
Distributed Online Optimization

on time-varying networks

by

Mohammad Akbari Varnousfaderani

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

August 2015

Copyright c© Mohammad Akbari Varnousfaderani, 2015

Abstract

This thesis introduces two classes of discrete-time distributed online optimization al-

gorithms, with a group of agents which communicate over a network. At each time,

a private convex objective function is revealed to each agent. In the next time step,

each agent updates its state using its own objective function and the information

gathered from its immediate in-neighbors at that time. We design algorithms dis-

tributed over the network topologies, which guarantee that the individual regret, the

difference between the network cost incurred by the agent’s states estimation and

the cost incurred by the best fixed choice, grows only sublinearly. One algorithm

is based on gradient-flow, which provably works for a sequence of time-varying uni-

formly strongly connected graphs. The other one is based on Alternating Direction

Method of Multipliers, which works on fixed undirected graphs and gives an explicit

regret bound in terms of the size of the network. We implement the proposed algo-

rithms on a sensor network and the results demonstrate the good performance for

both algorithms.

i

Acknowledgments

First and foremost, I would like to thank my supervisors, Prof. Bahman Gharesifard

and Prof. Tamás Linder for their guidance, patience and support. I thank them for

giving me the opportunity of studying and doing research under their supervision.

I would also like to thank Prof. Abdol-Reza Mansouri for his excellent teaching and

support in the Modern Control Theory Course.

I am also grateful to my family, Yadollah, Fatemeh, Marzieh, and Hamed for their

love and support.

Finally, I would like to thank all my teachers that help me to find my path to the

academic world.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures v

Chapter 1: Introduction 1
1.1 Contributions of Thesis . 4
1.2 Organization of Thesis . 6

Chapter 2: Mathematical Preliminaries 8
2.1 Basic Notions from Analysis . 8
2.2 Convex Analysis . 9
2.3 Graph Theory . 13

Chapter 3: Problem Statement 15
3.1 Online Optimization . 15
3.2 Distributed Online Optimization . 16

Chapter 4: Distributed Online Optimization on Time-Varying Di-
rected Graphs 19

4.1 Distributed Online Subgradient Push-Sum Algorithm 19
4.2 Main Result . 21
4.3 Product of Stochastic Matrices . 24
4.4 Results on Locally Strongly Convex Functions 33
4.5 Proof of the Main Result . 40
4.6 Dependency of the Upper Bound on the Number of Agents for Ra-

manujan Graphs . 49

Chapter 5: Distributed Online ADMM 53

iii

5.1 Alternating Direction Method of Multipliers 53
5.2 Distributed Online Alternating Direction Method of Multipliers . . . 55
5.3 Regret Bounds for the Distributed Online ADMM 58

Chapter 6: Application to Sensor Networks 70
6.1 Sensor Networks . 70
6.2 Results using Subgradient-Push Algorithm 71
6.3 Results using Distributed Online ADMM Algorithm 75

Chapter 7: Conclusions and future work 81
7.1 Summary . 81
7.2 Future research directions . 82

Bibliography 83

iv

List of Figures

5.1 The graph for Example 5.2.1 . 56

6.1 Sensors’ state estimation vs. time for four of the sensors are shown. The network

consists of 100 sensors communicating over a sequence of G(100, 0.2, 2) random

directed graph. The ith sensor observes qti = atis+bti, where a
t
i and bti are chosen at

random from a uniform distribution on [0, 2] and [− 1

2
, 1

2
], respectively. We use the

distributed online subgradient push-sum algorithm to estimate ŝ which minimizes

the cost function f(ŝ) =
∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2. The result illustrates consensus

among sensors. 73

6.2 Average regrets over time (Rj(T)/T) vs. T for two sensors with the maximum and

minimum average regrets are shown, where the same assumptions as the ones in

Figure 6.8 hold. 74

6.3 Sensors’ state estimation vs. time for four of the sensors are shown. The network

consists of 100 sensors with no communications. The ith sensor observes qti = atis+

bti, where ati and bti are chosen at random from a uniform distribution on [0, 2] and

[−0.5, 0.5], respectively. We use distributed online subgradient push-sum algorithm

to estimate ŝ which minimizes the cost function f(ŝ) =
∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2. . 75

v

6.4 Average individual regrets vs. time for one sensor, picked at random among 100

sensors, in the presence and absence of communications over time are shown, where

the same assumptions as the ones in Figure 6.3 hold. and we consider two cases:

First, there is communication between sensors and second, there is no communica-

tion between them. The results shows that communication gives a better regret. . 76

6.5 Sensors’ state estimation vs. time for four of the sensors are shown. The network

consists of 100 sensors communicating through a sequence of G(100, 0.2, 2) random

directed graph. The ith sensor observes qti = atis + bti where ati and bti are chosen

at random from a uniform distribution on [0, 2] and [−0.5 + i−50

100
, 0.5 + i−50

100
], re-

spectively. We use distributed online subgradient push-sum algorithm to estimate

ŝ which minimizes the cost function f(ŝ) =
∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2. The result

demonstrates consensus among sensors. 77

6.6 Average individual regret over time Rj(T)/T vs. time for two sensors is shown,

one has the maximum average regret and the other one has the minimum average

regret, where the same assumptions as the ones in Figure 6.5 hold. 78

6.7 N = 8 sensors are communicating through the graph depicted 78

6.8 Sensors’ state estimations vs. time for four of the sensors are shown. The network

consists of N = 8 sensors communicating over an undirected graph. The ith sensor

observes qti = atis+bti, where a
t
i and bti are chosen at random from a uniform distribu-

tion on [0, 2] and [− 1

2
, 1

2
], respectively. We use the Distributed Online ADMM algo-

rithm to estimate ŝ which minimizes the cost function f(s) =
∑T

t=1

∑N

i=1

1

2
(qti−s)2.

The result demonstrates consensus among sensors. 79

6.9 Average regrets over time R
j(T)/T vs. T for two sensors with the maximum and

minimum average regrets are shown, under the same assumptions as in Figure 6.8. 80

vi

1

Chapter 1

Introduction

The area of network multi-agent systems has received considerable attention in re-

cent years. These systems have a variety of applications such as traffic control and

transportation, power engineering, manufacturing, and supply chain management.

Multi-agent system models provide more natural ways of representing task alloca-

tion, team planning, and other tasks. In addition, these systems have the advantage

of reducing data transmission rates, distributing computational resources across a

network, and ensuring robustness in the presence of local failures.

Many scenarios concerning the coordination of multi-agent systems can be inves-

tigated in the framework of distributed optimization. In this framework, a group

of agents cooperatively attempt to minimize a common cost function, which is dis-

tributed among them, and each agent has only limited (private) information about

the cost function. The main feature of any implementable coordination protocol is

that the agents only use the information from their neighboring agents, where the

neighborhood structure is cast as a graph, to update their states. Each agent up-

dates its states based on the states of its neighboring agents and the information of

its own private cost function, in order to steer the agents’ states to reach a consensus

2

in the set of minimizers of the common cost function [29, 25, 36]. The problem has

a variety of applications including localization and robust estimation [7], formation

control [16], and energy dispatch in power distribution networks [6], and has been

extensively studied in recent years [29, 25, 37, 26, 18, 36].

Many practical scenarios of distributed optimization, however, are in highly dy-

namic environments, e.g., scheduling of renewable energy systems, where uncertainty

plays a central role, and estimation using sensor networks, where the observations of

each sensor change with time due to noise. Some of these issues can be addressed

within the framework of distributed online convex optimization, where the functions

allocated to each agent possibly change with time. In this framework, an individual

convex cost function is revealed to each agent after the agent has chosen its state.

Because of this, the agents only see their cost functions in hindsight and hence their

states do not necessarily correspond to the minimizers of these functions and each

agent incurs a so-called individual regret. The individual regret for each agent is de-

fined as the difference between the accumulated collective cost incurred by the agent’s

state estimation and the cost obtained by the best fixed state, when all functions are

known in advance [21]. The objective here is to design algorithms such that the regret

function will be sublinear in terms of time; in other words, the algorithm drives the

average regret over time to zero.

There is a large body of research on online optimization problems; we refer the

interested reader to [44, 11, 31, 5]. Several distributed online optimization algorithms

exist in the literature [21, 14, 34]. In this thesis, we propose two different classes of

distributed online optimization algorithms. The first algorithm is built on consensus-

based gradient-descent methods that have been used extensively for online convex

3

optimization; see [21, 13]. The second algorithm is based on the Alternating Direction

Method of Multipliers (ADMM), which has been used for distributed optimization

with linear constraint, see [3].

With the interest in decentralized architectures and motivated by the problem

of distributed convex optimization, a distributed version of online optimization is

proposed in [30, 43]. In [13] and [22, 21] consensus-based gradient-descent algorithms

for distributed online optimization are proposed. In this setting, each agent aims at

driving its individual average regret to zero. Given that the agents do not have access

to the local cost functions of other agents, these individual regrets are not computable

by the agents, nevertheless, the agents can use a consensus-based gradient-descent

protocol to collaboratively achieve their objectives.

A consensus-based dual averaging discrete-time protocol for online optimization

on undirected networks is proposed in [13], and is extended in [14], to allow for

time-varying weights, but on a fixed directed graph. In [22, 21], motivated by the

saddle-point dynamics in [9], a discrete-time distributed online convex optimization

algorithm on weight-balanced network topologies is introduced; in particular, the

suggested protocol in [21] works on jointly connected weight-balanced digraphs. Other

recent work includes [35], where under the assumption of doubly stochasticity, a

gossip-based protocol is developed for distributed online convex optimization.

In contrast, we develop an algorithm that achieves a sublinear regret over any

sequence of uniformly strongly connected time-varying directed graphs. The idea

behind our protocol is the push-sum algorithm, which was originally used for con-

sensus [19, 33] on directed graphs with imbalanced nodes. In particular, some of our

main results rely on an extension of this class of algorithms to the so-called perturbed

1.1. CONTRIBUTIONS OF THESIS 4

push-sum protocol, which works on any uniformly strongly connected digraph and

has recently been used for distributed convex optimization [27, 23]. In contrast, here

we are interested in distributed online optimization.

The second algorithm that we investigate in this work is based on the Alter-

nating Direction Method of Multipliers (ADMM), which is suitable for large-scale

constrained optimization problems [3]. It has already been used for distributed op-

timization [3, 40, 41], by casting the “consensus” step as a linear constraint. In a

nutshell, the ADMM splits this (linearly) constrained optimization problem into two

subproblems. Interestingly, although each step of the computation is more expensive

than the one in the subgradient algorithms, using ADMM, one can achieve a con-

vergence rate of O(1
T
) for distributed optimization, in contrast to the O(1√

T
) rate of

consensus-based methods [40]. In this work, we investigate the application of such

distributed optimization protocols in online settings, and the regret bound that can

be guaranteed using them. In the centralized setting, it is already known that ADMM

achieves a regret bound similar to the subgradient algorithms [39]. A distributed ver-

sion of the ADMM is proposed for minimizing the network regret in [15]. Unlike this

work, we consider the more challenging problem of minimizing the individual regret.

Moreover, our proposed algorithm does not have subgradient step, in contrast to [15].

1.1 Contributions of Thesis

The contributions of this thesis are as follows. We propose two classes of distributed

online convex optimization algorithms. In each algorithm, we consider a network of

agents communicating with each other. At each time instance, each agent uses the

information about the states of its neighboring agents and makes a decision about

1.1. CONTRIBUTIONS OF THESIS 5

its next state. After that, the agent receives a convex cost function and incurs a cost

for its state estimation. Following the framework of [13] and [21], the regret for each

individual agent is defined as the difference between the accumulated collective cost

of the network incurred by the agent’s state estimation and the cost of the best fixed

state, made by a decision maker that has access to the objective functions.

For the first algorithm, we assume that the network topology is described by a

sequence of time-varying directed graphs. We also assume that the individual cost

functions are strongly convex on a compact neighborhood of their minimizers and

have bounded subgradients. The proposed algorithm is based on subgradient push-

sum algorithm introduced in [23], which achieves a sublinear regret, logarithmic up

to a square, i.e., O((ln(T))2), on any sequence of time-varying uniformly strongly

connected digraphs. In this sense, and in contrast to the known consensus-based

gradient-descent protocols for distributed online optimization, our proposed strategy

does not rely on having weight-balanced or doubly stochastic network topologies,

and accommodates time-varying directed graphs. Our proof strategy is to provide

a sublinear network regret and then a sublinear bound on the difference between

network and agent regret. For the special class of Ramanujan graphs, we make the

dependency of our upper bound for the regret on the number of agents explicit and

show that for a sufficiently long time horizon, this upper bound grows linearly with

the size of the network.

For the second algorithm, we assume that the network topology is described by

an undirected fixed graph. We introduce an online protocol, distributed over the

graph and motivated by the ADMM algorithm [3], through which agents can achieve

a sublinear individual regret of O(
√
T).

1.2. ORGANIZATION OF THESIS 6

Unlike the subgradient flow algorithms that use projections for constrained online

optimization, the proposed online ADMM protocol is projection-free and more im-

portantly provably works in distributed settings, in the presence of linear constraints.

Moreover, this algorithm is gradient free, in the sense that it does not need to com-

pute gradient in the algorithm (on the other hand, the ADMM relies on instantaneous

calculation of the minimizer of a constrained convex optimization problem, see [3]).

In addition to the fact that the proposed distributed online ADMM algorithm has

the same performance guarantee in terms for the regret as the best known centralized

algorithms, this algorithm gives a regret that can be written explicitly in terms of the

size of the network.

Finally, we discuss an application of the proposed algorithms to a sensor network

estimation problem, where a group of sensors with independent observations cooper-

atively attempt to estimate a target. Each sensor’s observation is corrupted by noise

which makes this problem fit into the framework of distributed online optimization.

Our results demonstrate the excellent performance of both our algorithms.

1.2 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 contains some mathe-

matical preliminaries on linear algebra, convex analysis, and graph theory, that we

use to formulate and derive our results. In Chapter 3, we introduce the centralized

and distributed online convex optimization problems. In Chapter 4, we propose our

distributed online subgradient push-sum algorithm which achieves sublinear regret.

In this chapter we assume time-varying directed graphs and convex cost functions.

These assumptions lead to results which are used to derive a sublinear individual

1.2. ORGANIZATION OF THESIS 7

regret bound. Chapter 5 contains the results on the Distributed Online ADMM al-

gorithm. We illustrate the performance of the results by simulations on localization

in sensor network in Chapter 6. Finally, Chapter 7 gives conclusions and ideas for

future work.

8

Chapter 2

Mathematical Preliminaries

In this chapter, we introduce some notational conventions and background that we

use throughout the thesis.

2.1 Basic Notions from Analysis

Let R, R≥0, R>0, Z, and Z>0 denote the set of real, nonnegative real, positive real,

integer, and positive integer numbers, respectively. We denote by ‖ · ‖2 and ‖ · ‖1 the

Euclidean norm and 1-norm on R
d, d ∈ Z>0, respectively. We recall the following

results.

Proposition 2.1.1. (Schwarz Inequality[1, Proposition 1.1.2]): For any two

vectors x, y ∈ R
d, we have

|xTy| ≤ ‖x‖2‖y‖2,

with equality holding if and only if x = αy, for some α ∈ R.

Proposition 2.1.2. ([1, Proposition 1.1.7]): For any two norms ‖ · ‖ and ‖ · ‖′

on R
d, there exists c ∈ R>0 such that ‖x‖ ≤ c‖x‖′ for all x ∈ R

d.

Using Proposition 2.1.1, we have the following corollary.

2.2. CONVEX ANALYSIS 9

Corollary 2.1.3. For any vector x ∈ R
d, we have ‖x‖2 ≤ ‖x‖1 ≤

√
d‖x‖2.

We also denote by B(x, r) = {y ∈ R
d | ‖y−x‖2 < r} and B̄(x, r) = {y ∈ R

d | ‖y−

x‖2 ≤ r}, the open and the closed balls of radius r centered at x ∈ R
d, respectively.

We use the short-hand notation 1d = (1, . . . , 1)T ∈ R
d and 0d = (0, . . . , 0)T ∈ R

d. We

let Id denote the identity matrix in R
d×d. For matrices A ∈ R

d1×d2 and B ∈ R
e1×e2,

d1, d2, e1, e2 ∈ Z>0, we let A ⊗ B denote their Kronecker product. We say matrix

A ∈ R
d1×d2 is column stochastic (resp. row stochastic) if 1T

d1
A = 1T

d2
(resp. A1d2 =

1d1). We also let σi(A) denote the ith largest singular value of matrix A. For the

matrix A, we denote by [A]i and [A]j , the ith row and the jth column of the matrix

A, respectively.

Definition 2.1.4. ([21]): Given w ∈ R
d\{0} and c ∈ [0, 1], we let

Hc(w) := {v ∈ R
d : vTw ≥ c‖v‖2‖w‖2} (2.1)

denote the convex cone of vectors in R
d whose angle with w has a cosine lower bounded

by c.

The function f : Rd → R is called Lipschitz, if for all x, y ∈ R
d, |f(x)− f(y)| ≤

C‖x− y‖2 for some C ∈ R≥0.

2.2 Convex Analysis

In this section, we present some notions from convex analysis. A subset S ⊆ R
d is

called convex if for all x, y ∈ S and for all λ ∈ [0, 1], we have λx+ (1− λ)y ∈ S. We

denote by conv(X), the convex hull of the set X , the intersection of all convex sets

2.2. CONVEX ANALYSIS 10

containing X . A function f : S → R is convex if for all x, y in the convex set S ⊆ R
d

and for all λ ∈ [0, 1], we have

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Also, the function f : S → R is strictly convex if for all x 6= y ∈ S and for all

λ ∈ (0, 1), we have

λf(x) + (1− λ)f(y) > f(λx+ (1− λ)y).

Definition 2.2.1. ([1]): For an (extended)-real-valued function f : S → R∪ {+∞},

where S ⊆ R
d, the epigraph of f is defined as the subset of Rd+1, given by

epi(f) = {(x, w) | x ∈ S, w ∈ R, f(x) < w}.

The effective domain of f is defined as the set

dom(f) = {x ∈ S | f(x) < +∞}

We say f is proper if f(x) < +∞ for at least one x ∈ S.

Definition 2.2.2. ([1, Definition 1.2.4]): Let S ⊆ R
d be a convex set. An extended-

real-valued function f : S → R ∪ {+∞} is called convex if epi(f) is a convex subset

of Rd+1. The function f is also called closed, if the epi(f) is a closed set.

Given a convex function f : S → R and x ∈ S, we call gx ∈ R
d a subgradient of

2.2. CONVEX ANALYSIS 11

f at x, if

f(y)− f(x) ≥ gTx (y − x),

for all y ∈ S. We denote by ∂f(x) the set of subgradients of f at x.

Proposition 2.2.3. ([1, Proposition 4.2.1]): Let f : Rd → R be a convex function,

then the set of subgradients of f is nonempty, convex, and compact for all x ∈ R
d.

Note that for a differentiable convex function f , the set of subgradient of f at

x contains only the gradient of f at x. We say ∂f(x) is L-bounded if there exists

L ∈ R≥0 such that ‖gx‖1 ≤ L for all gx ∈ ∂f(x) and x ∈ R
d. Note that a function

with L-bounded subgradients is Lipschitz.

Definition 2.2.4. (Strong convexity): The function f : S → R is µ-strongly

convex, for some µ ∈ R>0, if for each x ∈ S and gx ∈ ∂f(x), we have

f(y)− f(x) ≥ gTx (y − x) +
µ

2
‖y − x‖22,

for all y ∈ S.

We have the following proposition.

Proposition 2.2.5. f : S → R is µ-strongly convex on S if and only if

(gy − gx)
T(y − x) ≥ µ‖y − x‖22

for each gx ∈ ∂f(x) and gy ∈ ∂f(y), for all x, y ∈ S.

Definition 2.2.6. ([10]): Let f : S → R be a function on a set S ⊆ R
d. The point

x⋆ ∈ S is called

2.2. CONVEX ANALYSIS 12

a) a local minimizer of f , if f(x⋆) ≤ f(x) for all x in some ball B(x⋆, r) and a strict

local minimizer of f if f(x⋆) < f(x) for all x in B(x⋆, r)\{x⋆};

b) a global minimizer of f on S, if f(x⋆) ≤ f(x) for all x ∈ S and a strict global

minimizer of f if f(x⋆) < f(x) for all x ∈ S\{x⋆};

c) a critical point of f , if f is differentiable at x⋆ and ∂f(x) = {0d};

d) a saddle point of f , if it is a critical point and there exist y, z in any ball B(x⋆, r)

such that f(y) < f(x⋆) < f(z).

We let argmin(f) denote the set of global minimizers of a convex function f in

its domain. The convex function f is locally strongly convex if it is strongly convex

on a compact set containing argmin(f). We have the following property of convex

functions.

Theorem 2.2.7. ([10]): Let f : S → R be a convex function on a convex set S ⊆ R
d.

Any local minimizer of f on S is a global minimizer of f on S. If f is strictly convex,

then there exists at most one global minimizer of f on S.

Proposition 2.2.8. (Weierstrass’ Theorem [1, Proposition 2.2.1]): Consider

a closed proper function f : Rd → R ∪ {+∞} and assume that one of the following

three conditions holds:

1. dom(f) is bounded.

2. There exists a scalar α such that the level set {x | f(x) ≤ α} is nonempty and

bounded.

3. f is coercive, i.e., for every sequence {xk} ⊂ R
d such that ‖xk‖2 → ∞, we have

limk→∞ f(xk) = ∞.

2.3. GRAPH THEORY 13

Then the set of minimizers of f is nonempty and compact.

We also recall the notion of β-centrality from [21].

Definition 2.2.9. (β-centrality): For β ∈ [0, 1], a convex function f : Rd → R

with argmin(f) 6= ∅ is β-central on Z ⊂ R
d\ argmin(f) if for each x ∈ Z, there exists

y ∈ argmin(f) such that −∂f(x) ⊆ Hβ(y − x), i.e.,

−gTx (y − x) ≥ β‖gx‖2‖y − x‖2,

for all gx ∈ ∂f(x).

2.3 Graph Theory

A weighted directed graph (or digraph) G = (V, E ,A) consists of a vertex set V =

{1, · · · , N}, an edge set E ⊆ V ×V, and an adjacency matrix A ∈ R
N×N
≥0 with aij > 0

if and only if (i, j) ∈ E , for i, j ∈ V, and aij = 0 otherwise. Note that the edge

set may contain self-loop. A path is a sequence of distinct vertices connected by

edges. The graph G is strongly connected if there is a path between any pair of

distinct vertices. We define in-neighbors and out-neighbors of node i, respectively, as

N in
i = {j | (j, i) ∈ E} and N out

i = {j | (i, j) ∈ E}. The in- and out-degree of vertex

i are, respectively, dini = |N in
i | and douti = |N out

i |. The directed graph G is balanced

if for every i ∈ V, we have dini = douti and it is weight-balanced if A1N = A
T1N . The

graph G is undirected if the edge set E is a set of unordered pair of vertices, i.e.,

E ⊆ V × V with the assumption that if (i, j) ∈ E , then (j, i) ∈ E . For an undirected

graph G, the set of neighbors of vertex i is defined as N (i) = {j | (i, j) ∈ E}. We

2.3. GRAPH THEORY 14

define the Laplacian matrix L(G) for the graph G by

L(G) = diag(A1N)− A.

The following properties of the Laplacian matrix can easily be verified [4].

1. L(G)1N = 0N , i.e., 0 is an eigenvalue of L(G) with eigenvector 1N .

2. G is undirected if and only if L(G) is symmetric.

3. if G is strongly connected, then rank(L(G)) = N−1, i.e., 0 is a single eigenvalue

of L(G).

Definition 2.3.1. ([23]): We say the sequence of graphs G(t) = {V, E(t),A(t)}Tt=1 is

uniformly strongly connected (or B-strongly-connected) if there exists B ∈ Z>0 such

that for each k ∈ Z≥0, the digraph with vertices V and edge set EB(k) =
⋃(k+1)B

t=kB+1 E(t)

is strongly connected.

Definition 2.3.2. ([20]): A regular (undirected) graph is a graph where every vertex

has the same number of neighbours. A regular graph with vertices of degree r is called

an r-regular graph. A Ramanujan graph is an r-regular graph satisfying σ2(A) ≤

2
√
r − 1, where A = [aij] is the unweighted adjacency matrix of the graph, i.e., aij = 1

if (i, j) ∈ E and aij = 0 otherwise.

15

Chapter 3

Problem Statement

In this section, we describe the problem of distributed online convex optimization,

which is developed from the online optimization problem for the multi-agent systems.

We begin by describing the problem of online convex optimization.

3.1 Online Optimization

Suppose we have a sequence of convex cost functions {f 1, f 2, · · · , fT}, where f t :

S → R for each t ∈ {1, · · · , T} (T ∈ Z>0 is the time horizon), where S ⊆ R
d is a

convex set. At each time step t ∈ {1, · · · , T}, a decision maker chooses an action

z(t) ∈ S. After committing to this decision, a convex cost function f t : Rd → R is

revealed and the decision maker is faced with the cost of f t(z(t)). We can summarize

this as the following model [31],

3.2. DISTRIBUTED ONLINE OPTIMIZATION 16

Online Convex Optimization

input: A convex set S ∈ R
d

for t = 1, 2, · · ·

predict a vector z(t) ∈ S ⊆ R
d

receive a convex cost function f t : Rd → R

suffer cost f t(z(t))

In this scenario, due to lack of access to the cost function before the decision is

made, the decision does not necessarily correspond to the minimizers and the decision

maker is faced with a so-called regret. Regret is defined as the difference between the

accumulated cost over time and the cost incurred by the best fixed decision, when all

the functions are known in advance, see [44, 11]. Formally, the regret is

R(T) =

T
∑

t=1

f t(z(t))−
T
∑

t=1

f t(z⋆),

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

f t(z).

Throughout the report, we assume that the minimizer set is nonempty. The

objective here is to design an algorithm for the decision maker so that it achieves a

regret that is sublinear in T , i.e., limT→∞
R(T)
T

= 0, which means that the average

regret over time goes to zero.

3.2 Distributed Online Optimization

Next, we review the setup for a distributed version of the online optimization prob-

lem [13, 21]. Consider a group of agents communicating with each other over a

3.2. DISTRIBUTED ONLINE OPTIMIZATION 17

network, modeled by a graph, possibly directed and possibly time-varying, with prop-

erties that will be described shortly. At each time step t ∈ {1, 2, · · · , T}, an agent

i ∈ V = {1, · · · , N} chooses its state zi(t) ∈ R
d. After this, a convex cost function

f t
i : Rd → R is revealed, and the agent incurs the cost f t

i (zi(t)). In this scenario, at

each time t, the whole network aims to minimize the cost function

f t(z) =

N
∑

i=1

f t
i (z),

which is distributed among agents and is revealed when agents have chosen their

states. Therefore, each agent estimates its state based on what it thinks the whole

network would choose. Moreover, due to lack of access to the cost functions before

the decisions are made, the decisions do not necessarily correspond to the minimizers

and each agent faces with a regret.

The individual regret of agent j ∈ V, see [13, 22], is now defined as

R
j(T) :=

T
∑

t=1

N
∑

i=1

f t
i (zj(t))−

T
∑

t=1

N
∑

i=1

f t
i (z

⋆), (3.1)

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

N
∑

i=1

f t
i (z). (3.2)

This individual regret function for agent j computes the difference between the net-

work cost incurred by the agent’s states estimation and the cost incurred by the best

fixed choice, when all functions are known in advance.

The individual regret function is different from the network regret, which is defined

as the difference between the collective accumulated cost over time of all agents and

the cost resulting from the best offline fixed choice, selected by assuming that the

3.2. DISTRIBUTED ONLINE OPTIMIZATION 18

information about the cost functions is available in advance. Specifically, we can

write the network regret as

R(T) :=

T
∑

t=1

N
∑

i=1

f t
i (zi(t))−

T
∑

t=1

N
∑

i=1

f t
i (z

⋆), (3.3)

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

N
∑

i=1

f t
i (z).

It is essential to note that, at each time, each agent has only access to the value of

its own (past) cost functions, and their subgradients, and has only partial information

about the other agents’ states. Therefore, agents cannot compute their own regret.

However, at each time step, agents have access to a communication network over

which they can share information.

The main objective of this thesis is to design distributed algorithms over some

network topology which allow the agents to asymptotically drive the average indi-

vidual regret over time to zero, even though limited information is available to the

agents. More specifically, the distributed algorithm must have the property that the

individual regret is upper bounded sublinearly in the time T . Our first proposed

algorithm is given in Chapter 4 which works on time-varying uniformly strongly con-

nected graphs. The second one will be introduced in Chapter 5, which works on a

fixed undirected graph, but gives a regret bound which scales with the size of the

network.

19

Chapter 4

Distributed Online Optimization on Time-Varying

Directed Graphs

4.1 Distributed Online Subgradient Push-Sum Algorithm

In this section, we introduce a distributed online subgradient push-sum algorithm

motivated by [27, 19], which allows the agents to have a sublinear average individual

regret. To this end, let us consider a group of agents V = {1, · · · , N} with the com-

munication topology prescribed by a sequence of B-strongly-connected time-varying

digraph {G(t) = (V, E(t),A(t))}Tt=1. The distributed online subgradient push-sum

algorithm is a discrete-time dynamical system, which is described next. We assume

that at each time t ∈ {1, · · · , T}, each agent has four state variables: xi(t) ∈ R
d,

yi(t) ∈ R, wi(t) ∈ R
d and zi(t) ∈ R

d, which the agent computes locally. Here, zi(t) is

the agent’s primary state which incurs the cost f t
i (zi(t)). The parameters xi(t) and

wi(t) are used to estimate zi(t) by using other agents’ states and properties of cost

function f t
i . Finally, yi(t) is a scalar used to determine the influence of the agent’s

neighbours on its states over a directed graph.

We are now in a position to introduce our distributed online subgradient push-sum

4.1. DISTRIBUTED ONLINE SUBGRADIENT PUSH-SUM
ALGORITHM 20

algorithm. At each iteration t ∈ {1, · · · , T}, the agent i ∈ V computes its next time

state values by

wi(t+ 1) =
∑

j∈N in

i (t)

xj(t)

doutj (t)
,

yi(t+ 1) =
∑

j∈N in

i (t)

yj(t)

doutj (t)
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) =wi(t+ 1)− α(t+ 1)gt+1
i (zi(t+ 1)),

where gt+1
i (zi(t+1)) is the subgradient of the function f t+1

i at zi(t+1) and α : Z>0 →

R>0 is the learning rate. Throughout the rest of this chapter, for simplicity, we write

gi(t+1) instead of gt+1
i (zi(t+1)). We set the initial value yi(0) = 1 for all i ∈ V, and

xi(0) ∈ R
d arbitrary where i ∈ V. Note that f t

i is available only after agent i selects

the state zi(t).

We now briefly describe how each agent computes its state values. At each time

t, all in-neighbor agents j ∈ N in
i (t) of agent i share

xj(t)

doutj (t)
and

yj(t)

doutj (t)
with this agent;

hence i can compute wi(t+1), yi(t+1), zi(t+1), xi(t+1) using this information. Note

that we assume all agents has a self-loop, i.e., i ∈ N in
i (t) for all i ∈ V and t ∈ Z>0.

It is useful to represent the discrete-time dynamical system described above in

matrix form. To this end, let us define the matrix A(t) = [aij(t)]N×N and A(t) =

A(t)⊗ Id, where

aij(t) =

1/doutj (t) whenever j ∈ N in
i (t)

0 otherwise.

4.2. MAIN RESULT 21

Note that the matrix A(t) is column stochastic. The algorithm described above can

now be written as

w(t+ 1) =A(t)x(t),

y(t+ 1) =A(t)y(t),

zi(t+ 1) =
wi(t + 1)

yi(t+ 1)
, for all i ∈ V,

x(t + 1) =w(t+ 1)− α(t+ 1)g(t+ 1), (4.1)

where w(t) = (wT

1 (t), . . . , w
T

N(t))
T, x(t) = (xT

1 (t), . . . , x
T

N(t))
T, y(t) = (y1(t), . . . , yN(t))

T,

and g(t) = (gT1 (t), . . . , g
T

N(t))
T.

4.2 Main Result

In this section, we show how the distributed online subgradient push-sum algo-

rithm (4.1) can be used to bound the individual regret defined in (3.1). Before

stating our main result, we specify the sequence of cost functions {f t
1, f

t
2, ..., f

t
N}Tt=1

that we consider in this chapter. This assumption selects a subset of convex functions

with bounded subgradients, that are additionally strongly convex on a neighborhood,

which we give a precise description for later on in Section 4.4.

Assumption 4.2.1. {f t
1, f

t
2, ..., f

t
N}Tt=1 is a sequence of convex functions with nonempty

set of minimizers, where for each i ∈ {1, . . . , N}, the function f t
i :

1. has Li-bounded subgradients, where Li ∈ R>0, and

2. is µ-strongly convex on B̄(0, H(µK1

2L
)) for some µ ∈ R>0, K1 ∈ R>0 independent

of T , and L =
∑N

i=1 Li, where H(·) is defined in equation (4.21), and ∪N
i=1 ∪T

t=1

4.2. MAIN RESULT 22

argmin f t
i ⊂ B̄(0, K1/2).

The following theorem is the main result of this chapter.

Theorem 4.2.2. (Sublinear agent’s regret bound): Consider a group of agents

V = {1, · · · , N} over a sequence of B-strongly connected graphs, where T,N ∈ Z>0.

Let {f t
1, f

t
2, ..., f

t
N}Tt=1 be a sequence of convex cost functions that satisfies Assump-

tion 4.2.1. Suppose that the learning rate is given by α(t) = 1
µt

and that the agents

use (4.1) to generate the sequence {z(t) = (z1(t), z2(t), ..., zN(t))}Tt=1. Then for each

agent j ∈ V, we have

R
j(T) ≤ C1 + C2(1 + ln(T)) + C3(1 + ln(T))2, (4.2)

where

C1 =
8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
8µN

δ(1− λ)

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2 +
16NLj

δ(1− λ)

N
∑

i=1

‖xi(0)‖1,

C2 =
8L2

µδ(1− λ)
+

8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1 +
16NLj

δ(1− λ)

L

µ

+
8N

δ(1− λ)
L‖x̄(0)− z⋆‖2 +

L2

2Nµ
,

C3 =
8

δ(1− λ)

L2

µ
,

z⋆ is defined in (3.2), δ ∈ R>0 and λ ∈ R>0 depend on the network topology, via (4.6)

4.2. MAIN RESULT 23

and (4.5), respectively, and

L =
N
∑

i=1

Li, and

x̄(t) =
1

N
(x1(t) + x2(t) + · · ·+ xN(t)) =

1

N
(1N ⊗ Id)

T[xT

1 (t), x
T

2 (t), · · · , xT

N(t)]
T.

(4.3)

Before we prove this result, we make a few remarks on the comparison of our results

with previous works. The distributed online subgradient push-sum algorithm (4.1)

and our result in Theorem 4.2.2 do not rely on fixed graph topologies, or on the fact

that the underlying network is weight-balanced. In this sense, this result is more

general than the existing results in the literature [22, 13, 21]. On the other hand,

the bound obtained is of order (ln(T))2, rather than ln(T), which is slightly worse

than the known regret bounds in the centralized scenarios, or the known cases on

weight-balanced directed graphs. This may be due to the estimates that we have

used for some of our upper bounds, or can be due to the nature of the distributed

online subgradient push-sum algorithm.

We recall some technical results in the literature that we will use in the proof of

our main result. In Section 4.3, we recall some results on the product of stochastic

matrices, which we use to bound ‖zi(t + 1) − x̄(t)‖2. In Section 4.4, we prove that

under the Assumption 4.2.1, we can bound ‖zi(t)‖2. Finally, in Section 4.5, we prove

Theorem 4.2.2.

4.3. PRODUCT OF STOCHASTIC MATRICES 24

4.3 Product of Stochastic Matrices

The following fact is well-known and has been established in various places, for ex-

ample [2, 42, 17, 36, 32, 28].

Proposition 4.3.1. (Product of stochastic matrices on uniformly strongly

connected digraphs [28]): Suppose that the graph sequence {G(t)}Tt=1 is uniformly

strongly connected. Then, the following statements are true:

1. For every s ∈ Z>0, the limit limt→∞AT(t)AT(t − 1) · · ·AT(s + 1)AT(s) exists.

In particular, the limiting matrix is a rank-one stochastic matrix, i.e., there is

a stochastic vector φ(s) such that

lim
t→∞

AT(t)AT(t− 1) · · ·AT(s+ 1)AT(s) = 1φT(s) for all s ≥ 0.

2. The convergence rate is geometric, and is given by

∣

∣[AT(t)AT(t− 1) · · ·AT(s+ 1)AT(s)]ij − φj(s)
∣

∣ ≤ Cλt−s for all i, j = 1, · · · , N,

for some C and λ ∈ (0, 1).

The following propositions specifies the values of C and λ. Before stating it, we

need a definition. Given a graph sequence {G(t) = (V, E(t), A(t))}Tt=1, let us define

δ := inf
t≥0

(

min
1≤i≤N

[1TAT(t) · · ·AT(0)]i
)

.

We now recall the following proposition form [28].

Proposition 4.3.2. ([28]): We have:

4.3. PRODUCT OF STOCHASTIC MATRICES 25

1. For any B-strongly connected sequence of graphs with N vertices, we may choose

C = 2, λ = (1− 1

NNB
)1/B.

Moreover, δ ≥ 1
NNB .

2. If in addition every graph G(t) is regular, we have

C =
√
2, λ = min{(1− 1

4N3
)1/B,max

t≥0
σ2(A(t))}.

Moreover, δ = 1.

Although the proof of this is established in [28], we include a proof for completeness

of this manuscript.

Proof. From [2], under the assumption of B-strongly connectivity, and definition of

matrix A, it can be verified that if

x(t) = AT(t− 1)AT(t− 2) · · ·AT(s)x(s) for all t > s > 0,

then

max
i∈V

xi(t)−min
i∈V

xi(t) ≤ (1− 1

NNB
)⌊(t−s)/(NB)⌋ ×

(

max
i∈V

xi(s)−min
i∈V

xi(s)

)

.

This implies that

max
i∈V

xi(t)−min
i∈V

xi(t) ≤ 2(1− 1

NNB
)(t−s)/(NB) ×

(

max
i∈V

xi(s)−min
i∈V

xi(s)

)

. (4.4)

4.3. PRODUCT OF STOCHASTIC MATRICES 26

We start by proving the statement for C and λ. Since (4.4) holds for every x(s), by

choosing x(s) to be each of N basis vectors, we have for every j = 1, · · · , N ,

max
i∈V

[AT(t− 1) · · ·AT(s)]ij −min
i∈V

[AT(t− 1) · · ·AT(s)]ij ≤ 2(1− 1

NNB
)(t−s)/(NB).

Since each matrix AT(t) is row stochastic, the entry φj(s) is a limit of the convex

combination of the N numbers [AT(t − 1) · · ·AT(s)]ij , i = 1, · · · , N , as t → ∞.

Hence, we conclude that

∣

∣[AT(t)AT(t− 1) · · ·AT(s+ 1)AT(s)]ij − φj(s)
∣

∣ ≤ Cλt−s,

where we may choose C = 2 and λ = (1− 1
NNB)

1/B, which proves part 1.

For the second statement, note that when the graphs G(t) are regular, the matrices

A(t) are doubly stochastic. Then, from the result of [24] we have

‖x(t)− x̄(s)1N‖22 ≤
(

1− 1

2N3

)⌊(t−s)/B⌋
‖x(s)− x̄(s)1‖22,

where x(t) = AT(t − 1) · · ·AT(s)x(s) and x̄(s) is the average of the entries of x(s).

From the last inequality, we have

‖x(t)− x̄(s)1N‖22 ≤ 2

(

1− 1

2N3

)(t−s)/B

‖x(s)− x̄(s)1‖22,

which implies that

max
i∈V

|xi(t)− x̄(s)1N | ≤
√

2

(

1− 1

2N3

)(t−s)/B

‖x(s)− x̄(s)1‖2.

4.3. PRODUCT OF STOCHASTIC MATRICES 27

Moreover, since the relation above holds for any vector x(s) ∈ R
n , by choosing x(s)

to be each basis vector, we obtain for each j and all t > s ≥ 0,

max
i∈V

[AT(t− 1) · · ·AT(s)]ij −
1

N
≤

√
2

(

√

1− 1

2N3

)(t−s)/B

.

Since
√

1− β/2 ≤ 1 − β/4 for all β ∈ (0, 1), it follows that we may choose C =
√
2

and λ = (1 − 1
4N3)

1/B. We can similarly show that we may choose C = 1 and

λ = maxt≥0 σ2(A(t)) for regular graphs.

Now, we prove the statements for δ. It is shown in [17, 36] that for every t >

(N − 1)B, every entry of AT(t) · · ·AT(1) is positive and has value at least 1/NNB.

We prove the same statement for 1 ≤ t ≤ NB. By the definition of matrices A(t), we

have A(t)ii = 1/di(t), since every agent has a self-loop. Note that di(t) ≤ N , which

implies that A(t)ii ≥ 1/N for all t and i. Hence, for all i ∈ V and all t ∈ Z>0

[AT(t+ 1)AT(t) · · ·AT(0)]ii ≥
1

N
[AT(t) · · ·AT(0)]ii.

Therefore, we have [1TAT(t) · · ·AT(1)]i ≥ 1/NNB for all i ∈ V and 1 ≤ t ≤ NB. This

proves the bound δ ≥ 1/NNB. It can be verified that for regular matrices we have

δ = 1.

We recall the following corollary of Proposition 4.3.2, without stating the proof [28].

Corollary 4.3.3. If the graphs G(t) are B-strongly connected, the following hold:

1. There exists a sequence of stochastic vectors φ(t), such that for all i, j ∈ V, and

4.3. PRODUCT OF STOCHASTIC MATRICES 28

all t > s ≥ 0, we have

∣

∣[AT(t)AT(t− 1) · · ·AT(s+ 1)AT(s)]ij − φj(s)
∣

∣ ≤ Cλt−s,

where we can always choose

C = 4, λ = (1− 1/NNB)1/B, (4.5)

Moreover, if G(t) are regular, we may choose

C = 2
√
2, λ = min{(1− 1

4N3
)1/B,max

t≥0
σ2(A(t))}.

2. The parameter

δ := inf
t≥0

(

min
1≤i≤N

[A(t) · · ·A(0)1]i
)

.

satisfies

δ ≥ 1

NNB
. (4.6)

In addition, if G(t) are regular, we have δ = 1.

3. The stochastic vectors φ(t), for all j ∈ V and t ∈ Z>0 satisfies

φj(t) ≥
δ

N
.

The proof follows by taking transpose of matrices A(t) and definition of δ; see [28].

We also recall the following result from [23].

Lemma 4.3.4. ([23, Corollary 1]): Consider the sequences {zi(t)}Tt=1, for all i ∈ V,

4.3. PRODUCT OF STOCHASTIC MATRICES 29

generated by (4.1) on a sequence of B-strongly-connected digraphs. Then we have

‖zi(t+ 1)− x̄(t)‖2 ≤
8

δ

(

λt
N
∑

i=1

‖xi(0)‖1 +
t
∑

s=1

λt−s
N
∑

i=1

‖α(s)gi(s)‖1
)

, (4.7)

where δ and λ ∈ R>0 satisfy

δ ≥ 1

NNB
and λ ≤ (1− 1

NNB
)1/(NB).

Additionally, if each of the graphs G(t) is regular, then δ = 1 and

λ ≤ min
{

(1− 1

4N3
)1/(B), max

t∈{1,··· ,T}
σ2(A(t))

}

.

The constant δ measures the imbalance of the network and λ is a measure of

connectivity, see [28] for more details. Although the proof of the lemma is given

in [28], we state it for completeness.

Proof. First, we assume that zi(t) ∈ R for all i ∈ V and t ∈ {1, · · · , T}. For all

t > s ≥ 0, we define A(t : s) as

A(t : s) = A(t)A(t− 1) · · ·A(s),

and A(t : t) = A(t). We also let ǫ(t) = −α(t)g(t). From (4.1) and for t ≥ 0, we have

x(t + 1) = A(t : 0)x(0) +

t
∑

s=1

A(t : s)ǫ(s) + ǫ(t + 1),

4.3. PRODUCT OF STOCHASTIC MATRICES 30

which implies that

A(t+ 1)x(t+ 1) = A(t + 1 : 0)x(0) +
t+1
∑

s=1

A(t+ 1 : s)ǫ(s). (4.8)

Since each A(t) is column stochastic, we have that 1TA(t) = 1T. Using this and (4.8),

we have

1Tx(t + 1) = 1Tx(0) +

t+1
∑

s=1

1Tǫ(s). (4.9)

Using (4.8) and (4.9), we have

A(t + 1)x(t+ 1)− φ(t+ 1)1Tx(t + 1) =(A(t+ 1 : 0)− φ(t+ 1)1T)x(0)

+

t+1
∑

s=1

(A(t+ 1 : s)− φ(t+ 1)1T)ǫ(s),

where φ(t) ∈ R
N is given in Proposition 4.3.1. We define D(t : s) = A(t : s)−φ(t)1T.

Using Corollary 4.3.3, for all i, j ∈ V and t ≥ s ≥ 0 we have

|[D(t : s)]ij| ≤ Cλt−s, (4.10)

where C and λ is given in Corollary 4.3.3. Hence, we have

A(t+1)x(t+1) = φ(t+1)1Tx(t+1)+D(t+1 : 0)x(0)+

t+1
∑

s=1

D(t+1 : s)ǫ(s). (4.11)

We also have

w(t+ 1) = A(t)x(t) = φ(t)1Tx(t) +D(t : 0)x(0) +

t
∑

s=1

D(t : s)ǫ(s). (4.12)

4.3. PRODUCT OF STOCHASTIC MATRICES 31

We can derive a similar expression for y(t+ 1):

y(t+ 1) = A(t : 0)y(0) = φ(t)1Ty(0) +D(t : 0)y(0) = φ(t)N +D(t : 0)1. (4.13)

From (4.12) and (4.13), we have

zi(t + 1) =
wi(t + 1)

yi(t + 1)
=

φi(t)1
Tx(t) + [D(t : 0)x(0)]i +

∑t
s=1[D(t : s)ǫ(s)]i

φi(t)N + [D(t : 0)1]i
.

Hence,

zi(t+ 1)− 1Tx(t)

N
=

φi(t)1
Tx(t) + [D(t : 0)x(0)]i +

∑t
s=1[D(t : s)ǫ(s)]i

φi(t)N + [D(t : 0)1]i
− 1Tx(t)

N
,

and as a result,

zi(t+ 1)− 1Tx(t)

N
=

N [D(t : 0)x(0)]i +N
∑t

s=1[D(t : s)ǫ(s)]i − 1Tx(t)[D(t : 0)1]i
N(φi(t)N + [D(t : 0)1]i

),

The denominator of the above fraction is N times the ith row of A(t : 0). By definition

of δ, this row sum is at least δ, and consequently

φi(t)N + [D(t : 0)1]i = [A(t : 0)1]i ≥ δ.

4.3. PRODUCT OF STOCHASTIC MATRICES 32

Therefore, for all i and t ≥ 1,

|zi(t+ 1)− x̄(t)| ≤|[D(t : 0)x(0)]i|+
∑t

s=1 |[D(t : s)ǫ(s)]i|
φi(t)N + [D(t : 0)1]i

+
|1Tx(t)[D(t : 0)1]i)|

N(φi(t)N + [D(t : 0)1]i)

≤1

δ

(

max
j

|[D(t : 0)ij]|‖x(0)‖1 +
t
∑

s=1

(max
j

|[D(t : s)ij]|)‖ǫ(s)‖1
)

+
1

Nδ
|1Tx(t)|(max

j
|[D(t : 0)ij]|)N,

where, we have used the triangle and Hölder inequality in the first and second in-

equality, respectively. Using (4.10), we obtain

|zi(t+ 1)− x̄(t)| ≤ C

δ
λt‖x(0)‖1 +

C

δ

(

t
∑

s=1

λt−s‖ǫ(s)‖1 + |1Tx(t)|λt

)

. (4.14)

Using (4.9), we have

|1Tx(t)| ≤ ‖x(0)‖1 +
t
∑

s=1

‖ǫ(s)‖1.

Using this and (4.14), we obtain

|zi(t+ 1)− x̄(t)| ≤ C

δ
λt‖x(0)‖1 +

C

δ

t
∑

s=1

λt−s‖ǫ(s)‖1 +
C

δ
λt

(

‖x(0)‖1 +
t
∑

s=1

‖ǫ(s)‖1
)

≤ C

δ

(

2λt‖x(0)‖1 + 2
t
∑

s=1

λt−s‖ǫ(s)‖1
)

.

Since we can choose C ≤ 4, we obtain the result. Note that in the last inequality,

‖x(0)‖1 =
∑N

i=1 |xi(0)| and ‖ǫ(s)‖1 =
∑N

i=1 |α(s)gi(s)|. For zi(t) ∈ R
d, we can apply

the same argument of the preceding proof in every coordinate of zi(t) and using the

fact that the Euclidean norm of a vector is less than the 1-norm of it, to obtain the

result.

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 33

We state a corollary of Lemma 4.3.4, which plays a key role in the proof of our

main result.

Corollary 4.3.5. Under the assumption of Theorem 4.2.2, where the learning rate

is chosen as α(t) = 1
µt
, we have

‖zi(t)− x̄(t− 1)‖2 ≤
8

δ

(

N
∑

i=1

‖xi(0)‖1 +
L

µ(1− λ)

)

, (4.15)

T
∑

t=1

N
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2 ≤
8L

δ(1− λ)

(

N
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

. (4.16)

The proof follows immediately from the fact that λ ∈ (0, 1) and

N
∑

i=1

‖gi(s)‖1 ≤ L and

T
∑

t=1

α(t) ≤ 1

µ
(1 + ln(T)).

4.4 Results on Locally Strongly Convex Functions

Proof of Theorem 4.2.2 also relies on some results on locally strongly convex functions.

In this section, we study the boundedness of the agents’ states, where agents use (4.1)

to generate the sequence {z(t)}Tt=1 over a sequence of B-strongly connected graphs. We

assume that the sequence of cost functions {f t
1, · · · , fT

N}Tt=1 satisfies Assumption 4.2.1.

We recall the following lemmas from [21], without stating their proof.

Lemma 4.4.1. (Convex Cone Inclusion [21, Lemma 5.6]): Given β ∈ (0, 1],

ǫ ∈ (0, β), and any scalars K1, K2 ∈ R>0, let

r̂β :=
K1 +K2

β
√
1− ǫ2 − ǫ

√

1− β2
.

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 34

Then, r̂β ∈ (K1 +K2,+∞) and, for any x ∈ R
d \ B̄(0, r̂β),

⋃

w∈B̄(−x,K1+K2)

Hβ(w) ⊂ Hǫ(−x),

where Hβ(w) is a convex cone defined in (2.1) and the set on the left is convex.

The proof is based on trigonometric functions.

Lemma 4.4.2. ([21, Lemma 5.9]): Let f : Rd → R be a convex function on R
d

that is also γ-strongly convex on B̄(y, ζ) for some γ, ζ ∈ R>0 and y ∈ R
d. Then, for

any x ∈ R
d \ B̄(y, ζ) and gx ∈ ∂f(x), gy ∈ ∂f(y),

(gx − gy)
T(x− y) ≥ γζ‖x− y‖2. (4.17)

If in addition, f has L-bounded subgradient sets and 0 ∈ ∂f(y), then f is γζ
L
-central

in R
d \ B̄(y, ζ). (Note that if 0 ∈ ∂f(y), then argminx∈Rd f(x) = {y} is a singleton

by strong convexity in the ball B̄(y, ζ).)

The proof is given in [21]. We reproduce it for completeness of this manuscript.

Proof. For the given y ∈ R
d and for all x ∈ R

d \ B̄(y, ζ), we choose x̃ on the line

segment between x and y such that ‖x̃−y‖2 = ζ , i.e., x̃ is on the boundary of B̄(y, ζ).

Hence, we have

x− y =
1

v
(x̃− y) =

1

1− v
(x− x̃), (4.18)

for some v ∈ (0, 1). Then, for any gx ∈ ∂f(x), gy ∈ ∂(y), and gx̃ ∈ ∂f(x̃), we can

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 35

write

(gx − gy)
T(x− y) =(gx − gx̃ + gx̃ − gy)

T(x− y)

=(gx − gx̃)
T(x− y) + (gx̃ − gy)

T(x− y)

=
1

1− v
(gx − gx̃)

T(x− x̃) +
1

v
(gx̃ − gy)

T(x̃− y)

≥0 +
γ

v
‖x̃− y‖22 = γ‖x̃− y‖2‖x− y‖2 = γζ‖x− y‖2,

where in the third equality we have used (4.18) and in the last inequality we have

used convexity for the first term and strong convexity for the second term. For the

second part, note that we have gy = 0. Using this in (4.17) and multiplying it with

‖gx‖2
H

, we conclude the second part.

We now state the following result.

Lemma 4.4.3. For T ∈ R>0, let {f t
1, · · · , fT

N}Tt=1 be a sequence of convex functions

on R
d with nonempty set of minimizers, where each f t

i has Li-bounded subgradient

set. Let
N
⋃

i=1

T
⋃

t=1

argmin f t
i ⊂ B̄(0, K1),

for some K1 ∈ R>0 independent of T , and assume {f t
1, · · · , f t

N}Tt=1 are β-central on

R
d\ B̄(0, K1), where β ∈ (0, 1]. Then, for any sequence {(z1(t), · · · , zN(t))}Tt=1 and

{x̄(t)}Tt=1 generated by (4.1) over a sequence of B-strongly connected graphs, and any

sequence of learning rates {α(t)}Tt=1, we have

‖x̄(t)‖2 ≤ rβ +
L

N
max
s≥1

α(s) + ‖x̄(0)‖2, (4.19)

‖zi(t)‖2 ≤ H(β),

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 36

for all t > 0, where L =
∑N

i=1 Li,

rβ = max
{ K1 +K2

β
√
1− ǫ2 − ǫ

√

1− β2
,

L

2Nǫ
max
s≥1

α(s)
}

, (4.20)

H(β) = rβ + ‖x̄(0)‖2 +K2 +
L

N
max
s≥1

α(s), (4.21)

with ǫ ∈ (0, β) and K2 ∈ R>0.

A very similar result has been proved in [21]. We have modified this result to be

fit with the proposed algorithm given in (4.1). The proof is given next and follows

the same lines as [21, Lemma 5.7]

Proof. First we prove the boundedness of ‖x̄(t)‖2 by induction on t. Note that the

initial condition ‖x̄(0)‖2 satisfies (4.19), and from (4.1) and the column stochasticity

of matrices A(t), we can write

x̄(t) = x̄(t− 1)− α(t)

N

N
∑

i=1

gi(t). (4.22)

Here, we conclude that if x̄(t− 1) ∈ B̄(0, rβ), then

x̄(t) ∈ B̄
(

0, rβ + Lmax
s≥1

α(s)/N
)

.

By an argument very similar to the one in the proof [21, Lemma 5.7], we have that if

x̄(t− 1) ∈ R
d \ B̄(0, rβ), then ‖x̄(t)‖2 ≤ ‖x̄(t− 1)‖2. To establish this, we study the

direction and the magnitude of the term −α(t)
N

∑N
i=1 gi(t) in (4.22).

First, we study the direction of −α(t)
N

∑N
i=1 gi(t). Recall (4.15), that for each i ∈ V,

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 37

we have

‖zi(t)− x̄(t− 1)‖2 ≤
8

δ

(

N
∑

i=1

‖xi(0)‖1 +
L

µ(1− λ)

)

≤ K2. (4.23)

Using this, since x̄(t − 1) ∈ R
d \ B̄(0, rβ) and rβ > K1 +K2 from Lemma 4.4.1, we

conclude that zi(t) ∈ R
d \ B̄(0, K1) for all i ∈ V. The β-centrality of the function

f t
i , for each i ∈ V, and t ∈ {1, · · · , T} on R

d \ B̄(0, K1), implies that, for each

z ∈ R
d \ B̄(0, K1), we have

−∂f t
i (z) ⊆

⋃

y∈argmin(f t
i)

Hβ(y − z) ⊆
⋃

y∈B̄(0,K1)

Hβ(y − z), (4.24)

where the last inclusion follows from the hypothesis that
∑T

t=1

∑N
i=1 argmin(f t

i) ⊆

B̄(0, K1). Now, using the change of variable w = y − z, we obtain

⋃

y∈B̄(0,K1),z∈B̄(x,K2)

Hβ(y − z) =
⋃

w∈B̄(−x,K1+K2)

Hβ(w). (4.25)

From Lemma 4.4.1, we conclude that the right side of (4.25) is convex whenever

x ∈ R
d \ B̄(0, rβ). Hence, taking the union when z ∈ B̄(x,K2) on both sides of (4.24)

and using (4.25), we have

conv

⋃

z∈B̄(x,K2)

− ∂f t
i (z)

 ⊆
⋃

w∈B̄(−x,K1+K2)

Hβ(w) ⊆ Hǫ(−x), (4.26)

where the last inclusion holds for any x ∈ R
d \ B̄(0, K1) by Lemma 4.4.1. Taking

x = x̄(t − 1) and noting that for all i ∈ V, zi(t) ∈ B̄(x̄(t − 1), K2) from (4.23), we

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 38

have

−gi(t) ∈ conv

⋃

z∈B̄(x̄(t−1),K2)

− ∂f t
i (z)

 ⊆ Hǫ(−x̄(t))

The convexity of Hǫ(−x̄(t)) implies that

− 1

N

N
∑

i=1

gi(t) ∈ Hǫ(−x̄(t)). (4.27)

From the definition of convex cone (2.1), we have

(1

N

N
∑

i=1

gi(t)
)T

x̄(t− 1) ≥ ǫ‖ 1

N

N
∑

i=1

gi(t)‖2‖x̄(t− 1)‖2. (4.28)

Now we study the magnitude of ‖x̄(t)‖2. From (4.22), we have

‖x̄(t)‖22 = ‖x̄(t− 1)− α(t)

N

N
∑

i=1

gi(t)‖22,

= ‖x̄(t− 1)‖22 +
(α(t))2

N2
‖

N
∑

i=1

gi(t)‖22 −
2α(t)

N

(

N
∑

i=1

gi(t)
)T

x̄(t− 1). (4.29)

Using (4.28) in (4.29) we have

‖x̄(t)‖22 ≤ ‖x̄(t− 1)‖22 +
(α(t))2

N2
‖

N
∑

i=1

gi(t)‖22 −
2ǫα(t)

N
‖

N
∑

i=1

gi(t)‖2‖x(t− 1)‖2.

(4.30)

From definition of rβ in (4.20), and since x̄(t− 1) ∈ R
d \ B̄(0, rβ), we can write

‖x̄(t− 1)‖2 ≥
L

2Nǫ
max
s≥1

α(s) ≥ α(t)

2Nǫ
‖

N
∑

i=1

gi(t)‖2,

4.4. RESULTS ON LOCALLY STRONGLY CONVEX FUNCTIONS 39

where we have used ‖∑N
i=1 gi(t)‖2 ≤ L in the last inequality. Using this in (4.30), we

conclude that

‖x̄(t)‖2 ≤ ‖x̄(t− 1)‖2. (4.31)

This guarantees that if the starting assumption that x̄(t− 1) ∈ R
d \ B̄(0, rβ) holds,

then ‖x̄(t)‖2 ≤ ‖x̄(t− 1)‖2.

Next, using (4.23), we conclude that ‖zi(t)‖2 ≤ H(β), for all t ∈ Z>0, where H(β)

is given in (4.21).

Theorem 4.4.4. For T ∈ R>0, let {f t
1, · · · , fT

N}Tt=1 be a sequence of convex functions

on R
d with nonempty set of minimizers, where each f t

i has Li-bounded subgradient

set. Let
N
⋃

i=1

T
⋃

t=1

argmin f t
i ⊂ B̄(0, K1/2),

for some K1 ∈ R>0 independent of T . Suppose that {f t
1, · · · , f t

N}Tt=1 is a sequence

of µ-strongly convex functions on B̄(0, H(µK1

2L
)), for some µ ∈ R>0, where H(·) is

defined in (4.21). Then {zi(t)}Ni=1, generated by (4.1) over a sequence of B-strongly

connected graphs, stays in B̄(0, H(µK1

2L
)), for all t.

Proof. By an argument very similar to the one in the proof [21, Theorem 6.1], K1 <

rβ < H(µK1

2L
) and hence K1 < H(µK1

2L
). Thus, f t

i is µ-strongly convex in B̄(0, K1) and

an application of Lemma 4.4.2 implies that each f t
i is β ′-central on R

d \ B̄(0, K1),

where β ′ ≤ µK1

2L
. Hence, the assumptions of Lemma 4.4.3 are satisfied with β = µK1

2L

and as a result, zi(t) remains in the region B̄(0, H(µK1

2L
)).

4.5. PROOF OF THE MAIN RESULT 40

4.5 Proof of the Main Result

We now start the process of proving Theorem 4.2.2. In order to prove this result, we

need to first present a result on network regret, which is defined in (3.3). We have

the following theorem.

Theorem 4.5.1. (Sublinear network regret bound): Consider a group of agents

V = {1, . . . , N} over a sequence of B-strongly connected graphs, where T,N ∈ Z>0.

Let {f t
1, f

t
2, ..., f

t
N}Tt=1 be a sequence of convex cost functions that satisfies Assump-

tion 4.2.1. Then the sequence {z(t) = (z1(t), z2(t), ..., zN (t))}Tt=1 generated by (4.1)

with the learning rate α(t) = 1
µt

satisfies the network regret bound

R(T) ≤ C̃1 + C̃2(1 + ln(T)) + C̃3(1 + ln(T))2,

where

C̃1 =
8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
8µN

δ(1− λ)

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2,

C̃2 =
8L2

µδ(1− λ)
+

8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1

+
8NL

δ(1− λ)
‖x̄(0)− z⋆‖2 +

L2

2Nµ
,

C̃3 =
8

δ(1− λ)

L2

µ
,

z⋆ is defined in (3.2), δ ∈ R>0 and λ ∈ R>0 depend on the network topology as before,

and L and x̄(0) are given by (4.3).

4.5. PROOF OF THE MAIN RESULT 41

The proof relies on a sequence of results, which we present next. Throughout the

rest of this section, we adopt the notation introduced in Theorem 4.2.2.

Lemma 4.5.2. Let {f t
1, f

t
2, ..., f

t
N}Tt=1 be a sequence of convex cost functions that

satisfies Assumption 4.2.1. Then the sequence {z(t)}Tt=1 generated by (4.1), with the

learning rate α(t), over a sequence of B-strongly connected graphs, satisfies

R(T) ≤
T
∑

t=1

N
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
N

2

T−1
∑

t=1

‖x̄(t)− z⋆‖22
(

1

α(t+ 1)
− 1

α(t)
− µ

)

−
T
∑

t=1

N
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆) +
L2

2N

T
∑

t=1

α(t),

where L and x̄(t) are given by (4.3).

Proof. Using Theorem 4.4.4 and Assumption 4.2.1, for any given initial condition and

any agent i ∈ V, we have that zi(t) stays in B̄(0, H(µK1

2L
)) for all t ∈ {1, 2, · · · , T},

where the modulus of strong convexity of f is µ. Using (3.3) and since {{f t
i }Ni=1}Tt=1

is a sequence of µ-strongly convex functions, we have that

R(T) =

T
∑

t=1

N
∑

i=1

(f t
i (zi(t))− f t

i (z
⋆))

≤
T
∑

t=1

N
∑

i=1

(gi(t)
T(zi(t)− z⋆)− µ

2
‖zi(t)− z⋆‖22).

4.5. PROOF OF THE MAIN RESULT 42

By adding and subtracting x̄(t− 1), we obtain

R(T) ≤
T
∑

t=1

N
∑

i=1

(gi(t)
T(zi(t)− x̄(t− 1) + x̄(t− 1)− z⋆)

− µ

2
‖zi(t)− x̄(t− 1) + x̄(t− 1)− z⋆‖22),

=

T
∑

t=1

N
∑

i=1

(

gi(t)
T(zi(t)− x̄(t− 1)) + gi(t)

T(x̄(t− 1)− z⋆)

− µ

2

(

‖zi(t)− x̄(t− 1)‖22 + ‖x̄(t− 1)− z⋆‖22

+ 2(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)
)

)

(4.32)

Using (4.1), we have

x(t) = A(t− 1)x(t− 1)− α(t)g(t),

for all t ∈ {1, . . . , T}. Multiplying the equation by 1
N
(1N ⊗ Id)

T and using the fact

that A(t− 1) is column stochastic, we obtain

x̄(t) = x̄(t− 1)− α(t)

N

N
∑

i=1

gi(t), (4.33)

where x̄(t) is given by (4.3). Subtracting z⋆ and taking the norm square, we get

‖x̄(t)− z⋆‖22 = ‖x̄(t− 1)− z⋆‖22 +
α2(t)

N2

∥

∥

∥

N
∑

i=1

gi(t)
∥

∥

∥

2

2

− 2α(t)

N

[

N
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆).

4.5. PROOF OF THE MAIN RESULT 43

As a result, since ‖gi(t)‖2 ≤ Li, we have

[

N
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆) ≤ N

2α(t)
(‖x̄(t− 1)− z⋆‖22 − ‖x̄(t)− z⋆‖22) +

α(t)

2N
L2,

where L =
∑N

i=1 Li. Using this, we have

T
∑

t=1

[

N
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆)

≤
T
∑

t=1

N

2α(t)
(‖x̄(t− 1)− z⋆‖22 − ‖x̄(t)− z⋆‖22) +

L2

2N

T
∑

t=1

α(t)

≤ N

2α(1)
‖x̄(0)− z⋆‖22 +

N

2

T−1
∑

t=1

‖x̄(t)− z⋆‖22
(1

α(t+ 1)
− 1

α(t)

)

+
L2

2N

T
∑

t=1

α(t).

(4.34)

The proof then follows immediately using (4.32) and (4.34), along with the fact that

gi(·) is Li-bounded over Rd.

The final stepping stone in the proof of Theorem 4.5.1 is stated next.

Lemma 4.5.3. Under the assumption of Theorem 4.5.1, where the learning rate is

chosen as α(t) = 1
µt
, we have

T
∑

t=1

N
∑

i=1

−µ(zi(t)− x̄(t− 1))(x̄(t− 1)− z⋆) ≤µ
8N

δ(1− λ)

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
8

δ(1− λ)

N
∑

i=1

‖xi(0)‖1L(1 + ln(T))

+
8N

δ
L‖x̄(0)− z⋆‖2

1 + ln(T)

1− λ

+
8

δ(1− λ)

L2

µ
(1 + ln(T))2.

4.5. PROOF OF THE MAIN RESULT 44

Proof. Using the Cauchy-Schwarz inequality, we have

−
T
∑

t=1

N
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)

≤
T
∑

t=1

N
∑

i=1

µ‖zi(t)− x̄(t− 1)‖2‖x̄(t− 1)− z⋆‖2.

Let

X =
T
∑

t=1

N
∑

i=1

µ‖zi(t)− x̄(t− 1)‖2‖x̄(t− 1)− z⋆‖2.

From equation (4.33), we can write

‖x̄(t− 1)− z⋆‖2 ≤ ‖x̄(0)− z⋆‖2 +
∥

∥

∥

t−1
∑

s=1

α(s)

N

N
∑

i=1

gi(s)
∥

∥

∥

2
. (4.35)

Using (4.7) and (4.35), we can write

X ≤
T
∑

t=1

N
∑

i=1

µ
8

δ

(

λt−1

N
∑

j=1

‖xj(0)‖1 +
t−1
∑

s=1

λt−1−s

N
∑

j=1

‖α(s)gj(s)‖1
)

×
(

‖x̄(0)− z⋆‖2 + ‖
t−1
∑

s=1

α(s)

N

N
∑

j=1

gj(s)‖2
)

≤
T
∑

t=1

N
∑

i=1

µ
8

δ

(

λt−1
N
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2

+ λt−1

N
∑

j=1

‖xj(0)‖1
(

t−1
∑

s=1

α(s)

N
L
)

+ L‖x̄(0)− z⋆‖2
t−1
∑

s=1

λt−1−sα(s)

+
L2

N

t−1
∑

s=1

λt−1−sα(s)

t−1
∑

s=1

α(s)

)

. (4.36)

4.5. PROOF OF THE MAIN RESULT 45

In the last inequality we have used the subgradient bound. Letting α(s) = 1
µs
, we

have

T
∑

t=1

N
∑

i=1

µ
8

δ
λt−1

N
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2

= µ
8N

δ

N
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2
T
∑

t=1

λt−1

≤ µ
8N

δ(1− λ)

N
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2, (4.37)

where we have used the fact that
∑T

t=1 λ
t−1 ≤ 1

1−λ
. We also have that

T
∑

t=1

N
∑

i=1

µ
8

δN

N
∑

j=1

‖xj(0)‖1Lλt−1
t−1
∑

s=1

1

µs

=
8

δ

N
∑

j=1

‖xj(0)‖1L
T
∑

t=1

λt−1

t−1
∑

s=1

1

s

≤ 8

δ

N
∑

j=1

‖xj(0)‖1L
T
∑

t=1

λt−1(1 + ln(t))

≤ 8

δ(1− λ)

N
∑

j=1

‖xj(0)‖1L(1 + ln(T)), (4.38)

where we have used the fact that
∑T

t=1 λ
t−1(1+ ln(t)) ≤ (1+ln(T))

1−λ
. Also, we have that

T
∑

t=1

N
∑

i=1

µ
8

δ
L‖x̄(0)− z⋆‖2

t−1
∑

s=1

λt−1−s 1

µs

= N
8

δ
L‖x̄(0)− z⋆‖2

T
∑

t=1

t−1
∑

s=1

λt−1−s

s

≤ N
8

δ
L‖x̄(0)− z⋆‖2

1 + ln(T)

1− λ
. (4.39)

4.5. PROOF OF THE MAIN RESULT 46

Finally,

T
∑

t=1

N
∑

i=1

µ
8

δ

L2

N

t−1
∑

s=1

(λt−1−s

µs

)

t−1
∑

s=1

1

µs

≤ 8

δ

L2

µ

T
∑

t=1

(1 + ln(t))

t−1
∑

s=1

λt−1−s

s

≤ 8

δ(1− λ)

L2

µ
(1 + ln(T))2. (4.40)

In (4.39) and (4.40), by rearranging the summation, we have

T
∑

t=1

t−1
∑

s=1

λt−1−s

s
≤ 1 + ln(T)

1− λ
.

Using (4.37)-(4.40) in (4.36) then yields the result.

We are now in a position to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. Using Lemma 4.5.2 and the assumption that the learning

rate is chosen as α(t) = 1
µt
, we have that

R(T) ≤
T
∑

t=1

N
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2 +
N

2α(1)
‖x̄(0)− z⋆‖22

−
T
∑

t=1

N
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆) +
L2

2N

T
∑

t=1

α(t),

where we have used the fact that

N

2

T−1
∑

t=1

‖x̄t − z⋆‖22
(1

α(t+ 1)
− 1

α(t)
− µ

)

= 0.

4.5. PROOF OF THE MAIN RESULT 47

Using Corollary 4.3.5 and Lemma 4.5.3, we have

R(T) ≤ 8L

δ(1− λ)

(

N
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

+
N

2α(1)
‖x̄(0)− z⋆‖22

+ µ
8N

δ(1− λ)

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2 +
8

δ(1− λ)

N
∑

i=1

‖xi(0)‖1L(1 + ln(T))

+
8N

δ(1− λ)
L‖x̄(0)− z⋆‖2(1 + ln(T)) +

8

δ(1− λ)

L2

µ
(1 + ln(T))2

+
L2

2Nµ
(1 + ln(T)).

The proof then follows from rearranging the right-hand side.

In order to establish the proof of Theorem 4.2.2, using the previous result about

the network regret, we provide an upper bound on the individual regrets.

Proposition 4.5.4. Let {f t
1, f

t
2, ..., f

t
N}Tt=1 be a sequence of convex cost functions that

satisfies Assumption 4.2.1. Suppose that the learning rate is chosen as α(t) = 1
µt
,

and the agents use (4.1), over a sequence of B-strongly connected graphs, to generate

their states. Then for any agent j ∈ V, we have

R
j(T)− R(T) ≤ 16NLj

δ(1− λ)

(

N
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

.

4.5. PROOF OF THE MAIN RESULT 48

Proof. First, note that

R
j(T)− R(T) =

T
∑

t=1

N
∑

i=1

f t
i (zj(t))−

T
∑

t=1

N
∑

i=1

f t
i (zi(t))

=

T
∑

t=1

N
∑

i=1

(

f t
i (zj(t))− f t

i (zi(t))
)

≤
T
∑

t=1

N
∑

i=1

gj(t)
T(zj(t)− zi(t)) ≤

T
∑

t=1

N
∑

i=1

Lj‖zj(t)− zi(t)‖2.

the last inequality follows from the convexity of cost functions and boundedness of

subgradients. We also have that

‖zj(t + 1)− zi(t+ 1)‖22 = ‖zj(t+ 1)− x̄(t)‖22 + ‖zi(t+ 1)− x̄(t)‖22

− 2(zj(t + 1)− x̄(t))T(zi(t + 1)− x̄(t))

≤ ‖zj(t + 1)− x̄(t)‖22 + ‖zi(t + 1)− x̄(t)‖22

+ 2‖zj(t+ 1)− x̄(t)‖2‖zi(t+ 1)− x̄(t)‖2.

As a result,

‖zj(t+ 1)− zi(t + 1)‖22 ≤ 4
[8

δ

(

λt

N
∑

i=1

‖xi(0)‖1 +
t
∑

s=1

λt−s

N
∑

i=1

‖α(s)gi(s)‖1
)]2

,

where we have used Cauchy-Schwarz inequality and the last inequality follows from

Lemma 4.3.4. As a result,

‖zj(t)− zi(t)‖2 ≤
16

δ

(

λt−1
N
∑

i=1

‖xi(0)‖1 +
t−1
∑

s=1

λt−1−s
N
∑

i=1

‖α(s)gi(s)‖1
)

4.6. DEPENDENCY OF THE UPPER BOUND ON THE NUMBER
OF AGENTS FOR RAMANUJAN GRAPHS 49

Now by choosing α(t) = 1
µt
, we have

T
∑

t=1

N
∑

i=1

Lj‖zj(t)− zi(t)‖2 ≤
T
∑

t=1

NLj

(16

δ
λt−1

N
∑

i=1

‖xi(0)‖1 +
t−1
∑

s=1

λt−1−s L

µs

)

≤ 16NLj

δ(1− λ)

(

N
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

,

which establishes the result.

Proof of Theorem 4.2.2. The proof of Theorem 4.2.2 follows by using the network

regret bound in Theorem 4.5.1 and the bound on the difference between the network

regret and the individual regret, obtained in Proposition 4.5.4.

It is worth noting that one can proceed with the proof of Theorem 4.2.2 if the

learning rate is instead given by α(t) = C
t
where C ≥ 1/µ is a constant.

4.6 Dependency of the Upper Bound on the Number of Agents for Ra-

manujan Graphs

It is fruitful to make the dependency on number of agents of the upper bound provided

in Theorem 4.2.2 explicit, at least for some special cases. Motivated by the second

statement of Lemma 4.3.4, let us consider the class of regular (undirected) graphs

and in particular, the subclass of Ramanujan graphs.

Proposition 4.6.1. Suppose that {G(t)}Tt=1 is a B-strongly connected sequence of Ra-

manujan r-regular graphs, r ≥ 3, of order N . Under the conditions of Theorem 4.2.2,

we have

R
j(T) ≤ c1

rn2

r − 2
√
r − 1

+ c2
rN

r − 2
√
r − 1

(1 + ln(T)) + c3
r

r − 2
√
r − 1

(1 + ln(T))2

4.6. DEPENDENCY OF THE UPPER BOUND ON THE NUMBER
OF AGENTS FOR RAMANUJAN GRAPHS 50

for some constants c1, c2, c3 ∈ R≥0.

Proof. Suppose G(t) is a Ramanujan r-regular graph with the unweighted adjacency

matrix A(t). Then, using [20, Definition 2.2], we have that σ2(A(t)) ≤ 2
√
r − 1.

We hence obtain λ ≤ σ2(A(t)) ≤ 2
√
r−1
r

, where A(t) = 1
r
A(t). Consider now the

distributed online subgradient push-sum algorithm (4.1), with A(t) as described. We

also have δ = 1 for regular graphs. Using Theorem 4.2.2, in particular (4.2), we have

that

C1 =
8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
8µN

δ(1− λ)

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2 +
16NLj

δ(1− λ)

N
∑

i=1

‖xi(0)‖1

Now, using δ = 1, r ≥ 3, and λ ≤ 2
√
r−1
r

, we have that

C1 ≤
8Lr

r − 2
√
r − 1

N
∑

i=1

‖xi(0)‖1 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
8µNr

r − 2
√
r − 1

N
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2 +
16NrLj

r − 2
√
r − 1

N
∑

i=1

‖xi(0)‖1

Finally, using
∑N

i=1 ‖xi(0)‖1 ≤ N maxi∈V ‖xi(0)‖1, we conclude that

C1 ≤
8LNr

r − 2
√
r − 1

max
i∈V

‖xi(0)‖1 +
N

2α(1)
‖x̄(0)− z⋆‖22

+
8µN2r

r − 2
√
r − 1

max
i∈V

‖xi(0)‖1‖x̄(0)− z⋆‖2 +
16N2rLj

r − 2
√
r − 1

max
i∈V

‖xi(0)‖1

≤c1
N2r

r − 2
√
r − 1

,

4.6. DEPENDENCY OF THE UPPER BOUND ON THE NUMBER
OF AGENTS FOR RAMANUJAN GRAPHS 51

where

c1 = max
i∈V

‖xi(0)‖1
(8L

N
+ 8µ‖x̄(0)− z⋆‖2 + 16Lj

)

+
‖x̄(0)− z⋆‖22

2µN
.

Similarly, we have

C2 =
8L2

µδ(1− λ)
+

8L

δ(1− λ)

N
∑

i=1

‖xi(0)‖1 +
16NLj

δ(1− λ)

L

µ

+
8N

δ(1− λ)
L‖x̄(0)− z⋆‖2 +

L2

2Nµ

Using δ = 1 and λ ≤ 2
√
r−1
r

, we have that

C2 ≤
8rL2

µ(r − 2
√
r − 1)

+
8Lr

r − 2
√
r − 1

N
∑

i=1

‖xi(0)‖1 +
16NrLj

r − 2
√
r − 1

L

µ

+
8Nr

r − 2
√
r − 1

L‖x̄(0)− z⋆‖2 +
L2

2Nµ
,

Hence, using
∑n

i=1 ‖xi(0)‖1 ≤ N maxi∈V ‖xi(0)‖1, we conclude that

C2 ≤
8rL2

µ(r − 2
√
r − 1)

+
8LNr

r − 2
√
r − 1

max
i∈V

‖xi(0)‖1 +
16NrLj

r − 2
√
r − 1

L

µ

+
8Nr

r − 2
√
r − 1

L‖x̄(0)− z⋆‖2 +
L2

2Nµ
,

≤c2
Nr

r − 2
√
r − 1

,

where

c2 =
8L2

µN
+ 8Lmax

i∈V
‖xi(0)‖1 +

16LLj

µ
+ 8L‖x̄(0)− z⋆‖2 +

L2

2N2µ

4.6. DEPENDENCY OF THE UPPER BOUND ON THE NUMBER
OF AGENTS FOR RAMANUJAN GRAPHS 52

Finally, we have

C3 =
8

δ(1− λ)

L2

µ
≤ c3

r

r − 2
√
r − 1

,

where

c3 =
8L2

µ
,

which yields the result.

Note that, using this result, for large values of T , the upper bound grows linearly

with the size of the network N .

53

Chapter 5

Distributed Online ADMM

The main objective of this chapter is to introduce an algorithm, distributed over

a network of agents, so that each agent can achieve an individual regret that is

sublinear in T . Our proposed algorithm relies on a distributed version of the so-

called Alternating Direction Method of Multipliers (ADMM) algorithm. We start

by reviewing the ADMM algorithm [3]. The main advantage of this algorithm with

respect to the one presented in the previous chapter is that it gives an explicit regret

bound in terms of the size of the network. Moreover, this algorithm does not have

subgradient step in contrast to the previous one.

5.1 Alternating Direction Method of Multipliers

We start by recalling the Alternating Direction Method of Multipliers algorithm.

Consider the following optimization problem with linear constraints:

min
z∈Z,ξ∈Ξ

f(z) + g(ξ), (5.1)

s.t. Az +Bξ = c,

5.1. ALTERNATING DIRECTION METHOD OF MULTIPLIERS 54

where z ∈ Z ⊆ R
N , ξ ∈ Ξ ⊆ R

M , c ∈ R
W , A ∈ R

W×N , B ∈ R
W×M , W,M,N ∈ Z>0,

and f : RN → R ∪ {+∞} and g : RM → R ∪ {+∞} are (extended)-real-valued

functions, assumed to be closed, proper, and strictly convex. The optimal value

of (5.1) is denoted by p⋆ = inf{f(z) + g(ξ) | Az + Bξ = c}. A so-called augmented

Lagrangian function is defined to find the optimal value of the problem (5.1), using

the ADMM algorithm which will be described next. For β ∈ R>0, the augmented

Lagrangian is defined as the function Lβ : Z × Ξ× R
W → R ∪ {+∞}, given by

Lβ(z, ξ, λ) = f(z) + g(ξ) + λT(Az +Bξ − c) +
β

2
‖Az +Bξ − c‖22. (5.2)

The variable λ is called the dual variable and β is called the penalty parameter. The

ADMM at each time t ∈ Z≥0 updates variable (z, ξ, λ) using

z(t + 1) = argmin
z∈Z

Lβ(z, ξ(t), λ(t)),

ξ(t+ 1) = argmin
ξ∈Ξ

Lβ(z(t + 1), ξ, λ(t)),

λ(t + 1) = λ(t) + β(Az(t+ 1) +Bξ(t+ 1)− c),

It is shown in [3] that the ADMM algorithm converges to the solution of (5.1),

with the following assumptions. Moreover, it can be shown that the converges rate is

O(1
T
) [40, 38].

Assumption 5.1.1. The unaugmented Lagrangian L0(z, ξ, λ) = f(z)+g(ξ)+λT(Az+

Bξ − c) has a saddle point, i.e., there exist (z⋆, ξ⋆, λ⋆), for which

L0(z
⋆, ξ⋆, λ) < L0(z

⋆, ξ⋆, λ⋆) < L0(z, ξ, λ
⋆)

5.2. DISTRIBUTED ONLINE ALTERNATING DIRECTION
METHOD OF MULTIPLIERS 55

holds for all z 6= z⋆, ξ 6=⋆, and λ 6= λ⋆.

5.2 Distributed Online Alternating Direction Method of Multipliers

In the distributed optimization problem, a function F (z) =
∑N

i=1 fi(z) is distributed

among N agents, where each agent i ∈ {1, · · · , N} has information about its own

function fi : R → R and they cooperatively try to minimize F (z). To do this,

they communicate their states through a graph. We consider an undirected graph

G = (V, E), where V = {1, · · · , N} is the set of agents and E is the set of edges,

through which agents can communicate their states. We label each agent by a number

from 1 to N . We denote by eij ∈ E the edge between agent i and j, with i < j. We

also label each eij with a number from 1 to M , where M = |E|.

We define the vector z = (z1, · · · , zN)T ∈ R
N . We also assign a state ξij to each

edge eij ∈ E and let ξ = (ξ1, · · · , ξM)T be the vector containing all ξijs, where l

in ξl = ξij is the label assigned to eij. For each pair of agents i and j connected

with an edge eij ∈ E , we assign the constraints zi = ξij and zj = ξij, which means

that all agents’ states must agree, since the graph is connected. Consider now the

optimization problem with linear constraints, given by

min
z∈Z,ξ∈Ξ

F (z) =

N
∑

i=1

fi(zi), s.t. Az+Bξ = 0,

where we define A ∈ R
2M×N , B ∈ R

2M×M , M = |E| and N = |V|. Matrix B =

IM ⊗ 12. For each eij ∈ E , the row [A]2l−1 has 1 in the ith column and 0 in other

columns, and the row [A]2l has 1 in the jth column and 0 in other columns, where

l is the label assigned to eij . We also assign the dual variables λij and λji, to each

5.2. DISTRIBUTED ONLINE ALTERNATING DIRECTION
METHOD OF MULTIPLIERS 56

eij ∈ E , where λij and λji ∈ R.

We partition the neighbours of a node i, which we denote by N (i), into two sets,

denoted by Ns(i) and Nℓ(i), where Ns(i) = {j | eji ∈ E , j < i} is the set of neighbors

of agent i with index smaller than i, and Nℓ(i) = {j | eij ∈ E , i < j} is the set of

neighbors of agent i with index larger than i. Let us clarify our notations using a

simple example.

2

1 3

e12 e23

Figure 5.1: The graph for Example 5.2.1

Example 5.2.1. For the graph G = (V, E) with V = {1, 2, 3} and E = {e12, e23},

shown in Figure 5.1, we have:

A =

1 0 0

0 1 0

0 1 0

0 0 1

, B =

1 0

1 0

0 1

0 1

, z =

z1

z2

z3

, ξ =

ξ12

ξ23

,λ =

λ12

λ21

λ23

λ32

, and

Ns(1) = ∅, Nℓ(1) = {2}, Ns(2) = {1}, Nℓ(2) = {3}, Ns(3) = {2}, Nℓ(3) = ∅.

5.2. DISTRIBUTED ONLINE ALTERNATING DIRECTION
METHOD OF MULTIPLIERS 57

We also have the following constraints:

z1 = ξ12, z2 = ξ12, z2 = ξ23, z3 = ξ23, so z1 = z2 = z3.

•

In the distributed online optimization problem, the function fi for each agent i

changes with time. Since agents do not have access to their function before they

choose their states, they cannot minimize the whole function F (z). In this setting,

the agents’ objective is to bound their regret function, defined in (3.1), sublinearly.

Hence, in each iteration t ∈ Z>0, each agent i ∈ V chooses zi(t) ∈ R
d, and after that

a convex cost function f t
i : R

d → R is revealed and agent i incurs cost f t
i (zi(t)).

The Distributed Online ADMM algorithm is defined as follows:

1) Initialization: choose arbitrary zi(1) for i ∈ V and arbitrary λij(1) = −λji(1)

and ξij(1) for all eij ∈ E which are not necessarily all equal.

2) Updates: For t ≥ 0,

a) Each agent i updates its estimate zi(t) in a sequential order using the rule

zi(t+ 1) = argmin
zi

f t
i (zi) +

β

2

∑

j∈Ns(i)

|zi + ξji(t) +
1

β
λij(t)|2

+
β

2

∑

j∈Nℓ(i)

|zi + ξij(t) +
1

β
λij(t)|2, (5.3)

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM58

b) Each agent i updates ξji, for all j in Ns(i) as

ξji(t+1) = argmin
ξji

β

2

(

|zj(t+1)+ ξji +
1

β
λji(t)|2 + |zi(t+1)+ ξji +

1

β
λij(t)|2

)

,

(5.4)

c) Each agent i updates λji and λij , for all j in Ns(i),

λij(t+ 1) = λij(t) + β(zi(t+ 1) + ξji(t+ 1)), (5.5)

λji(t+ 1) = λji(t) + β(zj(t+ 1) + ξji(t + 1)). (5.6)

We now collect all λijs in a vector λ, such that for all neighbor pairs i and j, λij

and λji appear consecutively, i.e., λ = [λij, λji]i,j∈V ,eij∈E . Note that this algorithm is

different from the one presented in [15], in the sense it does not have a subgradient

step.

5.3 Regret Bounds for the Distributed Online ADMM

We provide an upper bound on each agent’s individual regret, given by (3.1), under

the Distributed Online ADMM algorithm.

Theorem 5.3.1. Let {f t
1, · · · , f t

N}Tt=1 be a sequence of convex functions where, for

each i ∈ V, f t
i has L-bounded subgradient. Let the sequences {z(t) = (z1(t), · · · , zN(t))}Tt=1,

{ξ(t) = (ξ1(t), · · · , ξM(t))}Tt=1, and {λ(t) = (λ1(t), · · · , λ2M(t))}Tt=1 be generated by

the Distributed Online ADMM over an undirected fixed connected graph G = {V, E},

where N = |V| and M = |E|. Suppose that there exist z⋆ ∈ argmin
∑N

i=1

∑T
t=1 f

t
i (z)

and choose z⋆ = (z⋆, · · · , z⋆), ξ⋆ satisfying Az⋆ + Bξ⋆ = 0, and let β = (N + 1)
√
T .

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM59

Then we have

R
j(T) ≤ 1

2(N + 1)
√
T
‖λ(1)‖22 +

√
TML2(N + 1),

+
(N + 1)

√
T

2
‖Bξ⋆ − Bξ(1)‖22,

+
N
√
T

2
‖Az(1) +Bξ(1)‖22.

Before stating the proof, let us mention a few key points about this results, espe-

cially in comparison with other available distributed algorithms for online optimiza-

tion. This algorithm provides a regret bound of order O(
√
T), which is similar to the

ones with subgradient flow protocols. However, this algorithm gives us an explicit

dependency of the regret bound on the size of the network. In particular, the regret

bounds for most existing gradient flow algorithms rely on spectral radius of adjacency

matrix, see for example [21]. It is also worth mentioning that the Distributed Online

ADMM algorithm presented in [15] considers the problem of bounding the network

regret, and not the individual regret. As our proof illustrates, the latter problem is

more challenging.

We now start the process of proving Theorem 5.3.1. Our proof relies on a sequence

of results, which we establish via Lemmas 5.3.2-5.3.7.

Lemma 5.3.2. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be generated by the Distributed

Online ADMM. Then for any z̃ ∈ R
N , we have

N
∑

i=1

f t
i (zi(t + 1))−

N
∑

i=1

f t
i (z̃i) ≤− (A(z(t+ 1)− z̃))T

(

λ(t+ 1) + βB(ξ(t)− ξ(t+ 1))
)

.

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM60

Proof. For each t ∈ Z>0, since zi(t + 1) satisfies (5.3), we have

0 ∈ ∂f t
i (zi(t+ 1)) + β

(

∑

j∈Ns(i)

(zi(t+ 1) + ξji(t) +
1

β
λij(t))

+
∑

j∈Nℓ(i)

(zi(t+ 1) + ξij(t) +
1

β
λij(t))

)

.

Hence,

−β
(

∑

j∈Ns(i)

(zi(t+ 1) + ξji(t) +
1

β
λij(t)) +

∑

j∈Nℓ(i)

(zi(t+ 1) + ξij(t) +
1

β
λij(t))

)

,

∈ ∂f t
i (zi(t+ 1)). (5.7)

Since each f t
i is convex, we have

f t
i (zi(t + 1))− f t

i (z̃i) ≤ (zi(t+ 1)− z̃i)g
t
i(zi(t+ 1)),

for all gti(zi(t+ 1)) ∈ ∂f t
i (zi(t + 1)). As a result, using (5.7), we have

f t
i (zi(t+ 1))− f t

i (z̃i) ≤ −β(zi(t+ 1)− z̃i)
(

∑

j∈Ns(i)

(zi(t+ 1) + ξji(t) +
1

β
λij(t))

+
∑

j∈Nℓ(i)

(zi(t+ 1) + ξij(t) +
1

β
λij(t))

)

.

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM61

Using (5.5) and (5.6), we have

f t
i (zi(t+ 1))− f t

i (z̃i) ≤− (zi(t+ 1)− z̃i)
(

∑

j∈Ns(i)

(λij(t+ 1) + β(ξji(t)− ξji(t+ 1)))

+
∑

j∈Nℓ(i)

(λij(t + 1) + β(ξij(t)− ξij(t+ 1)))
)

,

=− (zi(t+ 1)− z̃i)
(

([A]i)
Tλ(t+ 1)

+ β([ATB]i)(ξ(t)− ξ(t+ 1))
)

,

where we have used the definition of A and B in the last equality. Hence,

N
∑

i=1

f t
i (zi(t + 1))−

N
∑

i=1

f t
i (z̃i) ≤− (z(t+ 1)− z̃)T

(

ATλ(t+ 1)

+ β[ATB](ξ(t)− ξ(t+ 1))
)

=− (A(z(t+ 1)− z̃))T
(

λ(t+ 1) + βB(ξ(t)− ξ(t+ 1))
)

,

which proves the claim.

Lemma 5.3.3. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be generated by the Distributed

Online ADMM. Then, for all t ∈ Z>0, we have

BTλ(t) = 0. (5.8)

Proof. Since ξji(t + 1) is given by (5.4), we have

β
(

zj(t + 1) + ξji(t+ 1) +
1

β
λji(t) + zi(t + 1) + ξji(t+ 1) +

1

β
λij(t)

)

= 0.

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM62

Now, using (5.5) and (5.6),

(λji(t + 1) + λij(t+ 1)) = 0,

or equivalently, BTλ(t) = 0, for all t ∈ Z>0.

Lemma 5.3.4. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be generated by the Distributed

Online ADMM. For any z⋆, ξ⋆ satisfying Az⋆ +Bξ⋆ = 0, we have

N
∑

i=1

f t
i (zi(t+ 1))−

N
∑

i=1

f t
i (z

⋆) ≤ 1

2β
(‖λ(t)‖22 − ‖λ(t+ 1)‖22)−

β

2
‖Az(t+ 1) +Bξ(t)‖22

+
β

2

(

‖Bξ⋆ −Bξ(t)‖22 − ‖Bξ⋆ −Bξ(t+ 1)‖22
)

.

Proof. From Lemma 5.3.2, for z̃ = z⋆, we have

N
∑

i=1

f t
i (zi(t+ 1))−

N
∑

i=1

f t
i (z

⋆) ≤− (Az(t + 1)−Az⋆)T
(

λ(t+ 1)

+ βB(ξ(t)− ξ(t+ 1))
)

=− (Az(t + 1) +Bξ⋆)Tλ(t+ 1)

− β(Az(t+ 1) +Bξ⋆)T(Bξ(t)− Bξ(t+ 1)),

=− (Az(t + 1) +Bξ⋆)Tλ(t+ 1)

− β

2

(

‖Bξ(t+ 1)−Bξ⋆‖22 − ‖Bξ(t)− Bξ⋆‖22

+ ‖Az(t+ 1) +Bξ(t)‖22

− ‖Az(t+ 1) +Bξ(t+ 1)‖22
)

, (5.9)

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM63

where we have used the fact that for all u1, u2, u3, u4 ∈ R
d,

(u1 + u2)
T(u3 − u4) =

1

2
(‖u4 − u2‖22 − ‖u3 − u2‖22 + ‖u1 + u3‖22 − ‖u1 + u4‖22), (5.10)

to obtain the last equality. Note that by Lemma 5.3.3, we have BTλ(t + 1) = 0;

hence, we can rewrite the sum of the first and the last terms in (5.9) as

− (Az(t+ 1) +Bξ⋆)Tλ(t+ 1) +
β

2
‖Az(t+ 1) +Bξ(t+ 1)‖22

= −(Az(t + 1) +Bξ(t+ 1))Tλ(t+ 1) +
β

2
‖Az(t+ 1) +Bξ(t+ 1)‖22,

=
1

2β

(

− 2(λ(t+ 1)− λ(t))Tλ(t+ 1) + ‖λ(t+ 1)− λ(t)‖22
)

,

=
1

2β

(

‖λ(t)‖22 − ‖λ(t+ 1)‖22
)

,

which completes the proof.

Lemma 5.3.5. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be generated by the Distributed

Online ADMM. For all t ∈ Z>0,

‖Az(t + 1) +Bξ(t+ 1)‖22 + ‖Bξ(t+ 1)− Bξ(t)‖22 = ‖Az(t+ 1) +Bξ(t)‖22.

Proof. Using Lemma 5.3.3, we can write

0 =(ξ(t+ 1)− ξ(t))TBTλ(t+ 1),

0 =(ξ(t+ 1)− ξ(t))TBTλ(t).

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM64

Adding these equation, we can write

0 =(ξ(t+ 1)− ξ(t))TBT(λ(t+ 1)− λ(t)),

=β(Bξ(t+ 1)−Bξ(t))T(Az(t + 1) +Bξ(t + 1)),

=
β

2
(‖Az(t+ 1) +Bξ(t+ 1)‖22 + ‖Bξ(t+ 1)−Bξ(t)‖22 − ‖Az(t+ 1) +Bξ(t)‖22),

where we have used (u1 − u2)
T(u3 + u1) =

1
2
(‖u3 + u1‖22 + ‖u1 − u2‖22 − ‖u3 + u2‖22),

for all u1, u2, u3 ∈ R
d. This proves the claim.

Lemma 5.3.6. Let {f t
1, · · · , f t

N}Tt=1 be a sequence of convex functions, where for

each i ∈ V, f t
i has an L-bounded subgradient. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be

generated by the Distributed Online ADMM. Then for all t ∈ Z>0 and some α ∈ R,

we have

N
∑

i=1

f t
i (zi(t))−

N
∑

i=1

f t
i (zi(t+ 1)) ≤2ML2

α
+

α

2
(‖Az(t+ 1) +Bξ(t+ 1)‖22

+ ‖Az(t) +Bξ(t)‖22 + ‖Bξ(t+ 1)− Bξ(t)‖22).

Proof. Since f t
i is a convex function, we can write

f t
i (zi(t))− f t

i (zi(t+ 1)) ≤ gti(zi(t))(zi(t)− zi(t+ 1)),

≤ |gti(zi(t))||zi(t)− zi(t+ 1)| ≤ L|zi(t)− zi(t+ 1)|,

for all gti(zi(t)) ∈ ∂f(zi(t)), where we have used that gti(z) ≤ L. Now we have

N
∑

i=1

f t
i (zi(t))−

N
∑

i=1

f t
i (zi(t + 1)) ≤ L

N
∑

i=1

|zi(t)− zi(t+ 1)|.

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM65

Hence, we can write

N
∑

i=1

|zi(t)− zi(t+ 1)| ≤‖Az(t)− Az(t+ 1)‖1 ≤
√
2M‖Az(t)− Az(t+ 1)‖2

≤
√
2M(‖Az(t) +Bξ(t)‖2 + ‖Az(t+ 1) +Bξ(t)‖2).

where we have used the fact that since the graph is connected, for all i ∈ V, zi(t) has

appeared in some elements of the vector Az(t). Using this, we have

N
∑

i=1

f t
i (zi(t))−

N
∑

i=1

f t
i (zi(t + 1)) ≤L

√
2M‖Az(t) +Bξ(t)‖2

+ L
√
2M‖Az(t+ 1) +Bξ(t)‖2,

≤2ML2

2α
+

α

2
‖Az(t) +Bξ(t)‖22 +

2ML2

2α

+
α

2
‖Az(t+ 1) +Bξ(t)‖22

≤2ML2

α
+

α

2
(‖Az(t) +Bξ(t)‖22

+ ‖Az(t+ 1) +Bξ(t+ 1)‖22 + ‖Bξ(t)−Bξ(t+ 1)‖22),

where in the second inequality we have used the Young’s inequality: 2uT

1 u2 ≤ ‖u1‖22+

‖u2‖22 for all u1, u2 ∈ R
d. This completes the proof.

The next lemma will be instrumental in bounding the individual regret function

for one particular agent’s states, say the jth agent. It is the final step in proving our

main result.

Lemma 5.3.7. Let {f t
1, · · · , f t

N}Tt=1 be a sequence of convex functions, where for

each i ∈ V, f t
i has L-bounded subgradient. Let the sequence {z(t), ξ(t),λ(t)}Tt=1 be

generated by the Distributed Online ADMM. Then for all t ∈ Z>0, all j ∈ V, and all

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM66

α ∈ R>0,

N
∑

i=1

f t
i (zj(t))−

N
∑

i=1

f t
i (zi(t)) ≤

2ML2(N − 1)

2α
+

(N − 1)α

2
‖Az(t) +Bξ(t)‖22.

Proof. Since f t
i is convex with L-bounded subgradients, we have that

f t
i (zj(t))− f t

i (zi(t)) ≤gti(zj(t))(zj(t)− zi(t)) ≤ |gti(zj(t))||zj(t)− zi(t)| ≤ L|zj(t)− zi(t)|.

Hence,

N
∑

i=1

f t
i (zj(t))−

N
∑

i=1

f t
i (zi(t)) ≤ L

N
∑

i=1

|zj(t)− zi(t)|.

Note that for neighbor pairs i and j, we have

|zj(t)− zi(t)| ≤ |zj(t)− ξij(t)|+ |zi(t)− ξij(t)| ≤ ‖Az(t) +Bξ(t)‖1.

Note that, since the graph is connected, for agent i and j that are not neighbors,

there exists a path connecting them, and we have

|zj(t)− zi(t)| ≤ ‖Az(t) +Bξ(t)‖1.

As a result,

N
∑

i=1

|zj(t)− zi(t)| ≤ (N − 1)‖Az(t) +Bξ(t)‖1 ≤ (N − 1)
√
2M‖Az(t) +Bξ(t)‖2.

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM67

Now, for any α > 0,

N
∑

i=1

f t
i (zj(t))−

N
∑

i=1

f t
i (zi(t)) ≤L(N − 1)

√
2M‖Az(t) +Bξ(t)‖2

≤2ML2(N − 1)

2α
+

(N − 1)α

2
‖Az(t) +Bξ(t)‖22,

where we have used the Young’s inequality. This completes the proof.

We are now in a position to prove Theorem 5.3.1.

Proof. (Theorem 5.3.1): Using Lemmas 5.3.4, 5.3.6, and 5.3.7, we can write

N
∑

i=1

f t
i (zj(t))−

N
∑

i=1

fT
i (z

⋆) ≤ 1

2β
(‖λ(t)‖22 − ‖λ(t+ 1)‖22) +

ML2(N + 1)

α

− β

2
(‖Az(t+ 1) +Bξ(t+ 1)‖22 + ‖Bξ(t)− Bξ(t+ 1)‖22)

+
β

2

(

‖Bξ⋆ − Bξ(t)‖22 − ‖Bξ⋆ − Bξ(t+ 1)‖22
)

+
α

2
(‖Az(t+ 1) +Bξ(t+ 1)‖22 + ‖Az(t) +Bξ(t)‖22)

+
α

2
‖Bξ(t+ 1)− Bξ(t)‖22 +

(N − 1)α

2
‖Az(t) +Bξ(t)‖22.

(5.11)

Note that

− β

2
‖Az(t+ 1) +Bξ(t + 1)‖22 +

α

2
(‖Az(t+ 1) +Bξ(t+ 1)‖22

+ ‖Az(t) +Bξ(t)‖22) +
(N − 1)α

2
‖Az(t) +Bξ(t)‖22

= −β − α

2
‖Az(t+ 1) +Bξ(t+ 1)‖22 +

Nα

2
‖Az(t) +Bξ(t)‖22. (5.12)

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM68

For β ≥ (N + 1)α, using (5.12), we can write

T
∑

t=1

− β − α

2
‖Az(t+ 1) +Bξ(t + 1)‖22 +

T
∑

t=1

Nα

2
‖Az(t) +Bξ(t)‖22,

=

T
∑

t=1

−β − α

2
‖Az(t+ 1) +Bξ(t+ 1)‖22 +

T−1
∑

s=0

Nα

2
‖Az(s+ 1) +Bξ(s+ 1)‖22,

=
T−1
∑

t=1

−β − α−Nα

2
‖Az(t+ 1) +Bξ(t+ 1)‖22 −

β − α

2
‖Az(T + 1) +Bξ(T + 1)‖22

+
Nα

2
‖Az(1) +Bξ(1)‖22,

≤Nα

2
‖Az(1) +Bξ(1)‖22. (5.13)

We also have

−β

2
‖Bξ(t)−Bξ(t+ 1)‖22 +

α

2
‖Bξ(t+ 1)−Bξ(t)‖22 ≤ 0, (5.14)

for β ≥ α. Using (5.13) and (5.14) along with (5.11), we have

T
∑

t=1

N
∑

i=1

f t
i (zj(t))−

T
∑

t=1

N
∑

i=1

f t
i (zi(t)) ≤

T
∑

t=1

1

2β
(‖λ(t)‖22 − ‖λ(t+ 1)‖22) +

T
∑

t=1

ML2(N + 1)

α

+
T
∑

t=1

β

2

(

‖Bξ⋆ −Bξ(t)‖22 − ‖Bξ⋆ − Bξ(t+ 1)‖22
)

+
Nα

2
‖Az(1) +Bξ(1)‖22,

≤ 1

2β
‖λ(1)‖22 +

T

α
ML2(N + 1)

+
β

2
‖Bξ⋆ −Bξ(1)‖22 +

Nα

2
‖Az(1) +Bξ(1)‖22,

5.3. REGRET BOUNDS FOR THE DISTRIBUTED ONLINE ADMM69

where we have used the telescopic series to establish the second inequality. By choos-

ing α =
√
T and β = (N + 1)

√
T , we have

T
∑

t=1

N
∑

i=1

f t
i (zj(t))−

T
∑

t=1

N
∑

i=1

f t
i (zi(t)) ≤

1

2(N + 1)
√
T
‖λ(1)‖22 +

√
TML2(N + 1)

+
(N + 1)

√
T

2
‖Bξ⋆ −Bξ(1)‖22

+
N
√
T

2
‖Az(1) +Bξ(1)‖22.

This completes the proof.

70

Chapter 6

Application to Sensor Networks

In this chapter, we provide some examples on localization in sensor networks to

illustrate the performance of our algorithms.

6.1 Sensor Networks

We provide an example using our results for localization in sensor networks, motivated

by [14]. Consider a network of N sensors, which is used to observe a vector s ∈ R
d.

Each sensor i ∈ V, at each time t ∈ {1, · · · , T}, receives an observation vector

qti ∈ R
di , which is time-varying due to, say, observation noise. Each sensor i is

assumed to have a linear model of the form pi(s) = Pis, where Pi ∈ R
di×d and

Piv = 0 if and only if v = 0. We consider the average squared error, so the best

estimation for s is the vector ŝ ∈ R
d that minimizes the cost function

f(ŝ) =
T
∑

t=1

N
∑

i=1

1

2
‖qti − Piŝ‖22.

The observation vector is modeled as qti = Pis + wt
i, where wt

i is assumed to

be white noise, i.e., the wt
i are zero mean, independent and identically distributed

6.2. RESULTS USING SUBGRADIENT-PUSH ALGORITHM 71

random variables. In the offline setting, we have all the information to compute the

optimal estimate, which is given by

s⋆ =
1

T

T
∑

t=1

(

N
∑

i=1

PT

i Pi

)−1(N
∑

i=1

PT

i q
t
i

)

.

As we describe shortly, when the noise characteristics are not known, or in some

cases where some sensors fail to work properly, we can use a distributed online al-

gorithm to find an estimate for the state s. We use both algorithms to estimate the

target.

In our simulations, d = di = 1 and sensor i observes qti = atis + bti, where ati ∈

[amin, amax] and bti ∈ [bmin, bmax] are chosen at random and independently from a

uniform distribution. The cost function for sensor i at each time t is given by the

mapping f t
i : R → R, where f t

i (ŝ) =
1
2
(qti − Piŝ)

2 and Pi ∈ R.

6.2 Results using Subgradient-Push Algorithm

Using subgradient-push algorithm, we consider a scenario in which a network of 100

sensors is used to observe. At each time step t ∈ {1, · · · , T}, a random directed graph

is generated, describing the sensor communication. This random directed graph,

denoted by G(n, p, r), where r is an even number and is generated as follows: First,

we label each vertex a number from 1 to N and we generate an r-regular directed

graph of order N , which has rN edges by imposing that vertex i and vertex j are

connected by two directed edges if |i− j| ≤ r/2 or |i− j| ≥ N − r/2. Then we delete

each edge, independently of others, with probability p. Next, among all the vertices

that are incident to the set of deleted edges, say N edges, we randomly choose N

6.2. RESULTS USING SUBGRADIENT-PUSH ALGORITHM 72

ordered pairs and connect each pair with a directed edge. Now we have a random

directed graph of order N with rN edges.

We use the distributed online subgradient push-sum algorithm to estimate the

state s. We consider three scenarios:

1) sensors have the same observation model, i.e., the model we use for qti is

the same for all sensors, and can communicate over a sequence of time-varying

directed graphs;

2) sensors have the same observation model, but they cannot communicate with

each other;

3) sensors have different observation models and they can communicate over a

sequence of time-varying directed graphs.

In what follows, we simulate the sensors’ state estimation over time and study the

sensors’ regret for each of these scenarios.

1) Same observation model with communication: We assume the actual

value s = 1/4 which is unavailable to sensors. Each sensor i ∈ V, at each time

t ∈ {1, · · · , T} observes qti . In this model, we assume qti = atis + bti, where ati and bti

are chosen at random from a uniform distribution on [0, 2] and [−1
2
, 1
2
], respectively.

We also have Pi = 1, for all i ∈ {1, . . . , N}, which is the expected value of random

variable ati. The communication topology is given by a time-varying G(100, 0.2, 2)

random directed graph.

Figure 6.8 shows the states of four sensors over 100 time iterations. By using

the distributed online subgradient push-sum algorithm (4.1), the subgradient of cost

6.2. RESULTS USING SUBGRADIENT-PUSH ALGORITHM 73

functions and the communication between sensors result in a consensus between sen-

sors as shown in the figure. The consensus value is 1
4
, the expected value of sensor

observations. Figure 6.9 shows the average individual regret of the two sensors with

the maximum and minimum average regrets over time.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(T)

S
en

so
r’s

S
ta

te
(z

)

Figure 6.1: Sensors’ state estimation vs. time for four of the sensors are shown. The network
consists of 100 sensors communicating over a sequence of G(100, 0.2, 2) random directed
graph. The ith sensor observes qti = atis + bti, where ati and bti are chosen at random
from a uniform distribution on [0, 2] and [− 1

2
, 1

2
], respectively. We use the distributed

online subgradient push-sum algorithm to estimate ŝ which minimizes the cost function
f(ŝ) =

∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2. The result illustrates consensus among sensors.

In the previous example, the expected value of the minimizer of the cost functions

for each sensor is the same. Therefore, if each sensor uses an online algorithm without

communicating with other sensors, they converge to the same value; however, the

communication might accelerate this convergence, as demonstrated next.

2) Same observation model without communication: Consider a scenario

with the assumptions as before, with the exception that there is no communication

6.2. RESULTS USING SUBGRADIENT-PUSH ALGORITHM 74

0 20 40 60 80 100
0

5

10

15

20

25

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

max individual regret
min individual regret

Figure 6.2: Average regrets over time (Rj(T)/T) vs. T for two sensors with the maximum and
minimum average regrets are shown, where the same assumptions as the ones in Fig-
ure 6.8 hold.

between sensors. Figure 6.3 and Figure 6.4 show, respectively, the estimates of four

sensors and the average individual regret of one sensor, picked at random, in the

presence and absence of communications over time.

3) Different observation model with communication: Consider a scenario

with the same assumptions as above, with the exception that the observation vector

qti = atis + bti is available to sensor i, where ati and bti are chosen at random from

a uniform distribution on [0, 2] and [−0.5 + i−50
100

, 0.5 + i−50
100

], respectively. In this

sense, and in contrast to the previous case, sensors do not use the same observations

model. The communication network is a time-varying G(100, 0.2, 2) random directed

graph. We use the distributed online subgradient push-sum algorithm to estimate ŝ.

The consensus among sensors is shown in Figure 6.5, where the sensors’ estimates

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 75

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(T)

S
en

so
r’s

S
ta

te
(z

)

Figure 6.3: Sensors’ state estimation vs. time for four of the sensors are shown. The network
consists of 100 sensors with no communications. The ith sensor observes qti = atis +
bti, where ati and bti are chosen at random from a uniform distribution on [0, 2] and
[−0.5, 0.5], respectively. We use distributed online subgradient push-sum algorithm to

estimate ŝ which minimizes the cost function f(ŝ) =
∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2.

approach the expected value of sensor observation. Figure 6.6 shows the individual

regret goes to zero as time increases without bound.

6.3 Results using Distributed Online ADMM Algorithm

Consider a network of N = 8 sensors that are used to estimate a variable s ∈ R.

The communication graph is given in Figure 6.7. Each sensor i ∈ V, at each time

t ∈ {1, · · · , T}, observes qti ∈ R, which is a noisy observation of variable s. In

this example, we assume that this noisy observation given by qti = atis + bti, where

ati ∈ [0, 2] and bti ∈ [−0.5, 0.5] are chosen at random and independently from a uniform

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 76

0 50 100 150 200
0

2

4

6

8

10

12

14

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

with communication
without communication

Figure 6.4: Average individual regrets vs. time for one sensor, picked at random among 100
sensors, in the presence and absence of communications over time are shown, where
the same assumptions as the ones in Figure 6.3 hold. and we consider two cases:
First, there is communication between sensors and second, there is no communication
between them. The results shows that communication gives a better regret.

distribution. We use the squared observation error as the cost function, i.e., f t
i (s) =

1
2
(qti − s)2. Hence, the best estimation of s is the minimizer of the function

ŝ = argmin
s

F (s) = argmin
s

T
∑

t=1

N
∑

i=1

1

2
(qti − s)2.

Let us assume the actual value of s = 1
4
.

We use the Distributed Online ADMM to estimate the variable s. Here, the noise

characteristics are not known to the agents. The following figures show the results.

Figure 6.8 shows the states of four sensors over 200 time iterations. By using

the Distributed Online ADMM algorithm, the sensors reach a consensus near the

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 77

0 100 200 300 400 500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(T)

S
en

so
r

S
ta

te
(z

)

Figure 6.5: Sensors’ state estimation vs. time for four of the sensors are shown. The network
consists of 100 sensors communicating through a sequence of G(100, 0.2, 2) random
directed graph. The ith sensor observes qti = atis + bti where ati and bti are chosen at
random from a uniform distribution on [0, 2] and [−0.5 + i−50

100
, 0.5 + i−50

100
], respec-

tively. We use distributed online subgradient push-sum algorithm to estimate ŝ which
minimizes the cost function f(ŝ) =

∑T

t=1

∑N

i=1

1

2
(qti − Piŝ)

2. The result demonstrates
consensus among sensors.

expected value of ŝ, which is 1
4
, as shown in Figure 6.8. Figure 6.9 shows the average

individual regret of the two sensors with the maximum and minimum average regrets

over time.

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 78

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

max individual regret
min individual regret

Figure 6.6: Average individual regret over time Rj(T)/T vs. time for two sensors is shown, one
has the maximum average regret and the other one has the minimum average regret,
where the same assumptions as the ones in Figure 6.5 hold.

8

1

3 2

6

7

5

4

Figure 6.7: N = 8 sensors are communicating through the graph depicted

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 79

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (t)

A
ge

nt
’s

 s
ta

te
(z

)

Figure 6.8: Sensors’ state estimations vs. time for four of the sensors are shown. The network
consists of N = 8 sensors communicating over an undirected graph. The ith sensor
observes qti = atis+bti, where a

t
i and bti are chosen at random from a uniform distribution

on [0, 2] and [− 1

2
, 1

2
], respectively. We use the Distributed Online ADMM algorithm

to estimate ŝ which minimizes the cost function f(s) =
∑T

t=1

∑N

i=1

1

2
(qti − s)2. The

result demonstrates consensus among sensors.

6.3. RESULTS USING DISTRIBUTED ONLINE ADMM
ALGORITHM 80

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Time(t)

A
ve

ra
ge

 r
eg

re
t

(R
/t)

maximum regret among agents
minimum regret among agents

Figure 6.9: Average regrets over time R
j(T)/T vs. T for two sensors with the maximum and

minimum average regrets are shown, under the same assumptions as in Figure 6.8.

81

Chapter 7

Conclusions and future work

7.1 Summary

In this thesis, after describing the problem of distributed online convex optimization,

we introduced two classes of distributed online algorithms which achieve sublinear

individual regrets.

In the first algorithm, which is a subgradient push-sum discrete-time algorithm,

agents can communicate their state estimates over a sequence of time-varying directed

graphs. Under the assumption that agents’ cost functions are locally Lipschitz and

locally strongly convex, we proved that the proposed algorithm achieves sublinear

worst-case regret bound on any sequence of uniformly strongly connected time-varying

directed graphs. In particular, by choosing a suitable learning rate, we showed that

the network regret bound is logarithmic, up to a square. Although, this bound is

slightly worse than the known regret bounds in the centralized case, the algorithm

works for general time-varying network topologies. We also showed that the individual

regret bound grows linearly by the size of network for Ramanujan graphs.

Our second algorithm is a distributed online version of the Alternating Direction

7.2. FUTURE RESEARCH DIRECTIONS 82

Method of Multipliers. We showed that by choosing proper parameters, we can bound

the individual regret by O(
√
T). This bound is similar to the one for subgradient

flow protocols; however, our algorithm exhibits an explicit dependency of the regret

bound on the size of the network. Unlike the existing Distributed Online ADMM

algorithms, our proposed algorithm is subgradient free, and our regret bounds are

valid for the individual regret, in addition to the network regret.

7.2 Future research directions

It will be interesting to study the performance of the proposed algorithms on random

graphs, along the lines of what is done for distributed averaging on sequence of random

graphs [32]. One can improve the regret bound of the algorithms by investigating

other procedures or considering other assumptions, for example, the regret bound

of the subgradient push-sum algorithm on general convex functions. A challenging

problem is studying problems with constraint. Distributed online optimization also

has applications to the theory of learning in games, and a distributed version of such

learning protocols might be feasible by what is presented in this thesis [8]. Studying

the problem of failure, and network topology design for achieving faster convergence

rates [12] are among the avenues for future work.

BIBLIOGRAPHY 83

Bibliography

[1] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimiza-

tion. Athena Scientific, Belmont, MA, 1st edition, 2003.

[2] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Convergence

in multiagent coordination, consensus, and flocking. In IEEE Conf. on Decision

and Control and European Control Conference, pages 2996–3000, Seville, Spain,

December 2005.

[3] S. Boyd, N. Parikh, E. Chu ad B. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[4] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks.

Applied Mathematics Series. Princeton University Press, 2009. Electronically

available at http://coordinationbook.info.

[5] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge

University Press, 2006.

BIBLIOGRAPHY 84

[6] A. D. Dominguez-Garcia, S. T. Cady, and C. N. Hadjicostis. Decentralized

optimal dispatch of distributed energy resources. In IEEE Conf. on Decision

and Control, pages 3688–3693, Hawaii, USA, December 2012.

[7] J. W. Durham, A. Franchi, and F. Bullo. Distributed pursuit-evasion without

global localization via local frontiers. Autonomous Robots, 32(1):81–95, 2012.

[8] Eyal Even-Dar, Yishay Mansour, and Uri Nadav. On the convergence of regret

minimization dynamics in concave games. In Proceedings of the forty-first annual

ACM symposium on Theory of computing, pages 523–532. ACM, 2009.

[9] B. Gharesifard and J. Cortés. Distributed continuous-time convex optimiza-

tion on weight-balanced digraphs. IEEE Transactions on Automatic Control,

59(3):781–786, 2014.

[10] Osman Güler. Foundations of optimization, volume 258. Springer Science &

Business Media, 2010.

[11] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online

convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[12] R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence mod-

els, analysis, and simulations. Journal of Artificial Societies and Social Simula-

tion, 5(3), 2002.

[13] S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed optimization

via dual averaging. In IEEE 52nd Annual Conference on Decision and Control,

pages 1484–1489. IEEE, 2013.

BIBLIOGRAPHY 85

[14] S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed optimization on

dynamic networks. 2014. http://arxiv.org/pdf/1412.7215.pdf.

[15] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed

ADMM on networks. arXiv preprint arXiv:1412.7116, 2014.

[16] J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer. Orion - a low cost

demonstration of formation flying in space using GPS. In AIAA/AAS Astrody-

namics Specialist Conf. and Exhibit, pages 276–286, Reston, VA, 1998.

[17] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988–1001, 2003.

[18] B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgra-

dient method for distributed optimization in networked systems. SIAM Journal

on Control and Optimization, 20(3):1157–1170, 2009.

[19] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate

information. In IEEE Symposium on Foundations of Computer Science, pages

482–491, Washington, DC, October 2003.

[20] A Lubotzky, R Phillips, and P Sarnak. Explicit expanders and the ramanujan

conjectures. In Proceedings of the Eighteenth Annual ACM Symposium on Theory

of Computing, STOC ’86, pages 240–246, New York, NY, USA, 1986. ACM.

[21] D. Mateos-Nunez and J. Cortes. Distributed online convex optimization over

jointly connected digraphs. IEEE Transactions on Network Science and Engi-

neering, 1(1):23–37, Jan 2014.

BIBLIOGRAPHY 86

[22] D. Mateos-Núñez and J. Cortés. Distributed online second-order dynamics for

convex optimization over switching connected graphs. In Mathematical Theory

of Networks and Systems, pages 15–22, Groningen, The Netherlands, 2014.

[23] A. Nedic and A. Olshevsky. Stochastic gradient-push for strongly convex func-

tions on time-varying directed graphs. 2014. http://arxiv.org/abs/1406.2075v1.

[24] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. On distributed averag-

ing algorithms and quantization effects. Technical report, Laboratory for Infor-

mation and Decision Systems, Massachusetts Institute of Technology, November

2007.

[25] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent

optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[26] A. Nedic, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and opti-

mization in multi-agent networks. IEEE Transactions on Automatic Control,

55(4):922–938, 2010.

[27] Angelia Nedic and Alex Olshevsky. Distributed optimization over time-varying

directed graphs. In IEEE Conf. on Decision and Control, pages 6855–6860.

IEEE, 2013.

[28] Angelia Nedic and Alex Olshevsky. Distributed optimization over time-varying

directed graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

[29] M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Sym-

posium on Information Processing of Sensor Networks, pages 20–27, Berkeley,

CA, April 2004.

BIBLIOGRAPHY 87

[30] M. Raginsky, N. Kiarashi, and R. Willett. Decentralized online convex program-

ming with local information. In American Control Conference, pages 5363–5369,

San Francisco, CA, 2011.

[31] Shai Shalev-Shwartz. Online learning and online convex optimization. Founda-

tions and Trends in Machine Learning, 4(2):107–194, 2011.

[32] B. Touri. Product of random stochastic matrices and distributed averaging. PhD

thesis, University of Illinois at Urbana-Champaign, 2011.

[33] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Push-sum distributed dual averaging

for convex optimization. In IEEE Conf. on Decision and Control, pages 5453–

5458, Maui, HI, 2012.

[34] K. I. Tsianos and M. G. Rabbat. Distributed strongly convex optimization. 2012.

arXiv:1207.3031v2.

[35] K. I. Tsianos and M. G. Rabbat. Efficient distributed online prediction

and stochastic optimization with approximate distributed mini-batches. 2014.

http://arxiv.org/abs/1406.2075v1.

[36] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous de-

terministic and stochastic gradient optimization algorithms. IEEE Transactions

on Automatic Control, 31(9):803–812, 1986.

[37] P. Wan and M. D. Lemmon. Event-triggered distributed optimization in sensor

networks. In Symposium on Information Processing of Sensor Networks, pages

49–60, San Francisco, CA, 2009.

BIBLIOGRAPHY 88

[38] H. Wang and A. Banerjee. Online alternating direction method. In International

Conference on Machine Learning, pages 1119–1126, Edinburgh, Scotland, July

2012.

[39] Huahua Wang and Arindam Banerjee. Online alternating direction method

(longer version). arXiv preprint arXiv:1306.3721, 2013.

[40] E. Wei and A. Ozdaglar. Distributed alternating direction method of multipliers.

In IEEE Conf. on Decision and Control, pages 5445–5450, Maui, HI, 2012.

[41] Ermin Wei and Asuman Ozdaglar. On the O(1/k) convergence of asyn-

chronous distributed alternating direction method of multipliers. arXiv preprint

arXiv:1307.8254, 2013.

[42] J. Wolfowitz. Product of indecomposable, aperiodic, stochastic matrices. Pro-

ceedings of American Mathematical Society, 14(5):733–737, 1963.

[43] Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed

autonomous online learning: Regrets and intrinsic privacy-preserving proper-

ties. Knowledge and Data Engineering, IEEE Transactions on, 25(11):2483–

2493, 2013.

[44] M. Zinkevich. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the Twentieth International Conference on Machine

Learning, pages 928–936, Washighton, D.C., 2003.

