior algebra part. Hence we left with the Weyl algebra parts which are

differential operators with polynomial coefficients. Again since Q is arbitrary this part

can be uniquely identified from its action on appropriately enough power series.
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Recall from Theorem 4.39 that the heat kernel has the asymptotic expansion

kt(p, q) ∼ ht(p, q)
(
Θ0(p, q) + tΘ1(p, q) + t2Θ2(p, q) + . . .

)
It also satisfies the heat equation

(
∂

∂t
+ D2

)
kt(., q) = 0

It follows from Proposition 4.39 that

Proposition 5.29 ( [28] Proposition 12.24.). For each j the term Θj belongs to C∞
2j (S� S∗).

Furthermore the heat symbol

Wt = ht(σ0Θ0 + tσ2Θ1 + · · ·+ tn/2σnΘn/2)

solves the differential equation
∂

∂t
Wt + σ2(D2)Wt = 0, and it is the unique solution of the form

ht(v0 + tv1 + · · ·+ tn/2vn/2) where each vj is a symbol of Getzler degree 2j and v0 = 1.

5.5 Atiyah-Singer Index theorem

In this section we are going to use Mehler’s formula to find an explicit solution to the

differential equation
∂

∂t
Wt + σ2(D2)Wt = 0

We will see surprisingly then the characteristic class terms come out of this solution.

We first consider the above equation for the algebra of reals.
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Proposition 5.30 ( [28] Proposition 12.25.). Suppose that R = (Rij) is a skew symmetric

matrix of real entries, and that F is a real scalar. Then the partial differential equation

∂

∂t
w−∑

i

(
∂

∂xi +
1
4 ∑

j
Rijxj

)2

w + Fw = 0

has a solution for t > 0. The solution is analytic with respect to F and the entries of R and is

asymptotic to (4πt)−n/2 exp(−|x|2/4t) as t→ 0+. Explicitly the solution is equal to

(4πt)−n/2 det
(

tR/2
sinh tR/2

)1/2

exp
(
− 1

4t
〈 tR

2
coth

tR
2

x, x
〉)

exp
(
− tF

)
(5.3)

Proof. If we multiply the equation by the integrating factor µ = exp(Ft) and then use the

substitution w′ = exp(Ft)w, the term Fw will be eliminated. However we have to keep

this factor and multiply the final answer by exp(−Ft) at the end.

It is helpful first to write the coefficients of the above PDE in matrix notation:

∂

∂t
w−

( ∂

∂x

T ∂

∂x
+ tr(R) +

∂

∂x

T
Rx + xTRTRx

)
w = 0

where x = [x1, . . . , xn]T. Then we can apply an orthogonal transformation x = Py so that

PTRP = Q =

 0 θ1

−θ1 0

⊕ · · · ⊕
 0 θk

−θk 0

 2k = n

and that our differential equation takes the form

∂

∂t
w−

( ∂

∂y

T ∂

∂y
+ tr(Q) +

∂

∂y

T
Qy + yTQTQy

)
w = 0

Now if we put

w = w1(y1, z1)w2(y2, z2) . . . wk(yk, zk)
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the above PDE splits into k PDEs of the same form each of which takes place in R2. Thus

it is enough to consider the two dimensional case with

Q =

 0 θ

−θ 0


and multiply the (similar) solutions later.

So we shall study the differential equation

∂

∂t
w−

(
∂

∂y
− 1

4
θz
)2

w−
(

∂

∂z
+

1
4

θy
)2

w = 0

Equivalently we can write
∂

∂t
w + (L0 + L1)w = 0

where
L0 =− ∆− 1

16
θ2(y2 + z2)

L1 =
1
2

θ

(
y

∂

∂z
− z

∂

∂y

)
Since L0 is invariant under the action of SO(2) and L1 is a one of the generators of the

Lie algebra so(2), the fundamental solution of L0 + L1 with pole at origin is equal to the

fundamental solution of L0 with pole at the origin. Therefore, our study reduce to the

equation
∂

∂t
w + L0w = 0.

Using separation of variables w(y, z) = Y(y)Z(z) again, we are left with the equation

∂

∂t
Y− ∂2

∂y2 Y− 1
16

θ2y2Y = 0
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By Mehler’s formula for the heat kernel of the harmonic oscillator, the fundamental

solution of the above equation is

Y = (4πt)−
1
2

(
itθ/2

sinh itθ/2

) 1
2

exp
(
− 1

8
iθy2 coth(itθ/2)

)
Taking the product of the above solution with the corresponding solution for Z and also

accordingly plugging

w = w1(y1, z1)w2(y2, z2) . . . wk(yk, zk)

gives the desired solution of the original PDE.

Notice that the determinant and the exponential terms in Equation 5.3 dose not depend

on a particular representation of the matrix R as they are characteristic forms.

Now recall that

σ2(D2) = −∑
i

(
∂

∂xi +
1
4 ∑

j
Rijxj

)2

+ FS

In which R = (Rij) -the Riemann curvature- is a skew symmetric matrix of two forms,

and FS is the twisting curvature. Since the entries of R commutes with each other and

with FS, it follows from Proposition 5.29 that the above formula gives a formal ,finite

power series expression for the heat symbol

Wt = (4πt)−n/2 det
(

tR/2
sinh tR/2

)1/2

exp
(
− 1

4t
〈 tR

2
coth

tR
2

x, x
〉)

exp
(
− tFS)

Now the uniqueness part of Proposition 5.29 tells us that

Proposition 5.31 ( [28] Proposition 12.26.). The sum of the constant parts of the Getzler

symbols of asymptotic kernels are given by

n/2

∑
0

σ2j(θj) = det
(

R/2
sinh R/2

)1/2

exp
(
− FS)
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After a quite long journey passing through several deep canyons and observing many

beauties of the realm of Dirac operators we get to the summit the main promise of this

thesis.

January,1962 - Oxford

Atiyah: Why is the Â-genus an integer for spin manifolds?

Singer: You know the answer better than I- why do you ask?

Atiyah: There must be a deeper reason.

Atiyah-Singer Index Theorem. Let M be a compact, even dimensional Riemannian manifold

and let S be a Clifford bundle over M with Dirac operator D. Then

Ind D =
∫

M
Â(TM) ∧ ch(V)

where V = HomCl(TM)(/S, S), and ch denotes the Chern character.

In particular for the bundle of spinors /S with the Dirac operator /D we get

Ind /D = Â(M)

Proof. Recall from Proposition 5.7 that

Ind D =
1

(4π)n/2

∫
M

Str Θn/2(q, q)dq
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It then follows from Berezin formula 5.3 and the previous proposition that

Ind D =
1

(4π)n/2

∫
M

Str Θn/2(q, q)dq

=
1

(2πi)n/2

∫
M

tr σ0(Θn/2)

=
1

(2πi)n/2

∫
M

det
(

R/2
sinh R/2

)1/2

tr
(

exp(−F)
)

=
∫

M
Â(TM) ∧ ch(V)

Now let us reflect upon two outstanding breakthrough in this journey. Our first

victory was passing through the Mc-Kean Singer defile that connects the index as a

purely algebraic-analytic object to local geometric data.

And at the end we swam over the Getzler calculus river at night that connects the local

geometric data to globals topological invariants. Our polar star was the Berezin formula,

and the Bianchi identity was our help in the peril.
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5.6 Conclusion

There are many areas of research in geometry, topology, and theoretical physics that

emerges from the study of Dirac operators and index theory. The study of spaces with

positive scalar curvature is perhaps one of the most flourishing fields of research that has

gained many benefits from study of Dirac operators. André Lichnerowicz [24] obtained

one of the earliest results in this direction. With the help of Atiyah-Singer index theorem

he showed that there are many examples of manifolds that can not admit any metric of

positive scalar curvature.

Theorem 5.32 (Lichnerowicz). Let M be a compact, Riemannian, spin manifold of positive

scalar curvature. Then the Â-genus of M vanishes.

Proof. It follows from Lichnerowicz-Schrödinger Theorem 3.20, and Theorem 3.42 that

D2 = ∇∗∇+
1
4

κ.

Therefore,

‖Ds‖2 = ‖∇s‖2 +
1
4

κ‖s‖2

and the kernel of the Dirac operator is trivial since the scalar curvature is positive. Hence

it follows by Atiyah-Singer index theorem that Â(M) = 0.

Consequently, for 4-manifolds, as Â(M) = 1
8sign(M) the above theorem shows that

manifolds of non-zero signature can not carry positive scalar curvature.

Later Nigel Hitchin [20] extended the above result to the exotic spheres and proved that

half of the exotic spheres in dimension 1 or 2 (mod 8) can not carry metrics of positive

scalar curvature.

Gromov and Lawson added the fundamental group to the ingredients and introduced

the notion of enlargeability of manifolds. They proved that

126



Theorem 5.33 ( [16] Theorem A). Let X be an enlargeable manifold. Then X carries no

Riemannian metric of positive scalar curvature.

Theorem 5.34 ( [17] Corollary C). Every compact simply-connected n-manifold, n > 5, which

is not spin, carries a metric of positive scalar curvature.

In [18] they extended their studies to non-compact manifolds as well. They also

imposed the following conjecture which was proved later by Stephen Stolz [30].

Theorem 5.35 ( [30] Theorem A). Let M be a simply connected, closed, spin manifold of

dimension n > 5. Then M carries a metric with positive scalar curvature if and only if α(M) = 0.

Where α(M) denotes the KO-characteristic number of M.

The relation between the spectrum of the Dirac operator and the geometry of

the manifold is another field of intense researches. For instance, in [4] Christian Bär

studies the spectrum of the Dirac operator on the spheres and their quotients. More

recently she has obtained some eigenvalue estimates for Dirac operators on non-compact

manifolds [5].

In [14] Nicolas Ginoux initiates a study of the Dirac operator on Lagrangian submanifolds

of Kähler manifolds and obtains some spectral estimates for these type of spaces. Also,

Ginoux and Habib [15] has studied the spectral properties of the Dirac operator on

Riemannian flows.

Besides, the index problem for elliptic operators on manifolds with singularities has

attracted some attention. For instance Nazaikinskii, etal. [31] developed an index formula

for elliptic operators on manifolds with edges.

The study of Dirac operators and index theory is also of great importance for

theoretical physicists. As an interesting example, Deguchi and Kitsukawa [29] showed

that the quantization conditions of Dirac and Schwinger can be derived from the
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Atiyah-Singer index theorem in two dimensions.

At the end, it is worthwhile to mention that the development of non-commutative

geometry has one of its routs in the theory of Dirac operators. Index theorem and some

other results about geometry of Dirac operators is another evidence for the Algebra-

Geometry duality.

It is well-known that a locally compact Hausdorff topological space X can be recovered

from the algebra of its observables C(X). In fact the Gelfand-Naimark theorem provides

two contravariant functors between the category of locally compact topological spaces

with the category of C∗-algebras. The first functor sends a space X to the algebra C(X),

and the second one sends a C∗ algebra A to the space of characters, that is, the set of

non-zero homomorphisms ρ : A→ C. In this correspondence the compactness translates

to being unital, open subsets corresponds to ideals, closed subset turns to quotient algebra

and etc.

So far there is no mention of the geometry of X. Now if we have a Dirac operator on

X using 4.4 we can show that

d(p, q) = sup{| f (p)− f (q)| : f ∈ C∞(M), ‖[D, f ]‖ ≤ 1}.

This is a strong evidence that one can replace a space with the set of observables. In fact

it was Alain Connes who took these ideas and introduced the concept of an spectral triple

(A,H,D) consisting of an algebra A a Hilbert space H which is also a representation of

A. And a self adjoint operator D : H → H.

In the commutative case A = C∞(M) , H = L2(S) and D is the Dirac operator of the

Clifford bundle S.

Theses tools enables us to study more sophisticated spaces that might suffer from the lack

of natural measure theoretic, geometric, or topological structures. An important example
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of such spaces is the space of leaves of a foliation for which Alain Connes extended the

Atiyah-Singer index theorem. (See [8] and [9] for more details.) Erik van Erp [32] has

used the Connes’ tangent groupoid technique to derive an index formula for hypoelliptic

operators on contact manifolds.
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