
Generalized Loss Functions for Generative

Adversarial Networks

by

Himesh Bhatia

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

October 2020

Copyright © Himesh Bhatia, 2020



Abstract

This thesis investigates the use of parameterized families of information-theoretic

measures to generalize the loss functions of generative adversarial networks (GANs)

under the objective of improving performance. A new generator loss function, called

least kth-order GAN (LkGAN), is introduced, generalizing the least squares GANs

(LSGANs) by using a kth order absolute error distortion measure with k ≥ 1 (which

recovers the LSGAN loss function when k = 2). It is shown that minimizing this

generalized loss function under an (unconstrained) optimal discriminator is equivalent

to minimizing the kth-order Pearson-Vajda divergence.

A novel loss function for the original GANs using Rényi information measures with

parameter α is next presented. The GAN’s generator loss function is generalized in

terms of Rényi cross-entropy functionals. For any α > 0, this generalized loss function

is shown to preserve the equilibrium point satisfied by the original GAN loss based on

the Jensen-Rényi divergence, a natural extension of the Jensen-Shannon divergence.

It is also proved that the Rényi-centric loss function reduces to the original GANs

loss function as α → 1.

Experimental results implemented on the MNIST and CelebA datasets under

both DCGANs and StyleGANs architectures, indicate that the proposed LkGAN

and RényiGAN systems confer performance benefits by virtue of the extra degrees

i



of freedom provided by the parameters k and α, respectively. More specifically, ex-

periments show improvements with regard to the quality of the generated images

as measured by the Fréchet Inception Distance (FID) score and demonstrated by

training stability and extensive simulations.

ii



Co-authorship

I would like to acknowledge and thank my collaborators, Philippe Burlina and William

Paul from Johns Hopkins University, particularly for experiments in Chapter 5, which

is part of our joint paper [12].

iii



Acknowledgments

I would like to thank Professor Fady Alajaji and Professor Bahman Gharesifard for

their support and showing me the beauty of mathematical research. It was Professor

Gharesifard’s first year linear algebra course that piqued my interest in mathematics. I

am grateful for the opportunities he gave me to conduct research under his supervision

during my undergraduate degree. Professor Alajaji’s course on coding theory and

information theory inspired me to pursue a graduate degree researching in this field.

Their passion and motivation are inspirational.

I am grateful to my family, Parveen and Babita, and my sister, Kritika, for their

love and support. They motivate me to be the best person I can be. I would not be

where I am today without their sacrifices and guidance. Thank you. I would also like

to thank my friends for their emotional support and the fun times during the highs

and lows of university life.

I would like to thank the Centre for Advanced Computing at Queen’s University,

especially Hartmut Schmider and Michael Hanlan, for their technical support and

access to their computer cluster to run simulations that are presented in this thesis. I

am thankful for the generous support of the Mathematics and Statistics Department

of Queen’s University and the Natural Sciences and Engineering Research Council of

Canada. I would also like to acknowledge Amazon Web Services for access to high

iv



end computers, which were also used to run simulations presented in this thesis.

Finally, I would like to thank Rianna Lewis, Jennifer Read, and Johana Ng for

their support and help.

v



Contents

Abstract i

Co-authorship iii

Acknowledgments iv

Contents vi

List of Tables ix

List of Figures xi

Chapter 1: Introduction 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Preliminaries on information measures and neural net-

works 8

2.1 Information measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2.1.3 Mutual informations . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Cross-entropies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Propagation equations . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Backpropagation equations . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Gradient descent algorithm: Adam optimization . . . . . . . . 30

2.2.4 Convolutional neural networks . . . . . . . . . . . . . . . . . . 33

Chapter 3: Generative adversarial networks 40

3.1 Gradient penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Least squares GANs (LSGANs) . . . . . . . . . . . . . . . . . . . . . 46

3.3 InfoGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Fréchet inception distance: measuring image quality . . . . . . . . . . 53

Chapter 4: Least kth-order GANs (LkGANs) 56

4.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5: RényiGANs 84

5.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 6: Conclusion 107

Bibliography 109

Appendix A: Experiments 122

A.1 Neural network architectures . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 MNIST results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



List of Tables

4.1 LkGANs experiments on the MNIST dataset: the average and variance

of the best FID scores and the average and variance of the epoch this

occurs taken over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 LkGANs experiments on the MNIST dataset: the average and variance

of the best FID scores and the average and variance of the epoch this

occurs taken over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The average and variance best FID scores for LkGAN-v2 that gen-

erated meaningful images and the average and variance of the epoch

when this occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 LkStyleGANs experiments on the CelebA dataset: the best FID score

over each run seen over three trials. . . . . . . . . . . . . . . . . . . . 69

4.4 LkStyleGANs experiments on the CelebA dataset: the average and

variance of the best FID score and the average and variance epoch this

occurs taken over three trials. . . . . . . . . . . . . . . . . . . . . . . 70

5.1 RényiGANs experiments on the MNIST dataset: the average and vari-

ance of the best FID scores and the average and variance of the epoch

this occurs taken over ten trials. . . . . . . . . . . . . . . . . . . . . . 92

ix



5.2 The average and variance best FID scores for RényiGANs that gen-

erated meaningful images and the average and variance of the epoch

when this occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 RényiStyleGANs experiments on the CelebA dataset: the best FID

over each run seen over three trials. . . . . . . . . . . . . . . . . . . . 98

5.4 RényiStyleGANs experiments on the CelebA dataset: the average and

variance of the best FID score and the average and variance this occurs

taken over three trials. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1 The generator’s architecture for MNIST dataset. . . . . . . . . . . . . 123

A.2 The discriminator’s architecture for MNIST dataset. . . . . . . . . . . 123

A.3 LkGANs-v1 experiments on the MNIST dataset: the best FID over

each run seen over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 129

A.4 LkGANs-v2 experiments on the MNIST dataset: the best FID over

each run seen over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 130

A.5 LkGANs-v3 experiments on the MNIST dataset: the best FID over

each run seen over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 131

A.6 RényiGANs experiments on the CelebA dataset: the best FID over

each run seen over ten trials. . . . . . . . . . . . . . . . . . . . . . . . 132

x



List of Figures

2.1 A neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 A neural network with three layers that maps (x1, x2, x3) 7→ (y1, y2, y3, y4). 24

2.3 Padding a 5×5×1 image with t = 1. The white pixels are the padding

added to the image. The image is represented by the blue pixels. . . . 36

2.4 A visual representation of Example 6. The dark blue pixels are the

pixels of the input image. The light blue and dark blue pixels are the

pixels that the kernels are convoluted with. . . . . . . . . . . . . . . . 38

4.1 Evolution of the average FID scores throughout training for LKGANs. 65

4.2 Plots of the FID scores versus epochs for the best performing LkGAN

for each version and its LSGAN counterpart for a selection of three

trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Sample generated images of the best performing LkGAN for each ver-

sion and its LSGAN counterpart. . . . . . . . . . . . . . . . . . . . . 67

4.4 Evolution of the average FID scores throughout training for LkStyleGANs. 71

4.5 Plots of the FID scores versus epochs for the best performing LkStyleGANs

for each version and their LSStyleGANs counterparts for trials 1, 2, and

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



4.5 Plots of the FID scores versus epochs for the best performing LkStyleGANs

for each version and their LSStyleGANs counterparts for trials 1, 2, and

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Sample generated images of the best performing LkStyleGANs for each

version and their LSStyleGANs counterparts for trial 1. . . . . . . . . 75

4.7 Sample generated images of the best performing LkStyleGANs for each

version and their LSStyleGANs counterparts for trial 2. . . . . . . . . 77

4.8 Sample generated images of the best performing LkStyleGANs for each

version and their LSStyleGANs counterparts for trial 3. . . . . . . . . 79

5.1 Evolution of the average FID scores throughout training for RényiGANs. 93

5.2 Plots of the FID scores versus epochs for the best performing RényiGAN

for each version and its DCGAN counterparts for a selection of three

trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Sample generated images of the best performing RényiGAN in terms

of FID scores for each version and its DCGAN counterpart. . . . . . . 97

5.4 Evolution of average FID scores throughout training for RényiStyleGANs. 99

5.5 Plots of the FID scores versus epochs for the best performing RényiStyleGANs

for each version and their StyleGANs counterparts for trials 1, 2, and 3.100

5.6 Sample generated images of the best performing RényiStyleGANs for

each version and their StyleGANs counterparts for trial 1. . . . . . . 101

5.7 Sample generated images of the best performing RényiStyleGANs for

each version and their StyleGANs counterparts for trial 2. . . . . . . 102

5.8 Sample generated images of the best performing RényiStyleGANs for

each version and their StyleGANs counterparts for trial 3. . . . . . . 103

xii



1

Chapter 1

Introduction

Unsupervised learning is the problem of educing information from a large unlabeled

dataset and, in the context of generative models, is a relatively new area that has

received much attention. Two prominent objectives in generative modeling con-

sist of determining the underlying probability distribution function of a dataset or

generating data that mimics it. Classical techniques for the former include maxi-

mum likelihood estimators, methods of moments estimators and Bayesian estima-

tors. The main approaches for the latter include generative adversarial networks

(GANs) [32], [9], [67], [18], autoencoders/variational autoencoders (VAEs) [43], gen-

erative autoregressive models [64], invertible flow based latent vector models [44], and

hybrids of the above models [33].

Compared to other approaches, GANs have garnered the most interest (e.g., see

surveys in [18], [83], [84]). Generative models can be incorporated into reinforcement

learning and time series predictions. Generative models can also be trained in a semi-

supervised manner, where labels and training examples are missing. Unlabelled data

is easier to obtain and require less memory space, and semi-supervised algorithms are

good at generalizing the missing data. Traditionally, machine learning algorithms are



1.1. LITERATURE REVIEW 2

not able to train models that have multi-modal outputs from a single input. However,

generative models are designed to produce several different outputs that are equally

acceptable [30], [41].

Explicitly defining the probability distribution over the data to generate new data

using classical methods, such as maximum likelihood estimation, may be computa-

tionally expensive [30]. In the case of VAEs, approximation methods are needed for

intractable functions and furthermore the approximate probability distribution is not

guaranteed to converge to the true distribution [55], [56], [9].

In contrast, GANs optimize a loss function using game theory and information

theory. Furthermore, they can represent distributions that lie on low dimensional

manifolds, which VAEs and estimating densities are unable to do [9]. Moreover,

GANs do not rely on Markov Chains and no variational bound is needed [30]. As

such, GANs are the focus of this thesis.

1.1 Literature review

The original GANs [32] consist of a generative neural network competing with a dis-

criminatory neural network in a min-max game. Several variants of GANs have been

studied and implemented. Deep convolutional GANs (DCGANs) use convolutional

layers to learn higher dimensional dependencies that are inherent in complex datasets

such as images [67]. Although DCGANs produced better results than other state-

of-the-art generative models such as VAEs and autoregressive models, they can be

difficult to train and can suffer from mode collapse [9], [84]. Mode collapse occurs

when the generator produces one output, which leads to the discriminator being able

to tell apart real from fake data perfectly during training. Researchers have diligently



1.1. LITERATURE REVIEW 3

attempted to fix these mentioned issues. For example, StyleGANs [41] change the

architecture of the generative neural network to produce realistic high resolution im-

ages, while Wasserstein GANs [9] reduce the problem of mode collapse by using the

Wasserstein-1 distance as the loss function.

GANs have been applied to data privacy problems, where the goal is to hide cer-

tain features of user data to protect their privacy, but mask these features judiciously

in order not to compromise other useful data [39]. It has also been used for computer

vision problems, such as generating fake images of handwritten numbers, or land-

scape paintings [30]. Thus the flexibility of GAN design allows for innovation and

applicability to a wide range of data.

The use of information theory to study and improve neural networks is a relatively

new yet promising direction of research; e.g., see [63], [65], [2], [15], [85], [79], [5], [89]

and [88] and the references therein. While many GANs loss functions are based on the

Jensen-Shannon divergence, there are other divergence measures and tools in infor-

mation theory that can be directly applied to the design of GANs. The family of loss

functions that simplify down to f -divergences was thoroughly studied in [63], [27],

and [49]. Bridging the gap between maximum likelihood learning and GANs, espe-

cially those with loss functions that simplify down to f -divergences, have also been

analyzed in [89]. Using the symmetric Kullback-Leibler divergence, researchers have

also shown that a variant of VAEs is connected to GANs [14]. InfoGANs use varia-

tional mutual information maximization with latency codes to achieve unsupervised

representation learning with considerable success [15].

A new least squares loss function that simplifies down to the Pearson χ2 divergence

was examined in [55]. It was shown through experiments that the resulting least



1.2. CONTRIBUTIONS 4

squares GANs (LSGANs) are more stable than DCGANs. The promising results

of LSGANs and the fact that the Pearson-Vajda |χ|k divergence of order k ≥ 1

generalizes the Pearson χ2 divergence is one motivation for this thesis.

The use of the Rényi divergence in the context of GANs is sparse. Rényi used

the simplest set of postulates that characterize Shannon’s entropy and introduced

his own entropy and divergence measures (parameterized by its order α) that gener-

alize the Shannon entropy and the KL divergence, respectively [69]. Moreover, the

original Jensen-Rényi divergence [36] as well as the identically named divergence [45]

used in this paper are non-f -divergence generalizations of the Jensen-Shannon di-

vergence. Traditionally, Rényi’s entropy and divergence have had applications in a

wide range of problems, including lossless data compression [13], [16], [66], hypothesis

testing [20], [4], error probability [11], and guessing [6], [82]. Recently, the Rényi di-

vergence and its variants (including Sibson’s mutual information) were used to bound

the generalization error in learning algorithms [26], and to analyze deep neural net-

works (DNNs) [85], variational inference [51], Bayesian neural networks [50], and

generalized learning vector quantization [58]. However, there does not exist prior

work on generalizing Jensen-Shannon divergence GANs loss functions that are not in

the family of f -divergences. This provides another motivation for this work.

1.2 Contributions

The novel contributions of this thesis are described in what follows. We revisit LS-

GANs by considering a more general parameterized classes of loss functions that

include the original LSGANs’ generator loss function as a special case. More specif-

ically, we introduce least kth-order GANs (LkGANs) by considering the kth-order



1.2. CONTRIBUTIONS 5

absolute error loss function for the generator (k ≥ 1). We prove that minimizing this

loss function is equivalent to minimizing the kth-order Pearson-Vajda divergence [61],

which recovers the Pearson χ2 divergence examined in [55] when k = 2. The LkGANs’

generator loss function also preserves the theoretical minimum of LSGANs’ genera-

tor loss function, which is achieved when the generator’s distribution is equal to

the true distribution. LkGANs are implemented and compared with LSGANs on the

MNIST [47] and CelebA [53] datasets using the DCGAN and StyleGAN architectures.

Experimentally, LkGANs are shown to outperform LSGANs in terms of generated im-

age quality, as measured by the Fréchet inception distance (FID) score [37], and the

rate at which they converge to meaningful results. LkGANs are also observed to

reduce the problem of mode collapse during training.

We also revisit the original GAN’s generator optimization problem by considering

more general parameterized classes of loss functions that subsume the original func-

tion as a special case. An important objective is to identify generalized loss functions

that can be analytically minimized under an (unconstrained) optimal discriminator,

with the minimum theoretically achieved when the generator’s distribution is the true

dataset distribution. To this end, we consider a new GAN’s generator loss function

expressed in terms of the negative sum of two Rényi cross-entropy functionals of order

α, where α > 0 and α 6= 1. We show that minimizing this α-parameterized loss func-

tion under an optimal discriminator results in the minimization of the Jensen-Rényi

divergence [45], which is a natural extension of the Jensen-Shannon divergence as

it uses the Rényi divergence instead of the Kullback-Leibler (KL) divergence in its

expression. Note that this Jensen-Rényi divergence measure, which reduces to the



1.2. CONTRIBUTIONS 6

Jensen-Shannon divergence as α approaches 1, differs from an earlier namesake mea-

sure introduced in [36], [35] and defined using the Rényi entropy. We also prove that

our generator loss function of order α converges to the original GAN loss function

in [32] when α→ 1. Previously, researchers generalized the GANs loss function using

the f -divergence measure [19] [63]. However as the Jensen-Rényi divergence is not

itself an f -divergence, it can be interpreted as a non-f -divergence generalization of

the Jensen-Shannon divergence. We call the resulting network RényiGANs.

Finally, we implement the newly proposed RényiGAN loss function using the DC-

GAN and StyleGAN architectures [41]. Our experiments use the MNIST [47] and

CelebA [53] datasets and provide comparisons with the baseline DCGAN and Style-

GAN systems. Experiments show that the Rényi-centric GAN systems perform as

well as, or better, than their baseline counterparts in terms of visual quality of the

generated images (as measured by the FID score), particularly when spanning α

over a range of values as it helps the avoidance of local minimums. We show that

employing L1 normalization with the Rényi generator loss function confers greater

stability, quicker convergence, and better FID scores for both RényiGANs and DC-

GANs. Consistent stability and slightly improved FID scores are also noted when

comparing RényiStyleGAN with StyleGAN. We finally compare these GAN systems

with the simplified gradient penalty [57], showing that the Rényi-type systems pro-

vide substantial reductions in computational training time vis-a-vis the baselines, for

similar levels of FID. 1

1Our codes and results can be found in https://github.com/renyigan-lkgan?tab=repositories.



1.3. OUTLINE 7

1.3 Outline

We introduce the preliminary background on information-theoretic measures and

neural networks in Chapter 2. In Chapter 3, we describe the original GAN sys-

tems, including recent papers that improve the design of these networks by altering

the GANs loss function, such as LSGANs and InfoGANs. In Chapter 4, we ana-

lyze LkGANs, which generalize LSGAN’s generator loss function, and we provide

experimental results comparing LkGANs with LSGANs. In Chapter 5, we present

theoretical results of RényiGANs, which generalize GANs, and show experimental

results comparing RényiGANs with DCGANs and StyleGANs. Finally, we provide

conclusions in Chapter 6.



8

Chapter 2

Preliminaries on information measures and neural

networks

We provide background material on information measures and neural networks. We

use the (R,B(R), µ) measure space, where B(R) is the Borel σ-algebra on R and µ is

the Lebesgue measure. We also use the short-form
∫
R fdµ :=

∫
x∈R f(x)dµ(x), where

f : R → R is a measurable function. Throughout, we use A to denote a random

variable, a to denote a matrix, and a to denote a vector.

2.1 Information measures

We describe entropy, divergence, mutual information, and cross-entropy measures

used in this work. More details on the properties of these quantities can be found in

the texts [3], [17], [21], and [87].

2.1.1 Entropies

Entropy measures the uncertainty of the outcome of an experiment that is modelled

by a random variable. Shannon puts forth a set of postulates that models entropy and



2.1. INFORMATION MEASURES 9

provided a simple and elegant formula. We first present the definitions of Shannon

entropy [76].

Definition 1 The Shannon entropy of a discrete random variable X with proba-

bility mass function pX and finite alphabet (or range) X ⊂ Z is defined as

H(pX) := −
∑
x∈X

pX(x) log(pX(x)). (2.1)

Definition 2 The differential Shannon entropy of a continuous random variable

Y with probability density function fY and support SY ⊂ R is defined as

h(fY) := −
∫
SY

fY log(fY)dµ. (2.2)

Several researchers refined Shannon’s original postulates. Using a new set of postu-

lates, Rényi created a generalization of Shannon entropy [69].

Definition 3 For α > 0, α 6= 1, the Rényi entropy of order α of a discrete

random variable X with probability mass function pX and finite alphabet X ⊂ Z is

defined as

Hα(pX) :=
1

1− α
log

(∑
a∈X

pX(a)α

)
. (2.3)

Definition 4 [81] For α > 0, α 6= 1, the differential Rényi entropy of order α

of a continuous random variable Y with probability density function fY and support



2.1. INFORMATION MEASURES 10

SY ⊂ R is

hα(fY) :=
1

1− α
log

(∫
SY

fαYdµ

)
. (2.4)

2.1.2 Divergences

Divergence measures are used to quantify the dissimilarity between distributions. We

first present the definitions of the Kullback-Leiber divergence, Jensen-Rényi diver-

gence, and the Pearson-Vajda divergences.

Definition 5 [46] The Kullback-Leibler divergence between two distributions

functions p and q with the same support or finite alphabet is defined as

KL(p‖q) := E
A∼p

(
log

p(A)

q(A)

)
. (2.5)

Note that when we say distributions functions, we mean that the definition works for

probability mass functions p and q and probability density functions p and q.

The KL-divergence can be generalized via the Rényi divergence.

Definition 6 [81] Given α > 0, α 6= 1, the Rényi divergence of order α between

two probability mass functions p and q with the same finite alphabet X ⊂ Z is defined

as

Dα(p‖q) :=
1

α− 1
log

(∑
x∈X

pα(x)q1−α(x)

)
. (2.6)

Note that Dα(p‖q) ≥ 0 with equality if and only if p = q, see [81].

Definition 7 [81] For α > 0, α 6= 1 and two probability density functions p and q,



2.1. INFORMATION MEASURES 11

the differential Rényi divergence of order α with common support R ⊂ R is

defined as

Dα(p‖q) :=
1

α− 1
log

(∫
R
pαq1−αdµ

)
. (2.7)

Similarly, Dα(p‖q) ≥ 0 with equality if and only if p = q almost everywhere (a.e.),

see [81]. Furthermore, the Rényi divergence reduces to the KL-divergence as α→ 1.

Theorem 1 [81] For two distribution functions p and q, assume Dγ(p‖q) < ∞ for

some γ > 1. Then we have that

lim
α→1

Dα(p‖q) = KL(p‖q). (2.8)

For simplicity of analysis, we assume in what follows the finiteness of Dγ(·‖·) for some

γ > 1 so that (2.8) holds. Being a function of an f -divergence, useful properties and

bounds on the Rényi divergence can be elucidated from the study of f -divergences,

see [75] and related references.

We next describe the Pearson-Vajda divergence, which is itself an f -divergence

[61].

Definition 8 The Pearson-Vajda divergence of order k, denoted by |χ|k(p‖q),

between two probability density functions p and q with common support R ⊂ R, where

k ≥ 1, is given by

|χ|k(p‖q) :=

∫
R

|q − p|k

pk−1
dµ. (2.9)

Note that |χ|k(p‖q) ≥ 0 with equality if and only if p = q (a.e.). Also when k = 2,



2.1. INFORMATION MEASURES 12

|χ|k(·‖·) reduces to the Pearson χ2 divergence measure.

Definition 9 [61] For two probability density functions p and q with common support

R ⊂ R, the Pearson χ2 divergence between p and q is defined as

χ2(p‖q) :=

∫
R

(q − p)2

p
dµ. (2.10)

We now describe the definition of Jensen Shannon divergence, which is the mixture

of two KL-divergences.

Definition 10 [52] The Jensen-Shannon divergence between two distribution

functions p and q is given by

JSD(p‖q) :=
1

2
KL

(
p

∥∥∥∥p+ q

2

)
+

1

2
KL

(
q

∥∥∥∥p+ q

2

)
. (2.11)

Replacing the KL-divergences with Rényi divergences gives a natural extension of

the Jensen-Shannon divergence, which we call Jensen-Rényi divergence. This Jensen-

Rényi divergence was recently introduced in [45] for discrete distributions and studied

in the context of generalized (Rényi-type) f -divergences. It differs from the identically

named divergence studied in [36] and [35], an earlier extension of the Jensen-Shannon

divergence consisting of the difference between the Rényi entropy of a mixture of

multiple probability distributions and the mixture of the Rényi entropies of the indi-

vidual distributions. Other recent (but different) extensions of the Jensen-Shannon

divergence can be found in [59] and the references therein.



2.1. INFORMATION MEASURES 13

Definition 11 The Jensen-Rényi divergence of order α between two probabil-

ity distributions p and q, where α > 0, α 6= 1, is given by

JRα(p‖q) :=
1

2
Dα

(
p

∥∥∥∥p+ q

2

)
+

1

2
Dα

(
q

∥∥∥∥p+ q

2

)
. (2.12)

By the non-negativity of the Rényi divergence, it follows that JRα(p‖q) ≥ 0 with

equality if and only if p = q (a.e.). Finally, since limα→1 Dα(p‖q) = KL(p‖q), we have

that

lim
α→1

JRα(p‖q) = JSD(p‖q). (2.13)

2.1.3 Mutual informations

Shannon mutual information between two random variables X and Y measures the

amount of information that Y contains about X (or, symmetrically, that X contains

about Y). We present the definition of the Shannon mutual information.

Definition 12 [76] The Shannon mutual information between two random

variables X and Y, with joint distribution function pX,Y and marginal distribution

functions pX and pY, is defined as

I(pX; pY) := KL(pX,Y‖pXpY). (2.14)

Note that X and Y are independent random variables if and only if I(pX; pY) = 0.

Arimoto, Csiszár, and Sibson have generalized Shannon’s mutual information (e.g.,

see [82]). We present Arimoto’s generalization below.



2.1. INFORMATION MEASURES 14

Definition 13 [7] For α > 0, α 6= 1, the Arimoto-Rényi mutual information

of order α between two random variables X and Y, with joint distribution function

pX,Y and marginal distribution functions pX and pY, is defined as

Iaα(pX; pY) := Hα(pX)−Ha
α(pX|Y), (2.15)

where

Ha
α(pX|Y) :=

α

1− α
log

(
E

A∼pY

(
‖pX|Y(·|A)‖α

))
, (2.16)

where ‖f‖α = (
∫
R f

αdµ)
1
α is the α-norm for some measurable function f .

2.1.4 Cross-entropies

Shannon cross-entropy is a measure of the dissimilarity between two probability mass

functions or probability density functions p and q, and is closely related to KL(p‖q).

Indeed, like the KL divergence, it measures the difference between conducting an

experiment using an approximate distribution function q when the true distribution

is p.

Definition 14 The Shannon cross-entropy between two probability mass func-

tions p and q with common finite alphabet X ⊂ Z is defined as

H(p; q) := −
∑
x∈X

p(x) log(q(x)). (2.17)

Note that H(p; q) = KL(p‖q) + H(p) ≥ H(p). Thus H(p; q) = H(p) if and only

if p = q.



2.1. INFORMATION MEASURES 15

Definition 15 [60] If p and q are two probability density functions with common

support R ⊂ R, then the differential Shannon cross-entropy between p and q is

defined as

h(p; q) := −
∫
R
p log(q)dµ. (2.18)

Similarly h(p; q) = h(p) if and only if p = q (a.e.).

Similar to entropy and divergences, Shannon cross-entropy can be generalized

using the Rényi cross-entropy.

Definition 16 [80] The Rényi cross-entropy of order α between two probability

mass functions p and q with common finite alphabet X ⊂ Z, where α > 0, α 6= 1, is

given by

Hα(p; q) :=
1

1− α
log

(∑
x∈X

p(x)qα−1(x)

)
. (2.19)

We next introduce an analogous definition of Rényi cross-entropy between two prob-

ability density functions.

Definition 17 The differential Rényi cross-entropy of order α between two

probability density functions p and q with common support R ⊂ R, where α > 0,

α 6= 1, is given by

hα(p; q) :=
1

1− α
log

(∫
R
pqα−1dµ

)
. (2.20)

Note that hα(p; q) reduces to hα(p), when p = q (a.e.). Under some finiteness condi-

tions, limα→1 hα(p; q) = h(p; q), as we show in the next theorem.



2.1. INFORMATION MEASURES 16

Theorem 2 Let p and q be two probability density functions with common support

R ⊂ R. If h(p; q) <∞, then

lim
α↓1

hα(p; q) = h(p; q).

Moreover, if E
A∼p

(
1

q(A)

)
<∞, then

lim
α↑1

hα(p; q) = h(p; q).

The proof of the theorem requires the following result, which we recall from [81].

Lemma 1 For any x > 1
2
,

(x− 1)

(
1 +

1− x
2

)
≤ log(x) ≤ x− 1.

Proof of Theorem 2 Working in the measure space (R,B(R), µ), where B(R) is

the Borel σ-algebra and µ is the Lebesgue measure on R, we first note that by setting

xα = E
A∼p

(q(A)α−1) =

∫
R
pqα−1dµ

we have that limα↓1 xα = 1. Also, Lemma 1 yields that

lim
α↓1

log (xα)

xα − 1
= 1.

We then can write

lim
α↓1

hα(p; q) = lim
α↓1

1

1− α
log (xα)



2.1. INFORMATION MEASURES 17

= lim
α↓1

xα − 1

1− α
log (xα)

xα − 1

= lim
α↓1

(
xα − 1

1− α

)
lim
α↓1

(
log (xα)

xα − 1

)
= lim

α↓1

xα − 1

1− α

if and only if limα↓1
xα−1
1−α exists. We next show the existence of this limit and verify

that it is indeed equal to h(p; q). Consider

lim
α↓1

xα − 1

1− α
= lim

α↓1

∫
R

p× qα−1 − p
1− α

dµ.

In order to invoke the monotone convergence theorem, we prove that the integrand

is non-decreasing and bounded below as α ↓ 1. Noting that

d

dα

p× qα−1 − p
1− α

=
pqα−1(1− (α− 1) log(q))− p

(α− 1)2
,

it is enough to show that

pqα−1(1− (α− 1) log(q))− p ≤ 0.

Indeed, we have

p[qα−1(1 + log(q1−α))− 1] ≤ p[qα−1(1 + q1−α − 1)− 1] (2.21)

= p[1− 1]

= 0,

where (2.21) holds since log(x) ≤ x− 1, for x > 0. We next show that the integrand



2.1. INFORMATION MEASURES 18

is bounded from below. The lower bound can be obtained by letting α→∞:

lim
α→∞

p× qα−1 − p
1− α

= 0.

Hence, by the monotone convergence theorem, we have that

lim
α↓1

∫
R

p× qα−1 − p
1− α

dµ =

∫
R

lim
α↓1

p× qα−1 − p
1− α

dµ.

Finally, by L’Hôpital’s rule, we obtain that

lim
α↓1

xα − 1

1− α
= −

∫
R

p log(q)

1
dµ

= h(p; q).

Next, we shall prove taking α ↑ 1. For α < 1, xα = E
A∼p

(q(A)α−1) < ∞ by the

fact that xα is non-increasing in α > 0 and by the assumption that E
A∼p

(
1

q(A)

)
<∞.

Hence, limα↑1 xα = 1. Using Lemma 1, we can apply the same steps as above with

the alteration of the following argument. Consider

lim
α↑1

xα − 1

1− α
= lim

α↑1

∫
X

pqα−1 − p
1− α

dµ.

We know that the integrand is non-increasing in α > 0. To use the monotone con-

vergence theorem, we need to show that the integrand is bounded above. Note that

lim
α→0

p× qα−1 − p
1− α

=
p

q
− p

≤ p

q
.



2.1. INFORMATION MEASURES 19

Since we assumed E
A∼p

(
1

q(A)

)
< ∞, we have that p

q
< ∞ (a.e.). As a result, the

integrand is bounded above (a.e.). Following the same steps as in the previous part,

we conclude that

lim
α↑1

hα(p; q) = h(p; q),

finishing the proof. �

We next show that the differential Rényi cross-entropy is monotonically decreasing

in α > 0, α 6= 1.

Theorem 3 Let p and q be two probability density functions with common support

R ⊂ R. Then for α > 0, α 6= 1, hα(p; q) is monotonically decreasing in α.

Proof We first consider

d

dα
hα(p; q) =

d

dα

(
1

1− α
log

(∫
R
pqα−1dµ

))
=

1

(1− α)2
log

(∫
R
pqα−1dµ

)
+

1

1− α
1∫

R pq
α−1dµ

d

dα

(∫
R
pqα−1dµ

)
.

We next consider

d

dα

(∫
R
pqα−1dµ

)
= lim

ε↓0

∫
R
p

(
qα+ε−1 − qα−1

ε

)
dµ

= lim
ε↓0

∫
R
pqα−1

(
qε − 1

ε

)
dµ.

In order to apply the monotone convergence theorem, we prove the integrand is

decreasing in ε ∈ (0, 1) as ε ↓ 0 and is bounded above. Note that

d

dε

qε − 1

ε
=

1 + qε(ε log(q)− 1)

ε2
,



2.1. INFORMATION MEASURES 20

hence, it is enough to show that

1 + qε(ε log(q)− 1) ≥ 0.

Indeed, we have

1 + qε(log(qε)− 1) ≥ 1 + qε
(

1− 1

qε
− 1

)
(2.22)

= 0,

where (2.22) holds since 1− 1
x
≤ log(x), for all x > 0. We now show that the integrand

is bounded above by letting ε→ 1:

lim
ε→1

qε − 1

ε
= q − 1 <∞.

Hence by the monotone convergence theorem we have

lim
ε↓0

∫
R
pqα−1

(
qε − 1

ε

)
dµ =

∫
R

lim
ε↓0

pqα−1
(
qε − 1

ε

)
dµ.

By L’Hôpital’s rule, we obtain that

d

dα

(∫
R
pqα−1dµ

)
=

∫
R
pqα−1 log(q)dµ.

Thus we have that

d

dα
hα(p; q) =

1

(1− α)2
log

(∫
R
pqα−1dµ

)
+

1

1− α
1∫

R pq
α−1dµ

∫
R
pqα−1 log(q)dµ



2.1. INFORMATION MEASURES 21

=

∫
R pq

α−1(hα(p; q) + log(q))dµ

(1− α)
(∫
R pq

α−1dµ
) .

We next consider two cases, α < 1 and α > 1. For α < 1, we consider

hα(p; q) + log(q) =
1

1− α
log(

∫
R
pqα−1dµ) +

log(q1−α)

1− α

=
log(q1−α

∫
R pq

α−1dµ)

1− α

≤
q1−α

∫
R pq

α−1dµ− 1

1− α
, (2.23)

where (2.23) holds since log(x) ≤ x− 1, for all x > 0. We thus have

d

dα
hα(p; q) ≤

∫
R pq

α−1(q1−α
∫
R pq

α−1dµ− 1)dµ

(1− α)2
(∫
R pq

α−1dµ
)

=

∫
R pq

α−1dµ−
∫
R pq

α−1dµ

(1− α)2
(∫
R pq

α−1dµ
)

= 0.

Finally, for α > 1, we consider

hα(p; q) + log(q) =
log(q1−α

∫
R pq

α−1dµ)

1− α

≥
q1−α

∫
R pq

α−1dµ− 1

1− α
, (2.24)

where (2.24) holds since − log(x) ≥ −(x− 1), for all x > 0. Thus, we have

d

dα
hα(p; q) ≤

∫
R pq

α−1(q1−α
∫
R pq

α−1dµ− 1)dµ

(1− α)2
(∫
R pq

α−1dµ
)

= 0,



2.2. NEURAL NETWORKS 22

which finishes the proof. �

The above definition of differential Rényi cross-entropy can be extended (assuming

the integral exists) by only requiring q to be a non-negative function (such as a

non-normalized density function); in this case we call the resulting measure as the

(differential) Rényi cross-entropy functional and denote it by Hα(p; q). Similarly, we

henceforth denote the Shannon cross-entropy functional by H(p; q).

2.2 Neural networks

Modelled after the human brain, neural networks are functions that consist of super-

positions of activation functions and affine linear transformations. In this section, we

present the basic definitions of neural networks and a widely used gradient descent

optimization technique called Adaptive Moment Estimation (Adam) [42].

2.2.1 Propagation equations

We follow the treatment provided in [31] unless otherwise stated. Let X ⊂ R be the

space of input signals and Y ⊂ R be the space of output signals. We denote

C0(X,Y) := {f : X→ Y : f is continuous.},

Cn(X,Y) := {f : X→ Y : f is n-times continuously differentiable},

where n ∈ N.

Definition 18 [48] An activation function σ : X → Y is a function that is

continuous (a.e.).



2.2. NEURAL NETWORKS 23

Examples of common activation functions are the Rectified Linear Unit (ReLU)

ReLU(x) =


0, if x < 0,

x, if x ≥ 0,

the Leaky Rectified Linear Unit (LeakyReLU) with parameter α ∈ R>0 [31],

LeakyReLUα(x) =


x, if x > 0,

αx, if x ≤ 0,

(2.25)

σ(x) = tanh(x), and σ(x) = 1
1+e−x

. Often σ(x) = tanh(x) and σ(x) = 1
1+e−x

are

referred to as sigmoid functions, sigmoidal functions [22], or squashing functions [38].

We primarily use ReLU, LeakyReLU, tanh(x), and 1
1+e−x

as our activation functions

in this thesis.

Definition 19 A neuron is a function f : Xn×Rn×R→ Y such that for an input,

x = (x1, . . . , xn) ∈ Xn, weight vector w = (w1, . . . , wn) ∈ Rn, and bias b ∈ R,

f(x,w, b) = σ

(
n∑
k=1

xkwk + b

)
, (2.26)

where σ : X→ Y is an activation function.

Figure 2.1 is a representation of a neuron. It can be shown that neurons can approx-

imate any C1(Xn,Y) function [48].

Neural networks consist of neurons arranged in layers, which correspond to su-

perpositions of activation functions and affine linear transforms, see Figure 2.2. Let

Xn be the input space and Ym be the output space of the neural network. Suppose



2.2. NEURAL NETWORKS 24

Figure 2.1: A neuron.

Figure 2.2: A neural network with three layers that maps (x1, x2, x3) 7→ (y1, y2, y3, y4).

a neural network has k layers, where first layer is the input layer and the kth layer is

the output layer. We denote lj ∈ N as the number of neurons in layer j ∈ {1, . . . , k}.

Note that l1 = n and lk = m.

Definition 20 We call w(j) ∈ Rlj×Rlj−1 the weight matrix of layer j and b(j) ∈ Rlj

the bias vector of layer j, where j ∈ {2, . . . , k}.

Note that we define w
(j)
h,i ∈ R as the weight of the connection from the hth neuron

from the (j − 1)th layer to the ith neuron in the jth layer. Hence w(j) =
[
w

(j)
h,i

]T
h,i

.

Similarly b
(j)
i ∈ R is the bias associated with the ith neuron in the jth layer. The



2.2. NEURAL NETWORKS 25

function σ(j) : Rlj → Rlj applies an identical activation function, σ(j) : R → R,

component-wise, i.e., σ(j)(a1, . . . , alj) = (σ(j)(a1), . . . , σ
(j)(alj)), where ai ∈ R, for

i ∈ {1, . . . , lj}.

Definition 21 A neural network with k layers is a function fθ : Xn → Ym of

the form

fθ(x) = σ(k)(w(k)σ(k−1)(w(k−1)(. . .σ(2)(w(2)x+ b(2))) + b(k−1)) + b(k)), (2.27)

where x = (x1, . . . , xn) ∈ Xn is the input and θ = (w(2), . . . ,w(k), b(2), . . . , b(k)) is

called the tuple of parameters (or parameters for short) of the neural network.

For a fixed x ∈ Xn, we let α
(j)
i be the activation of the ith neuron in layer

j ∈ {1, . . . , k} defined it recursively as follows:

α
(j)
i :=


xi, if j = 1,

σ(j)
(∑lj−1

h=1 w
(j)
h,iα

(j−1)
h + b

(j)
i

)
, if j ∈ {2, . . . , k},

(2.28)

where i ∈ {1, . . . lj}. Equivalently, in vector form,

α(j) := (α
(j)
1 , . . . , α

(j)
lj

) =


x, if j = 1,

σ(j)(w(j)α(j−1) + b(j)), if j ∈ {2, . . . , k},
(2.29)

where α(j) ∈ Rlj . Note that we denote yi := α
(k)
i and y := {y1, . . . , ym} ∈ Ym.

We denote

z
(j)
i :=

lj−1∑
h=1

w
(j)
h,iα

(j−1)
h + b

(j)
i , (2.30)



2.2. NEURAL NETWORKS 26

where i ∈ {1, . . . lj} is the neuron in layer j ∈ {2, . . . , k}. Equivalently, in vector

form,

z(j) := w(j)α(j−1) + b(j), (2.31)

where z(j) ∈ Rlj .

When constructing a neural network, the weights and the biases are the parame-

ters that can be fine tuned to optimize the neural network. There are several tasks

that a neural network can perform, such as classification, regression, or density esti-

mation [31]. The two main types of learning algorithms for neural networks to achieve

their task are supervised and unsupervised learning.

Supervised learning algorithms learn features of a dataset that contains a desired

output for a given input from the dataset. For example, the MNIST dataset contains

handwritten numerical images with labels indicating the value for each image [47].

As such, we can train a neural network to classify handwritten numerical images.

Definition 22 Let a ∈ Ym be the desired output for some given input x ∈ Xn.

We call (a,x) the training data.

To train the neural network, we need to define a loss function to measure how well a

neural network is performing.

Definition 23 The loss function is defined as a continuous function V : Ym ×

Ym → R, which measures the difference between the desired output a and the actual

output fθ(x), where fθ : Xn → Ym is a neural network. That is (a, fθ(x)) 7→

V (a, fθ(x)).



2.2. NEURAL NETWORKS 27

Note that in the literature, loss functions are also known as cost, objective, or value

functions. Loss functions do not need to be a metric on Ym. Examples of common

loss functions are the square error

V (a,y) = ‖a− y‖2

or the Shannon cross-entropy functional

V (a,y) = H(a;y) = −

(
m∑
i=1

ai ln(yi) + (1− ai) ln(1− yi)

)
,

if a is a probability mass function and yi ∈ (0, 1), i ∈ {1, . . . ,m}, where y = fθ(x) is

the actual output of a neural network, fθ, with k layers, for some given training data

(a,x) ∈ Ym × Xn.

Unsupervised learning algorithms learn features of an unlabelled dataset. This

can be done by learning the underlying distribution of the dataset, either explicitly

or implicitly. A popular unsupervised learning algorithm is generative adversarial

networks (GANs). It contains a generator neural network, whose task is to gener-

ate data that mimics some unlabelled dataset, and a discriminator neural network,

whose task is to distinguish real and fake data. As such the generator’s loss function

measures whether the generator manages to fool the discriminator into labelling real

and fake data as the same value. GANs, which are the subject of this thesis, will be

described in detail in the next chapter.



2.2. NEURAL NETWORKS 28

2.2.2 Backpropagation equations

Backpropagation equations were first introduced by Rumelhart, Hinton, and Williams

in their seminal 1986 paper [72]. The aim of backpropagation equations is to find

∂V

∂w
(j)
h,i

and ∂V

∂b
(j)
i

so that we can minimize the loss function over the parameters of the

neural network that we can control.

Theorem 4 [72] [31] [62] Let fθ : Xn → Ym be a neural network with k layers,

lj ∈ N be the number of neurons in layer j ∈ {1, . . . k}, and x ∈ Xn. Let y =

(y1, . . . , ym) := fθ(x) ∈ Ym be the actual output. Then backpropagation equations of

the neural network fθ are

∂V

∂b
(j)
i

=
∂V

∂z
(j)
i

(2.32)

∂V

∂w
(j)
h,i

=
∂V

∂z
(j)
i

α
(j−1)
h , (2.33)

where i ∈ {1, . . . , lj} is the neuron in layer j ∈ {2, . . . , k}, and where h ∈ {1 . . . , lj−1}

is the neuron in layer j − 1. Furthermore,

∂V

∂z
(j)
i

=


∂V
∂yi
σ
′
(
z
(j)
i

)
, if j = k,∑lj+1

p=1
∂V

∂z
(j+1)
p

w
(j+1)
i,p σ

′
(
z
(j)
i

)
, if j ∈ {2, . . . , k − 1},

(2.34)

where σ
′
(
z
(j)
i

)
:= dσ(a)

da
|
a=z

(j)
i

.

Proof We first prove (2.32) and (2.33). For neuron i ∈ {1, . . . , lj} in layer j ∈

{2, . . . , k},

∂V

∂z
(j)
i

=
∂V

∂b
(j)
i

db
(j)
i

dz
(j)
i

=
∂V

∂b
(j)
i

, (2.35)



2.2. NEURAL NETWORKS 29

where (2.35) is due to the chain rule, and
db

(j)
i

dz
(j)
i

= 1 from (2.30). For neuron h ∈

{1, . . . lj} in the jth layer and neuron i ∈ {1, . . . lj−1} in the (j − 1)th layer, we have

that

∂V

∂w
(j)
h,i

=

lj∑
p=1

∂V

∂z
(j)
p

∂z
(j)
p

∂w
(j)
h,i

(2.36)

=

lj∑
p=1

∂V

∂z
(j)
p

∂

∂w
(j)
h,i

 lj−1∑
m=1

w(j)
m,pα

(j−1)
m + b(j)p

 ,

where (2.36) is due to the chain rule and product rule. Moreover,

∂

∂w
(j)
h,i

 lj−1∑
m=1

w(j)
m,pα

(j−1)
m + b(j)p

 =


α
(j−1)
h , if p = i,

0, otherwise.

Thus,

∂V

∂w
(j)
h,i

=
∂V

∂z
(j)
i

α
(j−1)
h ,

We next relate ∂V

∂z
(k)
i

to ∂V
∂yi

, where i ∈ {1, . . . , lk} is the neuron in the output layer.

By the fact that yi = σ(z
(k)
i ) for neuron i ∈ {1, . . . , lk} in the output layer, we have

that

∂yp

∂z
(k)
i

=


σ
′
(
z
(k)
i

)
, if p = i,

0, otherwise,



2.2. NEURAL NETWORKS 30

where p ∈ {1, . . . lk}. Thus,

∂V

∂z
(k)
i

=

lk∑
p=1

∂V

∂yp

∂yp

∂z
(k)
i

=
∂V

∂yi
σ
′
(
z
(k)
i

)
, (2.37)

where (2.37) is due to the chain rule and product rule.

We next relate ∂V

∂z
(j)
i

for neuron i ∈ {1, . . . , lj} in layer j ∈ {2, . . . , k− 1} to ∂V

∂z
(j+1)
p

,

where p ∈ {1, . . . , lj+1} is the neuron in layer j + 1. Firstly,

z(j+1)
p =

lj∑
h=1

w
(j+1)
h,p α

(j)
h + b(j+1)

p

=

lj∑
h=1

w
(j+1)
h,p σ

(
z
(j)
h

)
+ b(j+1)

p

⇒ ∂z
(j+1)
p

∂z
(j)
i

= w
(j+1)
i,p σ

′
(
z
(j)
i

)
.

Hence,

∂V

∂z
(j)
i

=

lj+1∑
p=1

∂V

∂z
(j+1)
p

∂z
(j+1)
p

∂z
(j)
i

(2.38)

=

lj+1∑
p=1

∂V

∂z
(j+1)
p

w
(j+1)
i,p σ

′
(
z
(j)
i

)
,

where (2.38) is due to the chain rule and product rule. �

2.2.3 Gradient descent algorithm: Adam optimization

Simply applying gradients to the weights and biases in a neural network does not

guarantee that it will converge to its local optimum, let alone its global optimum.

Indeed, there are no gradient descent algorithms that guarantee that a non-convex



2.2. NEURAL NETWORKS 31

function whose parameters lie on a non-convex space, such as a neural network, will

converge to a local or global optimum. Moreover, loss functions have randomness due

to the fact that they are evaluated using different subsamples of data. Random noise

is also commonly added in network architectures, such as in StyleGANs [41], which

contribute to the randomness of loss functions. For such loss functions, stochastic

gradient descent (SGD) algorithms are useful.

One such popular SGD algorithm is called Adaptive Moment Estimation (Adam).

Related to RMSProp and AdaGrad [24] [31] [42], Adam uses first order gradients,

initialization bias correction, and adaptive learning rates by calculating the first and

second moments of the gradients. We include the algorithm below (see Algorithm 1).

Let (X1, . . . , XT ) ⊂ X be random samples taken independently from some proba-

bility distribution p defined on X, where T ∈ N is the time horizon. The distribution

p can be a uniform distribution if X is a countable finite set or a Gaussian distribution

if X ⊂ R. Recall that an estimator φ̂ : XT → R for an unknown parameter φ is called

unbiased if E(φ̂(X1, . . . , XT )) = φ [70].

Let ((a1,x1), . . . , (aT ,xT )) ⊂ Ym×Xn be the tuple of training data. Let V (a, fθ(x))

be the loss function, where fθ : Xn → Ym is a neural network with k layers. Note

the goal is to find θ∗ = argminθ E(V (a, fθ(x))), where the randomness arises from

randomly sampling the training data, or random noise added to it. Let V (at, fθ(xt))

be the realizations of the objective function at each time step t ∈ {1, . . . , T}.

Using the definitions of m̂t, v̂t, and gt from the Adam algorithm, we next show

that m̂t and v̂t are unbiased estimators of the gradient’s, gt, first and second moments

provided some condition on gt.



2.2. NEURAL NETWORKS 32

Algorithm 1 Overview of Adam algorithm

Initialize θ0 by randomly sampling a probability distribution, step-size α ∈ R>0,
first moment vector m0 = 0, second moment vector v0 = 0, exponential decay
rates β1, β2 ∈ [0, 1), and timestep t = 0.
while t ∈ {0, . . . T} do
t = t+ 1,
gt = ∇θV (at, fθt−1(xt)),
mt = β1 ·mt−1 + (1− β1) · gt,
vt = β2 · vt−1 + (1− β2) · g2t ,
m̂t = mt

1−βt1
, bias corrected estimate of E(gt),

v̂t = vt
1−βt2

, bias corrected estimate of E(g2t ),

θt = θt−1−α · m̂t√
v̂t+ε

, where ε is chosen close to the zero vector and has positive

entries. 1

end while

Theorem 5 If E(gt) = a and E(g2t ) = b for all t ∈ {1, . . . , T}, then E(m̂t) = a and

E(v̂t) = b, where a and b are constant vectors.

Proof It is direct to determine that mt = (1 − β1)
∑t

i=1 β
t−i
1 gi and vt = (1 −

β2)
∑t

i=1 β
t−i
2 g2i by recursion.

We prove that E(m̂t) = a; the other proof is identical.

E(m̂t) = E

(
1− β1
1− βt1

t∑
i=1

βt−i1 gi

)

=
1− β1
1− βt1

t∑
i=1

βt−i1 E(gi)

= a
1− β1
1− βt1

t∑
i=1

βt−i1

= a, (2.39)

1Note that a
b in the algorithm above denotes the element wise division of two vectors a and b of

the same size.



2.2. NEURAL NETWORKS 33

where (2.39) is due to the finite geometric series. �

The recommended values of the Adam algorithm are α = 0.001, β1 = 0.9, β2 =

0.999, and ε = (10−8, . . . , 10−8). Although the Adam algorithm is commonly used, it

does not guarantee that θt will converge to a global optimal θ∗. In fact, researchers

proved that there exists an online convex optimization problem where the Adam

algorithm fails to converge to an optimal solution [68]; selecting β1 and β2 to vary

with time is suggested as a remedy.

2.2.4 Convolutional neural networks

In computer vision, convolving kernels (or also known as filters, masks, templates, or

windows) onto images can give information about the spacial dependencies between

pixels [29]. The concept of filtering descends directly from Fourier transforms for

signal processing [29]. Kernels can sharpen images, increase their contrast, reduce

noise, and detect edges of objects and features in the image [29]. The same theory can

be applied to neural networks that take images as their inputs. Instead of flattening

out the images, we can apply kernels and train the neural network to pick out spacial

features and patterns, which in practice improves the accuracy of these networks [31].

We provide the definitions of images, kernels, and convolutions below, which can

be found in Chapter 3 of [29] and Chapter 9 of [31].

Definition 24 An image x of size m × n × p is p matrices of size m × n, where

p ∈ N is the number of channels, where pixel at (i, j) in channel k refers to the

location (i, j, k) in the image x, and where x(i, j, k) is the pixel value at (i, j) in



2.2. NEURAL NETWORKS 34

channel k. That is

x =

x(0, 0, p) . . . x(0, n− 1, p)

x(1, 0, p) x(1, n− 1, p)

...
...

x(m− 1, 0, p− 1) x(m− 1, n− 1, p)




x(0, 0, 1) . . . x(0, n− 1, 1)

x(1, 0, 1) . . . x(1, n− 1, 1)

...
. . .

...

x(m− 1, 0, 1) . . . x(m− 1, n− 1, 1)




(2.40)

Note that we use the shorthand pixel (i, j, k) to refer to the pixel (i, j) in channel

k. Often pixels values are x(i, j, k) ∈ {0, . . . , 255}, where pixel value x(i, j, k) = 0

is the darkest pixel value, and x(i, j, k) = 255 is the brightest. Note henceforth, we

assume that x(i, j, k) ∈ R. A black and white image has only one channel, p = 1.

A coloured image usually has three channels, p = 3, which are red, blue, and green

(RBG) [29] [31].

Note that a kernel k of size r× t×w is defined similarly to images, however,

pixels of the kernel are called coefficients, and the coefficients value can be real

numbers [29]. Furthermore, we shall assume that w = p, that is the kernel has the

same number of channels as the image it is convolved with.

We next define the linear convolutional operation.

Definition 25 Let x be an input image that is of size m×n×p and let k be a kernel

of size r × t × p. A linear convolutional operation in a single channel k,

k ∗ x, on some pixel (i, j, k), where k ∈ {1, . . . , p}, is defined as

k ∗ x(i, j, k) :=
∑
u∈[r]

∑
v∈[t]

x(i− u, j − v, k)k(u, v, k), (2.41)



2.2. NEURAL NETWORKS 35

where [a] := {0, . . . , a− 1} for some a ∈ N. The linear convolutional operation

over all channels is defined as

k ∗ x(i, j) :=

p∑
k=1

k ∗ x(i, j, k). (2.42)

Note that k ∗x(i, j) ∈ R. For the sake of brevity, linear convolutional operations will

be referred to as convolutions. Henceforth, we will also be using square images of size

n× n× p, and square kernels of size r × r × p.

To apply convolutions on the pixels near the edge of the input image, the image

is padded with zeros (also called zero-padding). If the image is not zero-padded,

then the network shrinks quickly or we have to use small kernels, which limits the

network’s expressive power [31]. However, zero-padding lowers the values of pixels on

the edge, which in practical terms makes the border pixels darker than they are [29].

One way to combat this is to use cyclic convolutional operation, which is defined as

k ∗ x(i, j) :=

p∑
k=1

∑
u∈[r]

∑
v∈[r]

x(i− u (mod r), j − v (mod r), k)k(u, v, k).

This is equivalent to padding the image with pixels from the opposite edge of the

image [40] [29]. Another padding technique is to interpolate the pixel values beyond

the image size [29]. Let t ∈ Z≥0 be the number of pixels padding the image in each

direction of the image. We then write the convolution between kernel k and image

x with padding t ∈ Z≥0 as k ∗t x(i, j). For example, if t = 1, the kernel is size

3× 3× 1, and the image is size 5× 5× 1, then the image is padded with one pixel in

each direction to ensure that convoluting on the edge pixels, such as pixel (0, 0, 1), is

possible, as shown in Figure 2.3 below.



2.2. NEURAL NETWORKS 36

Figure 2.3: Padding a 5× 5× 1 image with t = 1. The white pixels are the padding
added to the image. The image is represented by the blue pixels.

Convolutions can be applied to certain pixels rather than every pixel in the image.

This is called downsampling [31], which is a common practice to reduce computing

time. If downsampling is periodic, it is called strides. We provide the definition of a

convoluted image and the equations of strides below.

Definition 26 The convoluted image y resulting from convoluting an input image

x of size n × n × p with kernel k of size r × r × p, padding t, and stride s ∈ N is

defined as

y = [k ∗t x(i, j)]i×s,j×s . (2.43)

We rewrite the right-hand expression in (2.43) as

k ∗s,t x := [k ∗t x(i, j)]i×s,j×s . (2.44)

For an n×n× p input image x, kernel k of size r× r× p, convoluted with x with

stride s ∈ N, and padding of size t ∈ N, the output image y is size m ×m × 1 [25],



2.2. NEURAL NETWORKS 37

where

m =

⌊
n+ 2t− r

s

⌋
+ 1. (2.45)

Note that if the input image x is convoluted with k kernels (k1, . . . ,kk), then the

convoluted image y is size m ×m × k. By abuse of notation, we write y = k ∗s,t x,

where k = (k1, . . . ,kk) is the tuple of kernels. The value of the padding t, strides s,

and kernels’ dimensions r can increase the size of the output image, as shown below.

Example 6 Assume that an input of a convolutional layer is an image of size 5×5×1.

Let us assume that the padding is t = 2, there are 3 kernels of size 3× 3× 1, and the

stride is s = 1. Then according to (2.45), we have

m =

⌊
n+ 2t− r

s

⌋
+ 1

= 5 + 2 · 2− 3 + 1

= 7.

Hence, the resultant image is 7× 7× 3; see Figure 2.4.

We next define a convolutional neural network with k layers. Let X ⊂ Rn×Rn×Rp

be the input space of images of size n×n×p. Let lj be the number of kernels in layer

j, sj be the stride in layer j, and tj be the padding in layer j, where j ∈ {2, . . . , k}.



2.2. NEURAL NETWORKS 38

Figure 2.4: A visual representation of Example 6. The dark blue pixels are the pixels
of the input image. The light blue and dark blue pixels are the pixels that the kernels
are convoluted with.

We recursively define the activated image in layer j ∈ {1, . . . , k} as

a(j) :=


x, if j = 1

σ(j)(k(j) ∗sj ,tj a(j−1) + b(j)), if j ∈ {2, . . . , k},
(2.46)

where x ∈ X is the input image, and k(j) = (k
(j)
1 , . . . ,k

(j)
lj

) is the tuple of kernels

of size rj × rj × lj−1 in layer j, where l1 = p. The bias, b(j), in layer j is of size

mj×mj× lj, where mj is predicted by (2.45). After convoluting with k(j) and adding

the bias to each pixel, σ(j) applies an identical activation function on each pixel.

Note that convolutional neural networks have an extra stage called the pooling

stage, which summarises the statistics of the outputs in some neighbourhood of pixels

(such as max pooling) [31]. Since this thesis focuses on deep convolutional GANs,

pooling will not be used [67].

Definition 27 Let X ⊂ Rn × Rn × Rp be the space of n × n × p images and Y ⊂

Rmk × Rmk × Rlk be the output space. A convolutional neural network with k



2.2. NEURAL NETWORKS 39

layers is a function fθ : X→ Y of the form

fθ(x) = σ(k)(k(k) ∗sk,tk σ(k−1) . . .σ(2)(k(2) ∗s2,t2 x + b(2)) + b(k)), (2.47)

where x ∈ X is the input image, kj = (k
(j)
1 , . . . ,k

(j)
lj

) is the tuple of kernels in layer

j, b(j) is the bias in layer j, θ = (k(2), . . . ,k(k),b(2), . . . ,b(k)) is tuple of kernels and

biases, called the parameters of the convolutional neural network, and σ(j) is

the activation function that is applied to every pixel in the resulting convolved image.

Note that convolutions are equivalent to multiplying the input by a Toeplitz or cyclic

matrix [40] [31]. Since convolutions can be rewritten as multiplying the input with

a Toeplitz or cyclic matrix, the backpropagation equations of convolutional neural

networks are identical to neural networks. Convolutional neural networks are superior

to regular neural networks because of parameter sharing [31]. This reduces memory

overhead and improves the efficiency of training. Moreover, it allows the neural

network to learn the spacial dependencies between pixels of images.



40

Chapter 3

Generative adversarial networks

Generative adversarial networks (GANs) were introduced in [32]. GANs use two

neural networks, one discriminator and one generator neural network in a min-max

zero-sum game. The generator neural network creates fake data (also sometimes

referred to as generated data) while the discriminator distinguishes fake from real

data. The aim of the generator is to mimic the real data as close as possible and to

fool the discriminator. Hence implicitly, the generator neural network tries to learn

the underlying distribution of the real data.

We provide the definitions of generator and discriminator neural networks below.

We will be working in the context of image generation. Let X ⊂ Rn × Rn × R3 be

the set of n× n× 3 coloured images, where (X,B(X), µ) is a measure space over the

space of images, B(X) is the Borel σ-algebra, and µ is the Lebesgue measure. Let

A ⊂ X be the set of images that we want to mimic. This can be the set of landscapes

images, handwritten numbers images, or images of celebrity faces. The elements of

A are referred to as real images.

Definition 28 Let (Z,B(Z), µ) be a measure space, where Z ⊂ R3n2
. A generator



41

neural network is a neural network

gθ(Z,B(Z), µ)→ (X,B(X), µ),

whose task is to generate images x ∈ X such that the discriminator (defined below)

declares that x ∈ A, where A is the set of real images and θ is the parameters of the

generator neural network.

Note that the images that the generator creates are called fake images. Fake images

are also sometimes referred to as generated images.

Definition 29 A discriminator neural network is a neural network

Dθ̃ : (X,M, µ)→ ([0, 1],B([0, 1]), µ),

whose task is to classify real and fake images, where θ̃ is the parameters of the dis-

criminator neural network.

We will write the shorthand g := gθ and D := Dθ̃.

We next provide details of the GANs loss functions. Let pX : X → [0, 1] be

the probability density function of real images. Let pZ : Z → [0, 1] be the density

function from which the generative neural network draws samples. This is usually a

multivariate Gaussian random variable. Let pg : X→ [0, 1] be the probability density

function of images that the generator neural network produces.

Definition 30 The GANs loss function is defined as

V (g,D) = −H(pX;D)−H(pZ; 1−D ◦ g), (3.1)



42

where D ◦ g denotes the functional composition.

The discriminator and generator neural networks play a min-max game

min
g

max
D

V (g,D) = min
g

max
D

(
E

A∼pX
[log(D(A))] + E

B∼pZ
[log(1−D(g(B)))]

)
. (3.2)

Intuitively, the discriminator tries to label real images as 1 and fake images as 0,

whereas the generator tries to induce the discriminator to label fake images as 1.

We next provide a proof of the solution to the min-max loss function (3.2). Note

this result is derived in [32], but we provide a detailed proof here.

Proposition 7 Consider the optimization problem (3.2). Then

D∗(x) =
pX(x)

pX(x) + pg(x)
(a.e.), (3.3)

where D∗ := argmaxDV (g,D). Furthermore, if D = D∗, then

V (D∗, g) = 2JSD(pX‖pg)− 2 log(2)

≥ −2 log(2),

with equality if and only if pg = pX (a.e.).

Proof We have that

V (g,D) = E
A∼pX

[log(D(A))] + E
B∼pZ

[log(1−D(g(B)))]

=

∫
X
pX log[D]dµ+

∫
Z
pZ log[1−D(g)]dµ



43

Note, we have

∫
pZ(c) log[1−D(g(c))]dc =

∫
pg(x) log[1−D(x)]dx

⇒ V (g,D) =

∫
X
pX log[D] + pg log[1−D]dµ.

As a result,

d

dD
V (D, g) = lim

ε↓0

∫
X
pX

(
log
(
D+ε
D

)
ε

)
+ pg

(
log
(
1−D+ε
1−D

)
ε

)
dµ

= lim
ε↓0

∫
X
pX

(
log
(
1 + ε

D

)(
1 + ε

D

)
− 1

)((
1 + ε

D

)
− 1

ε

)

+pg

(
log
(
1 + ε

1−D

)(
1 + ε

1−D

)
− 1

)((
1 + ε

1−D

)
− 1

ε

)
dµ

= lim
ε↓0

∫
X

pX
D

log
(
1 + ε

D

)(
1 + ε

D

)
− 1

+
pg

1−D
log
(
1 + ε

1−D

)(
1 + ε

1−D

)
− 1

dµ. (3.4)

Next we show (3.4) can be upper and lower bounded by
∫
X
pX
D

+ pg
1−Ddµ. Indeed, we

have that

lim
ε↓0

∫
X

pX
D

log
(
1 + ε

D

)(
1 + ε

D

)
− 1

+
pg

1−D
log
(
1 + ε

1−D

)(
1 + ε

1−D

)
− 1

dµ ≤
∫
X

pX
D

+
pg

1−D
dµ,

as log(y) ≤ y − 1 for all y > 0.

Also,

lim
ε↓0

∫
X

pX
D

log
(
1 + ε

D

)(
1 + ε

D

)
− 1

+
pg

1−D
log
(
1 + ε

1−D

)(
1 + ε

1−D

)
− 1

dµ

≥ lim
ε↓0

∫
X

pX
D

(
D

ε

)(
1− D

D + ε

)
+

pg
1−D

(
1−D
ε

)(
1− 1−D

1−D + ε

)
dµ(3.5)



44

= lim
ε↓0

∫
X
pX

(
1

D + ε

)
+ pg

(
1

1−D + ε

)
dµ (3.6)

=

∫
X

pX
D

+
pg

1−D
dµ,

where (3.5) is because log(y) ≥ 1 − 1
y

for all y > 0. We can exchange the limit with

the integral in (3.6) because of the monotone convergence theorem. This is because

1
D+ε

and 1
1−D+ε

are monotonically increasing as ε ↓ 0 and are bounded below by 0.

Hence,

d

dD
V (D, g) =

∫
X

pX
D

+
pg

1−D
dµ (3.7)

If pX
D∗

+ pg
1−D∗ = 0 (a.e.), then d

dD
V (D, g)|D=D∗ = 0. Solving for D∗, we get D∗ = pX

pX+pg

(a.e.). Furthermore D∗ is the maximum as

d

dD

∫
X

pX
D

+
pg

1−D
dµ = lim

ε→0

∫
X

1

ε

(
pX

D + ε
− pX
D

+
pg

1−D + ε
− pg

1−D

)
dµ

= lim
ε→0

∫
X
pX

−1

(D + ε)(D)
+ pg

−1

(1−D + ε)(1−D)
dµ(3.8)

=

∫
X
−pX
D2
− pg

(1−D)2
dµ

< 0.

Using the same argument as for (3.6) and the monotone convergence theorem, we can

exchange the limit with the integral in (3.8).

Next, note that ming maxD V (g,D) = ming V (g,D∗).

V (g,D∗) = E
A∼pX

[log(D∗(A))] + E
B∼pZ

[log(1−D∗(g(B)))]

= E
A∼pX

[log(D∗(A))] + E
C∼pg

[log(1−D∗(C))]



3.1. GRADIENT PENALTIES 45

= E
A∼pX

[
log

(
pX(A)

pX(A) + pg(A)

)]
+ E

C∼pg

[
log

(
1− pX(C)

pX(C) + pg(C)

)]
=

∫
X

(
pX log

(
pX

pX + pg

))
dµ+

∫
X

(
pg log

(
1− pX

pX + pg

))
dµ

= − log(4) +

∫
X

(
pX log

(
2 ∗ pX
pX + pg

))
+

(
pg log

(
2 ∗ pg
pX + pg

))
dµ

= − log(4) + 2(JSD(pX||pg)),

where JSD(pX||pg) is the Jensen-Shannon Divergence, which is minimized when pg =

pX (a.e.). �

GANs are notoriously hard to train; e.g., see [34] [83] [84] [18] [8]. They suffer

from a myriad of problems such as mode collapse, which is the generator producing

only one image and hence the discriminator is perfectly able to tell apart real from

fake images [8] [9]. Several modifications have been made to GANs to improve their

training stability and the quality of their generated images. For example, DCGANs

use convolutional neural networks for the generator and discriminator to improve the

quality of generated images [67], or LSGANs try to improve training stability [55].

StyleGANs alter the generator’s network architecture to create highly realistic images

by mapping the input into an intermediate latent space from which different features

of the images can be controlled, such as eye colour or age for images of faces [41].

3.1 Gradient penalties

A commonly used method of improving the training stability of GANs is gradient

penalties [34] [71]. Inspired by Wasserstein GANs [9], researchers proposed altering

the Wasserstein GANs’ loss function to encourage the discriminator to be Lipschitz

[34]. Recall that the discriminator neural network D : X → [0, 1], where X ⊂ R, is



3.2. LEAST SQUARES GANS (LSGANS) 46

called Lipschitz if for all x1, x2 ∈ X, |D(x1) − D(x2)| ≤ c‖x1 − x2‖F , where c ≥ 0

and ‖a‖F =
√∑

i,j,k a(i, j, k)2 is the Frobenius norm of some image a ∈ X [31].

Experimentally, adding a gradient penalty to the discriminator’s loss function for

Wasserstein GANs confers faster convergence and better quality image generation [34].

The use of a gradient penalty was further extended to a larger class of GANs loss

functions and researchers proved that incorporating a gradient penalty is equivalent to

adding noise to the inputs of the discriminator during its training [71]. The gradient

penalty proposed by [71] was further simplified by [57].

Definition 31 [57] The simplified gradient penalty is defined as

γ̃ E
A∼pX

(∥∥∇xD(x)
∣∣
x=A

∥∥2
2

)
, (3.9)

where γ̃ > 0.

Note that in our simulations, we use γ̃ = 5 as recommended by [57]. Adding the sim-

plified gradient penalty to the discriminator penalizes the discriminator for creating

gradients for real data [57]. It improves the training of GANs; however it leads to a

considerable increase in training time [57]. Applying the logit functional [31], given

by logit(p) = log
(

p
1−p

)
for p ∈ (0, 1), to the discriminator’s output is preferred as its

gradients are easier to implement and are more robust [71].

3.2 Least squares GANs (LSGANs)

To improve the training issues of GANs and the generated image quality, a novel loss

function was proposed which simplifies down to the Pearson χ2 divergence rather than

the original Jensen-Shannon divergence [55], [56]. The work was motivated by the



3.2. LEAST SQUARES GANS (LSGANS) 47

fact that for the original GANs’ loss function, the gradient updates of the generator

vanish if the discriminator labels the generated images as real images, even if the

generated images do not mimic the real images well. As training continues and the

discriminator is perfectly able to tell apart fake images from real images, then the

generator cannot improve the quality of fake images as its gradients vanish. Hence the

discriminator wins the zero-sum game. Instead, by using least squares loss function,

the gradients of the generator do not vanish for samples that lie far from the true

distribution [55], [56]. As such, LSGANs tend to provide better training stability and

generated image quality than GANs. A rigorous proof of this fact is not provided in

the original LSGANs paper, however, experiments show that LSGANs have better

training stability than GANs [55], [56].

Definition 32 The LSGANs loss functions are defined as

VD(D, g) =
1

2
E

A∼pX
[(D(A)− β)2] +

1

2
E

B∼pZ
[(D(g(B))− α)2] (3.10)

Vg(D, g) = E
A∼pX

[(D(A)− γ)2] + E
B∼pZ

[(D(g(B))− γ)2], (3.11)

where D is the discriminator neural network, g is the generator neural network, α,

β, γ ∈ R are constants, VD(D, g) is the discriminator’s loss function, and Vg(D, g) is

the generator’s loss function.

The LSGANs optimization problems are

min
D

VD(D, g) = min
D

1

2
E

A∼pX
[(D(A)− β)2] +

1

2
E

B∼pZ
[(D(g(B))− α)2] (3.12)

min
g
Vg(D, g) = min

g
E

A∼pX
[(D(A)− γ)2] + E

B∼pZ
[(D(g(B))− γ)2]. (3.13)



3.2. LEAST SQUARES GANS (LSGANS) 48

We provide solutions to the LSGANs optimization problems. Note that this result

is presented in [55] and [56].

Theorem 8 Let (X,B(X), µ) be the measure space of n×n×3 images and (Z,B(Z), µ)

the measure space where Z ⊂ R3n2
. Consider the optimization problem (3.12) for

training the discriminator neural network D : X→ [0, 1] and (3.13) for the generator

neural network. Then

D∗ :=
αpg + βpX
pg + pX

(a.e.), (3.14)

where D∗ = argminD VD(D, g). If D = D∗ and α− β = 2(γ − β), then

Vg(D
∗, g) = (γ − β)2χ2(pX + pg‖2pg)

≥ 0

with equality if and only if pg = pX (a.e.) or γ = β.

Proof Note that

d

dD
VD(D, g) =

d

dD

1

2

∫
X
pX(D − β)2dµ+

1

2

∫
Z
pZ(D(g)− α)2dµ.

We have that
∫
Z pZ(D(g)− α)2dµ =

∫
X pg(D − α)2dµ. Hence,

d

dD
VD(D, g) =

d

dD

1

2

∫
X
pX(D − β)2dµ+

∫
X
pg(D − α)2dµ

=
d

dD

1

2

∫
X
pX(D − β)2 + pg(D − α)2dµ

= lim
ε→0

1

2

∫
X

pX(D + ε− β)2 − pX(D − β)2

ε



3.2. LEAST SQUARES GANS (LSGANS) 49

+
pg(D + ε− α)2 − pg(D − α)2

ε
dµ

= lim
ε→0

1

2

∫
X
pX

2Dε+ ε2 − 2βε

ε
+ pg

2Dε+ ε2 − 2αε

ε
dµ

= lim
ε→0

(∫
X
pX(D − β) + pg(D − α)dµ+

ε

2

∫
X
pX + pgdµ

)
=

∫
X
pX(D − β) + pg(D − α)dµ.

Note that if pX(D∗−β) + pg(D
∗−α) = 0 (a.e.), then d

dD
VD(D∗, g) = 0, for some D∗.

Solving pX(D∗ − β) + pg(D
∗ − α) = 0 for D∗, we get

D∗ =
αpg + βpX
pg + pX

(a.e.).

Furthermore, D∗ minimizes VD(D, g), as

d2

dD2
VD(D∗, g) =

d

dD

∫
X
pX(D − β) + pg(D − α)dµ

= lim
ε→0

∫
X
pX

(D + ε− β)− (D − β)

ε
+ pg

(D + ε− α)− (D − α)

ε
dµ

=

∫
X
pX + pgdµ

> 0.

Now consider Vg(D
∗, g):

Vg(D
∗, g) = E

A∼pX
[(D∗(A)− γ)2] + E

B∼pZ
[(D∗(g(B))− γ)2]

=

∫
X
pX(D∗ − γ)2dµ+

∫
X
pZ(D∗(g)− γ)2dµ



3.3. INFOGANS 50

Note that
∫
X pg(D

∗ − γ)2dµ =
∫
X pZ(D∗(g)− γ)2dµ. Hence

Vg(D
∗, g) =

∫
X
pX(D∗ − γ)2dµ+

∫
X
pg(D

∗ − γ)2dµ

=

∫
X
pX

(
αpg + βpX
pg + pX

− γ
)2

+

∫
X
pg

(
αpg + βpX
pg + pX

− γ
)2

dµ

=

∫
X

((α− γ)pg + (β − γ)pX)2

pX + pg
dµ

=

∫
X

((β − γ)(pX + pg) + (α− β)pg)
2

pX + pg
dµ.

Since α− β = 2(γ − β), then

Vg(D
∗, g) = (γ − β)2

∫
X

(2pg − (pX + pg))
2

pX + pg
dµ

= (γ − β)2χ2(pX + pg‖2pg),

which is minimized when pX+pg = 2pg, equivalently pg = pX (a.e.), or when γ = β. �

3.3 InfoGANs

Researchers started to experiment using tools from information theory to try to con-

trol features of generated GAN images, the result of which was a 2016 paper in-

troducing InfoGANs [15]. The main idea of InfoGANs is to deconstruct the input

noise random variable of the generator into latent codes and Gaussian incompressible

noise. These latent codes represent the important features of the data distribution,

for example, for handwritten numbers from the MNIST dataset [47], these codes rep-

resent the thickness of the numbers, the angle at which they were written at, and the

generated number.



3.3. INFOGANS 51

Let pZ : R3n2−p → [0, 1] be a probability density function corresponding to a

multivariate Gaussian random variable Z. Let W ⊂ Rp be the space of latent codes.

It is also referred to as the latent space. Let W be a random variable of latent

codes, which is independent from Z, with probability density function pW. Let g :

R3n2 → X be the InfoGANs generator neural network. By an abuse of notation, we

let g = g(Z,W).

Definition 33 The InfoGANs loss function is defined as

V (g,D) := E
A∼pX

[log(D(A))] + E
B∼pZ,W

[log(1−D(g(B)))]− λI(pW; pg) (3.15)

where λ > 0, and I(pW; pg) is the Shannon mutual information as defined in Defini-

tion 12.

Similar to GANs, InfoGANs’ generator and discriminator play a min-max game

min
g

max
D

V (g,D)

= min
g

max
D

E
A∼pX

[log(D(A))] + E
B∼pZ,W

[log(1−D(g(B)))]− λI(pW; pg)(3.16)

Note that the mutual information does not depend on the discriminator. Thus we

have that D∗ = pX
pX+pg

(a.e.) and the InfoGANs optimization problem simplifies to

ming 2JSD(pX‖pg)−log(4)−λI(pW; pg). This optimization problem is maximizing the

mutual information, I(pW; pg). Hence InfoGANs try to ensure that the information

in their latent codes are not lost in the generation process.

Since, it is hard to determine pW|g, which arises from I(pW; pg), it is simpler to use

an auxiliary distribution, qW|g, which can be implemented using a neural network [15].



3.3. INFOGANS 52

That is the qW|g neural network is tasked to predict the latent code W based on the

generated image g(Z,W).

Definition 34 The revised InfoGANs loss function is defined as

V (g,D) := E
A∼pX

[log(D(A))] + E
B∼pZ,W

[log(1−D(g(B)))]− λLI(g, q) (3.17)

where λ > 0, LI(g, q) := E
B∼pW

(
E

A∼pg|W(·|B)
[log(qW|g(B|A))]

)
+ H(pW), and qW|g is

an auxiliary probability density function that approximates pW|g.

The optimization problem for InfoGANs thus becomes

min
q

min
g

max
D

V (g,D) = min
q

min
g

max
D

E
A∼pX

[log(D(A))]

+ E
B∼pZ,W

[log(1−D(g(B)))]− λLI(g, q) (3.18)

Note that LI(g, q) is a lower bound of the mutual information I(pW; pg).

Theorem 9 [15] For a generator neural network g(Z,W), where Z is a Gaussian

random variable and W is the latent codes random variable, where Z and W are

independent, we have that

LI(g, q) ≤ I(pW; pg). (3.19)

As qW|g converges to pW|g, the lower bound becomes tight [15]. Since LI(g, q) does

not depend on D, we have that D∗ = pX
pX+pg

(a.e.), and hence the revised InfoGANs

optimization problem becomes minq ming 2JSD(pX‖pg)− log(4)−λLI(g, q). Thus the

revised InfoGANs optimization problem tries to maximize LI(g, q), which is easier to

implement than the mutual information I(pW; pg).



3.4. FRÉCHET INCEPTION DISTANCE: MEASURING IMAGE
QUALITY 53

3.4 Fréchet inception distance: measuring image quality

Several metrics are used to measure generated image quality. These include likelihood

estimation, kernel density estimates (KDEs), the inception score [74], and the Fréchet

inception distance (FID) score [37]. Other metrics can be found in [86]. KDEs

(also known as Parzen window estimates) were commonly used to evaluate image

quality; however, it was discovered that they may favour generative models that

produce low quality images and low log-likelihood results and as such KDEs should

be avoided [78]. Moreover, high likelihood does not necessarily correspond to better

quality images [78]. Hence, these metrics are not an accurate measure of generated

images visual fidelity to the real images. Currently, in the GAN literature, the most

common metrics are the FID score and the inception score [86].

The inception score uses a pretrained neural network called the inception network

(Inception Network version 3) [77] that classifies images from the ImageNet dataset

[23] [73]. The inception score correlates well with human judgement. We provide the

definition of the inception score below.

Definition 35 [74] Let J : R299×R299×R3 → R1000 be the Inception Network that

classifies images of size 299× 299× 3 into 1000 different categories. For a GAN with

generator g with fake probability density function pg, the inception score is

IS(pg) := eEA∼pg [KL(pJ (y|A)‖pJ (y))], (3.20)

where pJ (y|a) is the probability that a given image a belongs to a category y ∈

{1, . . . , 1000} as predicted by the inception network J , and pJ (y) =
∫
X pgpJ (y|·)dµ.



3.4. FRÉCHET INCEPTION DISTANCE: MEASURING IMAGE
QUALITY 54

A large inception score means that pJ (y|a) has low entropy and the average cross-

entropy between pJ (y|a) and pJ (y) across all generated images a is high. In other

words, a large inception score implies more realistic generated images and a greater

variety of images. To accurately calculate the inception score, at least 50, 000 gener-

ated images are recommended [74].

The inception score does not compare pg with the true distribution pX. Hence it

could be the case that the true distribution pX has a lower inception score than the

generated images [10]. In other words, it is possible that the generator is producing a

large variety of images that look realistic to the inception network but the images of

pX are not of a large variety. For example, pX is the distribution of moving van images,

which is only one category of the Inception network. As such, a high inception score

is not desirable. Moreover, if we use a dataset that is not classified by the inception

network, such as the MNIST dataset, then the inception score does not provide a

proper measurement of the quality of images it produces [10].

Instead, it is common practice to use Fréchet inception distance (FID) score [37].

We provide the definition below.

Definition 36 [37] Let J : R299 × R299 × R3 → R1000 be the Inception Network

that classifies images of size 299× 299× 3 into 1000 different categories. For a GAN

with generator g with fake probability density function pg and true distribution pX,

the Fréchet inception distance score is

FID(pg, pX) := ‖µg − µX‖22 + Tr
(

Σg + ΣX − 2(ΣgΣX)
1
2

)
, (3.21)



3.4. FRÉCHET INCEPTION DISTANCE: MEASURING IMAGE
QUALITY 55

where µg = E
A∼pg

(J (A)) is the mean vector of length 1000, and

Σg =

[
E

A∼pg

([
pJ (k|A)− E

B∼pg
(pJ (k|B))

] [
pJ (l|A)− E

B∼pg
(pJ (l|B))

])]
k,l

is the covariance matrix of size 1000 × 1000, where pJ (y|a) is the probability that a

given image a belongs to a category y ∈ {1, . . . , 1000} as predicted by the network J .

Similarly, we define (µX,ΣX) for pX.

At least 10, 000 samples of real and fake images are needed to estimate (µg,Σg)

and (µX,ΣX) [37]. Similar to the inception score, the FID score categorizes real

and fake images into 1000 categorizes using the inception network. Note that the

distribution of the inception network’s output for real and fake images is assumed to

be a multivariate Gaussian distribution. The FID score is simply the Wasserstein-2

distance between two multivariate Gaussian distributions [37]. In comparison, the

KL-divergence between the two multivariate Gaussian distributions is given by [28]

KL(pX‖pg) =
1

2

(
log

(
det Σg

det ΣX

)
+ Tr(Σ−1g ΣX)

)
+

1

2

[
(µX − µg)TΣ−1g (µX − µg)− 1000

]
.

However, the KL-divergence is more difficult to calculate than the Wassertein-2 dis-

tance since it requires finding the inverse of the covariance matrix Σg.

The FID score is better than the inception score because it directly compares the

real and fake images. It is shown to be more consistent than the inception score

in detecting Gaussian blur, Gaussian noise, implanted black rectangles, and swirled

images [37]. Moreover, the FID score is shown to be sensitive to mode collapse [54].



56

Chapter 4

Least kth-order GANs (LkGANs)

4.1 Theoretical results

Motivated by generalizing LSGANs, we employ the Pearson-Vajda divergence of order

k, |χ|k, which generalizes the Pearson χ2 divergence. We provide the least kth-order

GANs (LkGANs) loss functions below.

Definition 37 The Least kth-order GANs loss functions, k ≥ 1, are defined

as

VD(D, g) =
1

2
E

A∼pX

[
(D(A)− β)2

]
+

1

2
E

B∼pZ

[
(D(g(B))− α)2

]
(4.1)

Vk,g(D, g) = E
A∼pX

(
|D(A)− γ|k

)
+ E

B∼pZ

(
|D(g(B))− γ|k

)
, (4.2)

where D is the discriminator neural network, g is the generator neural network, α, β,

γ ∈ [0, 1] are constants, VD(D, g) is the discriminator’s loss function, and Vk,g(D, g)

is the generator’s loss function.



4.1. THEORETICAL RESULTS 57

Note that when k = 2, we have that the LkGANs’ generator’s loss function is the

LSGANs generator’s loss function, i.e., V2,g(D, g) = Vg(D, g). The LkGANs opti-

mization problems are

min
D

VD(D, g) = min
D

1

2
E

A∼pX

[
(D(A)− β)2

]
+

1

2
E

B∼pZ

[
(D(g(B))− α)2

]
(4.3)

min
g
Vk,g(D, g) = min

g
E

A∼pX

(
|D(A)− γ|k

)
+ E

B∼pZ

(
|D(g(B))− γ|k

)
. (4.4)

We next provide solutions to the optimization problems above.

Theorem 10 Let k ≥ 1, (X,B(X), µ) be the measure space of n × n × 3 images,

and (Z,B(Z), µ) the measure space where Z ⊂ R3n2
. Consider the optimization

problem (4.3) for training the discriminator neural network D : X→ [0, 1] and (4.4)

for the generator neural network. Then

D∗ :=
αpg + βpX
pg + pX

(a.e.), (4.5)

where D∗ = argminD VD(D, g). If D = D∗ and α− β = 2(γ − β), then

Vk,g(D
∗, g) = |γ − β|k|χ|k(pX + pg‖2pg)

≥ 0,

with equality if and only if pg = pX (a.e.) or γ = β.

Proof The proof that the solution of (4.3) is D∗ = αpg+βpX
pg+pX

(a.e.) is analogous to

the one in Theorem 8. Note, we have that

E
B∼pZ

(
|D∗(g(B))− γ|k

)
= E

B∼pg

(
|D∗(B)− γ|k

)
.



4.1. THEORETICAL RESULTS 58

Hence,

Vk,g(D
∗, g) = E

A∼pX

(
|D∗(A)− γ|k

)
+ E

B∼pg

(
|D∗(B)− γ|k

)
= E

A∼pX

(∣∣∣∣αpg(A) + βpX(A)

pg(A) + pX(A)
− γ
∣∣∣∣k
)

+ E
B∼pg

(∣∣∣∣αpg(B) + βpX(B)

pg(B) + pX(B)
− γ
∣∣∣∣k
)

=

∫
X
pX

∣∣∣∣(α− γ)pg + (β − γ)pX
pg + pX

∣∣∣∣k dµ+

∫
X
pg

∣∣∣∣(α− γ)pg + (β − γ)pX
pg + pX

∣∣∣∣k dµ

=

∫
X

|(α− γ)pg + (β − γ)pX|k

(pg + pX)k−1
dµ

=

∫
X

|(α + β − β − γ)pg + (β − γ)pX|k

(pg + pX)k−1
dµ

=

∫
X

|(α− β)pg + (β − γ)(pX + pg)|k

(pg + pX)k−1
dµ.

Since α− β = 2(γ − β), we have that

Vk,g(D
∗, g) = |γ − β|k

∫
X

|2pg − (pX + pg)|k

(pg + pX)k−1
dµ

= |γ − β|k|χ|k(pX + pg‖2pg), (4.6)

which is minimized when pX+pg = 2pg, equivalently pX = pg (a.e.), or when γ = β. �

LkGANs confer an extra degree of freedom provide by virtue of the parameter

k ≥ 1. Moreover the underlying global equilibrium point of LkGANs is the same as

LSGANs, that is the minimum is theoretically achieved when the generator’s distri-

bution is the true distribution.



4.2. EXPERIMENTS 59

4.2 Experiments

4.2.1 Methods

For experiments, the 28×28×1 MNIST [47] and the 64×64×3 CelebA [53] datasets

were used to test the new LkGANs loss functions. For comparison, LSGANs were also

implemented. The architectures of the generator and discriminator neural networks

were kept constant while testing on each dataset; see Section A.1 in the Appendix

for details. The FID score was used to evaluate the quality of the generated images

and to compare the rate at which the new networks converged to their optimal FID

scores.

For the MNIST dataset, several versions of LkGANs were implemented with dif-

ferent α, β, and γ parameters. Version 1 has α = 0.6, β = 0.4, and γ = 0.5. Version 2

has α = 1, β = 0, and γ = 0.5. Version 3 has α = 0, β = 1, and γ = 1, which are the

same parameters used in [55]. We also tested α = 0, β = 1, and γ = 0.5, which are

the parameters used in [56], however, we observed that it performed similar to Ver-

sion 2. As such, we did not include the results in the thesis. We label such LkGANs

as LkGAN-v1-k, LkGAN-v2-k, and LkGAN-v3-k. See Algorithm 2 in Section A.2 for

more details. The range of tested k values were k ∈ {1, 1.2, 1.4, . . . , 3}.

A variant of LkGANs was also tested where the k parameter alters every epoch

between 1 and 3 with increments of 0.1. See Algorithm 3 in A.2 for more details.

Switching the k parameter every epoch changes the shape of the generator’s loss

function and does not affect the global minimum, which occurs when pg∗ = px for all

k ≥ 1. If there exists a generator such that pg 6= px for some k ≥ 1, the generator is

a local minimum of Vk,g(D, g), and it is not a local minimum for some k′ ≥ 1, then

altering k every epoch creates gradients at previous local minimums. We label this



4.2. EXPERIMENTS 60

LkGAN as LkGAN−[1, 3].

For the MNIST dataset, seeds 123, 5005, 1600, 199621, 60677, 20435, 15859,

33764, 79878, 36123 were used for trials 1 to 10, respectively. For the SGD algorithm,

the Adam optimizer with a learning rate of αAdam = 2× 10−4, β1 = 0.5, β2 = 0.999,

and ε = 1× 10−7 was used for the networks as recommended by [67]. The batch size

was chosen to be 100 for the 60, 000 MNIST images. The networks were trained on

the MNIST dataset for a total number of 100 epochs, or 6 million images.

For CelebA, seeds 1000, 2000, and 3000 were chosen for trials 1, 2, and 3 re-

spectively. The publicly available StyleGAN code from [41] was modified to test the

LkGANs loss functions. We refer to this as LkStyleGANs. LkStyleGANs were im-

plemented for k ∈ {1, 2, 3}. We refer to LkStyleGANs when k = 2 as LSStyleGANs.

Three variants of LkStyleGANs with differing α, β, and γ parameters were also

tested. Version 1 has α = 0.6, β = 0.4, and γ = 0.5. We denote this by LkStyleGAN-

v1. Version 2 has α = 1, β = 0, and γ = 0.5. We denote this by LkStyleGAN-v2.

Version 3 has α = 0, β = 1, and γ = 1, which are the parameters tested in [55]. We

denote this by LkStyleGAN-v3. LkStyleGANs with and without simplified gradient

penalties were also implemented. We denote LkStyleGANs with simplified gradient

penalties as LkStyleGAN-GP.

The original StyleGANs architectural defaults were left in place for the LkStyleGANs.

The batch size was chosen to be 128. Unlike the original StyleGANs, which changes

the resolution of its generated images during training, the resolution of the generated

images for LkStyleGANs was fixed at 64 × 64 × 3 throughout training. As recom-

mended by the original StyleGANs paper, the Adam optimizer with a learning rate of

αAdam = 0.001, β1 = 0.0, β2 = 0.99 and ε = 10−8 was used as the SGD algorithm [41].



4.2. EXPERIMENTS 61

The LkStyleGANs were trained for 25 million images or roughly 120 epochs.

One NVIDIA GP100 GPU and two Intel Xeon 2.6 GHz E7− 8867 v3 CPUs were

used for training LkGANs and LSGANs on the MNIST and the CelebA datasets.

Note we say that a network has training stability if it converges to meaningful

results (i.e., the networks do not suffer from mode collapse).

4.2.2 Results

MNIST

A total of ten trials were run while controlling the random seeds in each trial. For each

trial and each epoch, the FID scores were calculated. The Inception network was not

used to categorize the images and to calculate the FID scores because the Inception

network is not trained to recognize MNIST images. Instead the raw generated and

real images were used to calculate the FID scores with the assumption that the

distribution of raw generated images and the distribution of raw real images can be

approximated using a multivariate Gaussian distribution.

The lowest FID score over 100 epochs in a single trial is called the best FID score.

We present the best FID scores for all ten trials for Version 1 in Table A.3, Version 2

in Table A.4, and Version 3 in Table A.5 in the Appendix. We present the average and

variance of the best FID scores over the ten trials and the epochs when they occur in

Table 4.1. We highlight the best performing LkGAN based on the average best FID

scores it achieves during training for Versions 1, 2, and 3. Since LkGAN-v2 generated

meaningful results for certain trials, we also present the average and variance of the

best FID scores when this occurs in Table 4.2

We present the plots of the average FID score of the best performing LkGAN



4.2. EXPERIMENTS 62

versus epochs for each version in Figure 4.1 and its LSGAN counterpart. The average

was calculated over ten trials. We also present the plots of FID scores over epochs of

the best performing LkGAN for all versions for three select trials in Figure 4.2 and

its LSGAN counterpart. Figure 4.3 shows sample images for each trial generated by

the best performing LkGAN on average over all ten trials for all three versions and

its LSGAN counterpart.



4.2. EXPERIMENTS 63

Table 4.1: LkGANs experiments on the MNIST dataset: the average and variance of
the best FID scores and the average and variance of the epoch this occurs taken over
ten trials.

Average
best FID

score

Best FID
scores

variance
Average epoch Epoch variance

LkGAN-v1-1.0 3.17 1.91 ×10−2 21.50 13.65
LkGAN-v1-1.2 3.15 8.26× 10−3 26.40 90.04
LkGAN-v1-1.4 3.28 4.08 ×10−2 24.70 54.61
LkGAN-v1-1.6 3.13 2.03 ×10−2 28.40 52.64
LkGAN-v1-1.8 3.23 2.62 ×10−2 22.50 19.05
LkGAN-v1-2.2 3.51 2.91 ×10−2 27.90 138.69
LkGAN-v1-2.4 3.59 7.17 ×10−2 23.30 43.61
LkGAN-v1-2.6 3.76 7.57 ×10−2 28.50 118.05
LkGAN-v1-2.8 3.99 8.60 ×10−2 26.50 65.39
LkGAN-v1-3.0 4.13 4.15 ×10−2 23.40 54.24
LkGAN-v1-[1, 3] 3.47 5.75 ×10−2 22.70 16.61
LSGAN-v1 3.34 1.42 ×10−2 26.90 57.69

LkGAN-v2-1.0 30.77 771.14 56.80 1310.16
LkGAN-v2-1.2 36.38 743.57 73.40 1049.24
LkGAN-v2-1.4 58.6 1.78 ×10−2 73.4 1575.24
LkGAN-v2-1.6 41.99 647.38 67.80 1504.16
LkGAN-v2-1.8 58.65 3.98 ×10−25 99.00 0.00
LkGAN-v2-2.2 58.65 9.74 ×10−26 99.00 0.00
LkGAN-v2-2.4 58.62 5.74 ×10−3 91.00 560.20
LkGAN-v2-2.6 58.65 4.32 ×10−26 98.80 0.16
LkGAN-v2-2.8 58.65 1.20 ×10−26 98.40 0.44
LkGAN-v2-3.0 58.65 7.48× 10−27 97.90 1.49
LkGAN-v2-[1, 3] 36.49 736.76 72.2 1093.96
LSGAN-v2 58.65 5.20×10−17 91.40 519.84



4.2. EXPERIMENTS 64

Table 4.1: LkGANs experiments on the MNIST dataset: the average and variance of
the best FID scores and the average and variance of the epoch this occurs taken over
ten trials.

Average
best FID

score

Best FID
scores

variance
Average epoch Epoch variance

LkGAN-v3-1.0 58.65 3.09 ×10−22 99.0 0.0
LkGAN-v3-1.2 58.65 1.49 ×10−22 99.0 0.0
LkGAN-v3-1.4 58.65 7.92 ×10−23 99.0 0.0
LkGAN-v3-1.6 58.65 4.58 ×10−23 99.0 0.0
LkGAN-v3-1.8 58.65 2.63 ×10−23 99.0 0.0
LkGAN-v3-2.2 58.65 9.29 ×10−24 99.0 0.0
LkGAN-v3-2.4 58.65 6.02 ×10−24 99.0 0.0
LkGAN-v3-2.6 58.65 3.85 ×10−24 99.0 0.0
LkGAN-v3-2.8 58.65 2.76 ×10−24 99.0 0.0
LkGAN-v3-3.0 58.65 1.69× 10−24 99.0 0.0
LkGAN-v3-[1, 3] 58.65 1.69× 10−24 99.0 0.0
LSGAN-v3 58.65 1.61 ×10−23 99.0 0.0

Table 4.2: The average and variance best FID scores for LkGAN-v2 that generated
meaningful images and the average and variance of the epoch when this occurs.

Average
best FID

score

Best FID
scores

variance
Average epoch Epoch variance

LkGAN-v2-1.0 3.00 1.47 ×10−2 35.40 55.44
LkGAN-v2-1.2 2.99 8.60 ×10−3 35.00 165.50
LkGAN-v2-1.6 3.13 5.18× 10−3 27.00 2.67
LkGAN-v2-[1, 3] 3.24 4.80 ×10−2 32.00 41.50



4.2. EXPERIMENTS 65

(a) Average FID scores versus epochs for
LkGAN-v1-1.6 and LSGAN-v1.

(b) Average FID scores versus epochs for
LkGAN-v2-1.0 and LSGAN-v2.

(c) Average FID scores versus epochs for
LkGAN-v3-1.0 and LSGAN-v3.

Figure 4.1: Evolution of the average FID scores throughout training for LKGANs.



4.2. EXPERIMENTS 66

(a) LSGAN-v1. (b) LkGAN-v1-1.6.

(c) LSGAN-v2. (d) LkGAN-v2-1.0.

(e) LSGAN-v3. (f) LkGAN-v3-1.0.

Figure 4.2: Plots of the FID scores versus epochs for the best performing LkGAN for
each version and its LSGAN counterpart for a selection of three trials.



4.2. EXPERIMENTS 67

(a) LSGAN-v1 sample images. (b) LkGAN-v1-1.6 sample images.

(c) LSGAN-v2 sample images. (d) LkGAN-v2-1.0 sample images.

(e) LSGAN-v3 sample images. (f) LkGAN-v3-1.0 sample images.

Figure 4.3: Sample generated images of the best performing LkGAN for each version
and its LSGAN counterpart.



4.2. EXPERIMENTS 68

CelebA

Due to a significant increase in the computing time for LkStyleGANs, only a limited

number of trials were tested. LkStyleGANs with and without the simplified gradient

penalty were tested over three trials while controlling the seed in each trial. The

addition of the simplified gradient penalty significantly increased training time. Hence

only Version 2 of LkStyleGAN-GP was tested for k = {1, 2, 3}. The FID scores were

calculated every 80, 000 images. The lowest FID score over the 25 million images is

referred to as the ”best FID scores” and is presented for each trial in Table 4.3. The

average and variance of best FID scores taken over the three trails are presented in

Table 4.4.

We present the plots of the average FID scores taken over the three trials versus

epochs in Figure 4.4. We also present the plots of the best performing LkStyleGAN

for all three versions with and without gradient penalty for all three trials in Figure

4.5. We present sample generated images of the best performing LkStyleGANs and

LSStyleGANs for each trial in Figures 4.6, 4.7, and 4.8.



4.2. EXPERIMENTS 69

Table 4.3: LkStyleGANs experiments on the CelebA dataset: the best FID score over
each run seen over three trials.

Trial 1 Trial 2 Trial 3

LkStyleGAN-v1-1.0 26.56 24.89 29.38
LkStyleGAN-v1-3.0 188.11 260.69 224.68
LSStyleGAN-v1 109.35 121.69 92.91

LkStyleGAN-v2-1.0 40.57 96.56 39.02
LkStyleGAN-v2-3.0 266.61 230.39 219.48
LSStyleGAN-v2 128.96 136.18 88.26

LkStyleGAN-v3-1.0 17.11 12.32 27.07
LkStyleGAN-v3-3.0 82.43 34.73 71.25
LSStyleGAN-v3 11.10 17.48 32.80

LkStyleGAN-v2-1.0-GP 4.33 4.21 4.39
LkStyleGAN-v2-3.0-GP 4.76 4.69 4.33
LSStyleGAN-v2-GP 4.07 4.52 4.66



4.2. EXPERIMENTS 70

Table 4.4: LkStyleGANs experiments on the CelebA dataset: the average and vari-
ance of the best FID score and the average and variance epoch this occurs taken over
three trials.

Average
best FID

score

Best FID
score variance

Average
epoch

Epoch
variance

LkStyleGAN-v1-1.0 26.94 3.43 20.10 0.00
LkStyleGAN-v1-3.0 224.49 877.99 26.79 154.36
LSStyleGAN-v1 107.98 138.98 14.73 14.36

LkStyleGAN-v2-1.0 58.72 716.46 10.71 3.59
LkStyleGAN-v2-3.0 238.83 405.79 56.27 904.61
LSStyleGAN-v2 117.80 444.99 14.73 154.36

LkStyleGAN-v3-1.0 18.83 37.75 56.26 2358.60
LkStyleGAN-v3-3.0 62.80 415.01 28.13 172.32
LSStyleGAN-v3 20.46 82.89 79.04 25.12

LkStyleGAN-v2-
1.0-GP

4.31 5.60× 10−3 124.73 3.64× 10−2

LkStyleGAN-v2-3.0-
GP

4.59 3.54 ×10−2 123.26 3.59

LSStyleGAN-v2-GP 4.42 6.34 ×10−2 124.87 3.64× 10−2



4.2. EXPERIMENTS 71

(a) Average FID scores versus epochs for
LkStyleGAN-v1.

(b) Average FID scores versus epochs for
LkStyleGAN-v2.

(c) Average FID scores versus epochs for
LkStyleGAN-v3.

(d) Average FID scores versus epochs for
LkStyleGAN-v2-GP.

Figure 4.4: Evolution of the average FID scores throughout training for LkStyleGANs.



4.2. EXPERIMENTS 72

(a) LSStyleGAN-v1. (b) LkStyleGAN-v1-1.0.

(c) LSStyleGAN-v2. (d) LkStyleGAN-v2-1.0.

Figure 4.5: Plots of the FID scores versus epochs for the best performing
LkStyleGANs for each version and their LSStyleGANs counterparts for trials 1, 2,
and 3.



4.2. EXPERIMENTS 73

(e) LSStyleGAN-v3. (f) LkStyleGAN-v3-1.0.

(g) LSStyleGAN-v2-GP. (h) LkStyleGAN-v2-1.0-GP.

Figure 4.5: Plots of the FID scores versus epochs for the best performing
LkStyleGANs for each version and their LSStyleGANs counterparts for trials 1, 2,
and 3.



4.2. EXPERIMENTS 74

(a) LSStyleGAN-v1: FID score 109.35. (b) LkStyleGAN-v1-1.0: FID score 26.56.

(c) LSStyleGAN-v2: FID score 128.96. (d) LkStyleGAN-v2-1.0: FID score 40.57.



4.2. EXPERIMENTS 75

(e) LSStyleGAN-v3: FID score 11.10. (f) LkStyleGAN-v3-1.0: FID score 17.11.

(g) LSStyleGAN-v2-GP: FID score 4.07. (h) LkStyleGAN-v2-1.0-GP:
FID score 4.33.

Figure 4.6: Sample generated images of the best performing LkStyleGANs for each
version and their LSStyleGANs counterparts for trial 1.



4.2. EXPERIMENTS 76

(a) LSStyleGAN-v1: FID score 121.69. (b) LkStyleGAN-v1-1.0: FID score 24.89.

(c) LSStyleGAN-v2: FID score 136.18. (d) LkStyleGAN-v2-1.0: FID score 96.56.



4.2. EXPERIMENTS 77

(e) LSStyleGAN-v3: FID score 17.48. (f) LkStyleGAN-v3-1.0: FID score 12.32.

(g) LSStyleGAN-v2-GP: FID score 4.52. (h) LkStyleGAN-v2-1.0-GP:
FID score 4.21.

Figure 4.7: Sample generated images of the best performing LkStyleGANs for each
version and their LSStyleGANs counterparts for trial 2.



4.2. EXPERIMENTS 78

(a) LSStyleGAN-v1: FID score 92.91. (b) LkStyleGAN-v1-1.0: FID score 29.38.

(c) LSStyleGAN-v2: FID score 88.26. (d) LkStyleGAN-v2-1.0: FID score 39.02.



4.2. EXPERIMENTS 79

(e) LSStyleGAN-v3: FID score 32.80. (f) LkStyleGAN-v3-1.0: FID score 27.07.

(g) LSStyleGAN-v2-GP: FID score 4.66. (h) LkStyleGAN-v2-1.0-GP:
FID score 4.39.

Figure 4.8: Sample generated images of the best performing LkStyleGANs for each
version and their LSStyleGANs counterparts for trial 3.



4.2. EXPERIMENTS 80

4.2.3 Discussion

MNIST

When k < 2, LkGANs-v1 outperformed LSGANs-v1 in terms of the generated image

quality and the rate at which they converged to their best FID scores. On average,

most LkGANs-v1 converged to their best FID scores in fewer epochs than LSGAN-v1.

However, as training continued, both LSGAN-v1 and LkGAN-v1 FID scores worsened

over time when they did converge to meaningful results. This could be because the

LkGANs loss functions may produce gradients for generated images that are close to

real images for a poorly behaving discriminator, which incorrectly creates gradients

for fake images that are close to real images. We hypothesize that this problem can

be ameliorated by the use of the simplified gradient penalty, which penalizes the

discriminator if it creates non-zero gradient updates for real images. Increasing k > 2

has an adverse effect on the generated images’ quality. Changing k every epoch has

no appreciable effects on the generated image quality. For a single trial, LkGANs

took 11.16 minutes to train on one GPU.

For Version 2, LSGAN was unstable during training and suffered from mode col-

lapse in all ten trials. In contrast, LkGAN-v2-1.0 converged five out of ten trials,

LkGAN-v2-1.2 and LkGAN-v2-[1, 3] converged four out of ten trials, and LkGAN-v2-

1.6 converged three out of ten trials. Table 4.2 shows that LkGAN-v2-1.2 performed

the best when it did converge.

The choice of α, β, and γ parameters has a great effect on the quality of the

generated images and training stability. Comparing the average best FID scores

of LkGANs in Version 1 and Version 2 in Tables 4.1 and 4.2 reveals the fact that



4.2. EXPERIMENTS 81

Version 1 improved training stability at the expense of image quality. Indeed, LkGAN-

v1 exhibited training stability for all ten trials for each LkGAN tested. In contrast,

the best performing LkGAN-v2 was LkGAN-v2-1.0, which exhibited training stability

five out of the ten trials. We recall from Equation (4.6) that Vk,g(D
∗, g) = |γ −

β|k|χ|k(pX + pg‖2pg). We note that |γ − β|k scales the gradients of the generator’s

updates and hence we hypothesize that the closer this term is to 0, the less the effect

the generator’s loss function has on the updates of the generator’s parameters and

hence it dampens extreme fluctuations in the gradient updates.

However, when setting |γ − β|k = 0, which corresponds to Version 3, we observed

that LkGANs and LSGAN were not stable during training. This could be due to the

fact that the parameters, α, β, and γ, do not satisfy Theorem 10. Another reason is

if the discriminator converges to its global optimum, then the generator is unable to

improve the quality of its images when |γ − β|k = 0. Hence the discriminator is able

to perfectly tell apart real data from fake data. It could also imply that the network

architecture parameters, such as the discriminator’s learning rate, must be fine tuned

for LkGANs-v3 and LSGAN-v3 to converge to meaningful results.

Further mathematical analysis and experiments are needed. It would be useful

to experiment with different network architectures, different learning rates for the

generator’s and discriminator’s Adam optimizer, and a different optimizer, such as

RMSProp. Determining the best choice of parameters α, β, and γ, which allows

LkGANs to converge and outperform LSGANs for these different network architecture

parameters, is necessary. It also would be useful to analyze and implement LkGANs

where |γ − β|k changes during training.



4.2. EXPERIMENTS 82

CelebA

For the CelebA dataset, the choice of k = 1 produced the best performing LkStyleGAN.

In contrast, LSStyleGANs and LkStyleGANs-3.0 suffered from mode collapse in all

three trials for both Verions 1 and 2; see Figures 4.6a, 4.7a, 4.8a, 4.6c, 4.7c, and 4.8c

for the evidence of mode collapse for LSStyleGAN-v1 and LSStyleGAN-v2. For Ver-

sion 3, LSStyleGAN converged to meaningful results, however, as training continued,

it suffered from mode collapse.

Similarly, LkStyleGAN-v1-1.0 and LkStyleGAN-v3-1.0 converged to meaningful

results in most trials and suffered from mode collapse as training continued. The

exception to this is trial 2 of LkStyleGAN-v3-1.0, which exhibited training stability;

see Figure 4.5f. Note that, LkStyleGAN-v2-1.0 only converged in the two out of

three trials. It supports the fact that the choice of α, β, and γ parameters have a

great effect on the networks’ convergent behaviour. However, contrary to the MNIST

experiments, LkStyleGAN-v1-1.0 generated image quality was superior to that of the

generated images of convergent LkStyleGAN-v2-1.0.

Furthermore, LkStyleGAN-v3-1.0 and LSStyleGAN-v3 converged to meaningful

results and outperformed the other versions. This implies that the conditions provided

by Theorem 10 do not need to be satisfied for certain network architectures. It

supports the hypothesis that the best choice of the α, β, and γ parameters differs for

different network architecture parameters.

Without the simplified gradient penalty, these networks took 87.87 hours to train

for one trial on one GPU. The addition of the simplified gradient penalty increased

training time to 106.35 hours, an increase of 21%. However, the simplified gradient

penalty improved the quality of generated images throughout training, as seen in



4.2. EXPERIMENTS 83

Figures 4.5h and 4.5g. This confirms our hypothesis that the discriminator creates

gradients despite the fact that the generated images are close to real images. The

average FID scores increased as k increased, consistent with the previous experiments;

see Figure 4.4d.

In summary, the choice of the α, β, and γ parameters has a significant effect

on training stability and quality of generated images, and the best choice of these

parameters differs for different network architectures. However, when LkGANs, k = 1,

do converge, they consistently improved the quality of generated images in terms of

FID scores, converged to their optimal FID score quicker, and improved training

stability compared to their counterpart, LSGANs. Furthermore, they give rise to

interesting theoretical problems and experiments for future research.



84

Chapter 5

RényiGANs

5.1 Theoretical results

Motivated by generalizing the original GANs, we employ the (differential) Rényi cross-

entropy loss functional and Jensen-Rényi divergence of parameter α > 0, α 6= 1, which

generalizes the Shannon cross-entropy functional and Jensen-Shannon divergence. We

present the RényiGANs loss functions below.

Definition 38 The RényiGANs loss functions of parameter α, where α > 0,

α 6= 1, are defined as

VD(D, g) = −H(pX;D)−H(pZ; 1−D ◦ g) (5.1)

Vα,g(D, g) = −Hα(pX;D)−Hα(pZ; 1−D ◦ g), (5.2)

where ◦ denotes functional composition.

Note that for RényiGANs, VD(D, g) = V (D, g), where V (D, g) is the original GANs

loss function as defined in (3.1).



5.1. THEORETICAL RESULTS 85

The RényiGANs optimization problems are

max
D

VD(D, g) = max
D

(−H(pX;D)−H(pZ; 1−D ◦ g)) (5.3)

min
g
Vα,g(D, g) = min

g
(−Hα(pX;D)−Hα(pZ; 1−D ◦ g)) , (5.4)

The RényiGANs’ generator tries to induce the discriminator to classify the fake im-

ages as 1 by minimizing the negative sum of the two Rényi cross-entropy functionals

Hα(pX, D) and Hα(pZ, 1 − D ◦ g), hence generalizing the original GANs loss func-

tion by employing a richer α-parameterized class of information functionals. We next

present a result that shows that as α→ 1, we recover the original GANs loss function,

V (D, g). The proof is an immediate consequence of Theorem 2.

Theorem 11 If V (D, g) <∞, then

lim
α↓1

Vα,g(D, g) = V (D, g). (5.5)

Moreover, if E
A∼pX

(
1

D(A)

)
<∞ and E

B∼pZ

(
1

1−D(g(B))

)
<∞ then

lim
α↑1

Vα,g(D, g) = V (D, g). (5.6)

If the discriminator converges to the optimal discriminator, we show analytically

that for any α > 0, α 6= 1, the optimal generator induces a probability distribu-

tion that perfectly mimics the true dataset distribution, as in GANs. This result is

formalized as follows.

Theorem 12 Let α > 0, α 6= 1, (X,B(X), µ) be the measure space of n×n×3 images,

and (Z,B(Z), µ) the measure space where Z ⊂ R3n2
. Consider the optimization



5.1. THEORETICAL RESULTS 86

problem (5.3) for training the discriminator neural network D : X→ [0, 1] and (5.4)

for the generator neural network. Then

D∗ :=
pX

pg + pX
(a.e.), (5.7)

where D∗ = argmaxDVD(D, g). If D = D∗, then

Vα,g(D
∗, g) = 2JRα (pX‖pg)− 2 log(2)

≥ −2 log(2),

with equality if and only if pg = pX (a.e.).

Proof The proof that the solution to (5.3) is given by D∗ = pX/(pX+pg) is analogous

to the one in Theorem 7. We have that

E
B∼pZ

[
(1−D∗(g(B)))α−1

]
= E

B∼pg

[
(1−D∗(B)))α−1

]
.

Hence,

Vα,g(D
∗, g) =

1

α− 1
log

(
E

A∼pX

[
(D∗(A))α−1

])
+

1

α− 1
log

(
E

B∼pg

[
(1−D∗(B))α−1

])
=

1

α− 1
log

(
E

A∼pX

[(
2pX(A)

pX(A) + pg(A)

)α−1])

+
1

α− 1
log

(
E

B∼pg

[(
2pg(B)

pX(B) + pg(B)

)α−1])
− 2 log(2)

= 2

[
1

2
Dα

(
pX

∥∥∥∥pX + pg
2

)
+

1

2
Dα

(
pg

∥∥∥∥pX + pg
2

)]
− 2 log(2)

= 2JRα (pX‖pg)− 2 log(2),



5.2. EXPERIMENTS 87

which is minimized when pg = pX (a.e.). �

This theorem implies that the introduction of the new loss function does not alter

the underlying global equilibrium point of RényiGANs when compared to the classi-

cal GANs (which use a Shannon-centric loss function), namely that the minimum is

theoretically achieved when the generator’s distribution is the true dataset distribu-

tion. Using the above Rényi-centric loss function allows control of the shape of the

generator’s loss function via the α parameter.

5.2 Experiments

5.2.1 Methods

The 28× 28× 1 MNIST [47] and 64× 64× 1 CelebA [53] datasets were used to test

the RényiGANs loss functions. The FID scores were used to evaluate the quality of

the generated images and to compare the rate at which the new networks converge

to their optimal scores. The structure of the generator and discriminator neural

networks were kept constant when testing on each dataset; see A.1 for further details.

For comparison, the classical GANs loss functions were also tested on the MNIST

dataset.

We denote RényiGAN-α as RényiGANs that use a fixed value value of α dur-

ing training; see Algorithm 4. For the MNIST dataset, in addition to implementing

RényiGAN-α, RényiGANs were tested while altering α for every epoch of the simula-

tion. This changes the shape of the loss function of the generator. However, changing

α does not affect the global minimum as for all α > 0, the global minimum is realized

when pX = pg. Assuming that a generator pg 6= pX is realized such that it is not a



5.2. EXPERIMENTS 88

local minimum of Vα(D, g) for all α > 0, then changing α every epoch creates non-

zero gradients at previous local minimums, hence helping the algorithm overcome the

problem of getting stuck in local minimums. We denote this as RényiGAN-[β1, β2],

with the α value starting at α = β1 and ranging over the interval [β1, β2]; see Algo-

rithm 5.

One goal was to examine whether the new generalized loss functions have appre-

ciable benefits over the classical GANs loss function and whether it provides better

training stability. It is known that deep convolutional GANs (DCGANs) exhibit sta-

bility issues which motivate us to investigate modifications to the loss functions in-

volving the addition of the L1 norm. Specifically, those stability issues arise when the

GANs generator tries to minimize its cost function to −∞ by labelling D(g(z)) = 1

for all fake images g(z). In the early stages of the simulations, if the discriminator

does not successfully converge to its optimal value and the generator is able to induce

the discriminator to label poorly generated images as 1, then in later epochs, once

the discriminator converges to its optimal value and is able to tell apart real and fake

images perfectly, the generator’s loss function produces no gradients. In other words,

the optimal discriminator does not allow the generator to improve the quality of fake

images which leads to the discriminator winning problem. A similar argument was

noted in [9]. Thus to remedy the stability problem, a modified RényiGANs’ genera-

tor’s loss function was tested by taking the L1 norm of its deviation from −2 log(2),

its theoretically minimal value predicted by Theorem 12; this yields the following

minimization problem for the generator network:

min
g

∣∣∣Vα,g(D, g)− (−2 log 2)
∣∣∣ (5.8)



5.2. EXPERIMENTS 89

Using the L1 norm ensures that the generator’s loss function does not try to label

its images as 1, but rather tries to label them as 1/2. Hence in the early training

stages, if the generator converges to images that are labelled 1/2 by the discriminator,

then in the later stages, if the discriminator converges to its theoretical optimal value

(given in Theorem 12), the generator’s loss function has non-zero gradient updates

and is only able to label fake images as 1/2 when pg = pX. Note that the altered loss

function in (5.8) translates into composing the LkGAN error function using k = 1 and

γ = − log(2) (see Chapter 4) with the RényiGAN loss function. Indeed, the improved

stability property of LkGANs (particularly when k = 1) is the main motivation

for using this L1 normalization. We denote the resulting scheme under (5.8) by

RényiGAN-L1.

The RényiGANs and classical GANs loss functions were also tested with and

without the addition of simplified gradient penalties. We denote this as RényiGAN-

GP and DCGAN-GP.

In summary, four version evaluations were considered with six different loss func-

tions within each version. Version 1 has RényiGAN-0.5, RényiGAN-3.0, RényiGAN-

[0, 0.9], RényiGAN-[0, 3.0], RényiGAN-[1.1, 4], and DCGAN. Version 2 has the six

original loss functions with L1 normalization, Version 3 has gradient penalty, and

Version 4 has gradient penalty and L1 normalization incorporated in the loss func-

tions.

For the MNIST dataset, seeds 123, 5005, 1600, 199621, 60677, 20435, 15859,

33764, 79878, 36123 were used for trials 1 to 10, respectively. Tables A.1 and A.2 in

the Appendix detail the generator’s and discriminator’s architecture used for testing

the loss functions on MNIST. For the SGD algorithm, the Adam optimizer with a



5.2. EXPERIMENTS 90

learning rate of αAdam = 2 × 10−4, β1 = 0.5, β2 = 0.999, and ε = 1 × 10−7 was used

for the networks as recommended by [67]. The batch size was chosen to be 100 for

the 60, 000 MNIST images. The networks were trained on the MNIST dataset for a

total number of 250 epochs, or 15 million images.

For CelebA, seeds 1000, 2000, and 3000 were chosen for trials 1, 2, and 3 re-

spectively. For comparison, the original StyleGAN with the classical GANs loss

function was implemented. The publicly available StyleGAN code from [41] was

modified to test the RényiGANs loss functions. We refer to this as RényiStyleGANs.

RényiStyleGANs were implemented for α ∈ {3.0, 9.0}. RényiStyleGANs and Style-

GANs with and without the simplified gradient penalty was also tested. We denote

this as RényiStyleGAN-GP and StyleGAN-GP.

The original StyleGAN architectural defaults were left in place for RényiStyleGANs.

The batch size was chosen to be 128. Unlike the original StyleGAN, which changes the

resolution of its generated images during training, the resolution of the generated im-

ages for RényiStyleGANs and was fixed at 64×64×3 throughout training. Similarly,

the StyleGANs that were used to compare RényiStyleGANs have a fixed generated

images resolution of 64× 64× 3. As recommended by the original StyleGANs paper,

the Adam optimizer with a learning rate of αAdam = 0.001, β1 = 0.0, β2 = 0.99 and

ε = 10−8 was used as the SGD algorithm. The RényiStyleGANs were trained for 25

million images or roughly 120 epochs.

One NVIDIA GP100 GPU and two Intel Xeon 2.6 GHz E7− 8867 v3 CPUs were

used for training RényiGANs and DCGANs, and four NVIDIA V 100 GPUs were

used for training RényiStyleGANs and StyleGANs.



5.2. EXPERIMENTS 91

5.2.2 Results

MNIST

As in Chapter 4, a total of ten trials were run while controlling the random seed in

each trial. We did not use the Inception network to calculate the FID scores because

it is not trained on classifying handwritten MNIST images. Instead, the FID scores

were calculated using the raw real and fake images. The distribution of raw real and

fake images was assumed to be a multivariate Gaussian distribution.

The best FID score is the lowest FID score over 250 epochs. The average and

variance of all ten best FID scores, and the average and variance of the epoch when

the best FID score is achieved are presented the results in Table 5.1. The table of best

FID scores for all trials (Table A.6) is in the Appendix. A few variants of RényiGANs

converged to meaningful results. These networks’ results are presented in Table 5.2.

The plots of average FID score of the best performing RényiGAN versus epochs

for each version are presented in in Figure 5.1 and its DCGAN counterpart. The

average was calculated over ten trials. Also presented are the plots of FID scores

over epochs of each version’s DCGANs and the best performing RényiGAN for three

selected trials in Figure 5.2. We show sample images for each trial generated by the

best performing RényiGAN according to Table 5.1 in Figure 5.3. We also present the

generated images produced by DCGANs in Figure 5.3.



5.2. EXPERIMENTS 92

Table 5.1: RényiGANs experiments on the MNIST dataset: the average and variance
of the best FID scores and the average and variance of the epoch this occurs taken
over ten trials.

Average
best FID

score

Best FID
scores

variance

Average
epoch

Epoch
variance

RényiGAN-0.5 58.70 1.16 ×10−6 27.80 81.56
RényiGAN-3.0 52.99 292.71 32.70 92.21

RényiGAN-[0, 0.9] 58.60 8.21 ×10−3 25.80 149.56
RényiGAN-[0,3] 41.59 693.61 95.40 9096.64
RényiGAN-[1.1, 4] 58.83 8.18 ×10−3 41.00 48.67

DCGAN 59.061 2.01× 10−28 13.00 0.80

RényiGAN-0.5-L1 2.21 7.57 ×10−3 37.40 160.04
RényiGAN-3.0-L1 1.80 2.95 ×10−3 86.80 4611.16

RényiGAN-[0, 0.9]-L1 2.16 6.36 ×10−3 38.10 242.89
RényiGAN-[0,3]-L1 1.77 4.90 ×10−3 36.10 36.80
RényiGAN-[1.1, 4]-L1 1.81 3.18× 10−3 141.80 7326.96

DCGAN-L1 1.93 3.83 ×10−3 52.30 2605.61

RényiGAN-GP-0.5 1.37 4.36 ×10−3 215.40 606.64
RényiGAN-GP-3.0 1.36 2.51 ×10−3 209.10 751.09

RényiGAN-GP-[0, 0.9] 1.36 2.74 ×10−3 222.80 423.96
RényiGAN-GP-[0, 3] 1.41 3.09 ×10−3 201.90 1209.69

RényiGAN-GP-[1.1, 4] 1.36 4.35 ×10−3 201.70 1144.81
DCGAN-GP 1.36 1.45× 10−3 225.20 342.56

RényiGAN-GP-0.5-L1 1.18 2.95× 10−3 212.50 624.45
RényiGAN-GP-3.0-L1 1.17 3.62× 10−3 221.70 609.61
RényiGAN-GP-[0, 0.9]-L1 1.19 3.61 ×10−3 212.20 1425.36
RényiGAN-GP-[0, 3]-L1 1.22 6.33 ×10−3 224.10 1075.09

RényiGAN-GP-[1.1, 4]-L1 1.20 3.46 ×10−3 209.20 1326.36
DCGAN-GP-L1 1.18 1.58 ×10−3 200.50 1263.05



5.2. EXPERIMENTS 93

Table 5.2: The average and variance best FID scores for RényiGANs that generated
meaningful images and the average and variance of the epoch when this occurs.

Average
best FID

score

Best FID
scores

variance
Average epoch Epoch variance

RényiGAN-3.0 1.66 0.00 60.00 0.00
RényiGAN-[0,3] 1.36 3.81 ×10−3 240.00 6.00

(a) Average FID scores versus epochs for
RényiGAN-[0, 3] and DCGAN.

(b) Average FID scores versus epochs for
RényiGAN-[0, 3]-L1 and DCGAN-L1.

(c) Average FID scores versus epochs for
RényiGAN-GP-3.0 and DCGAN-GP.

(d) Average FID scores versus epochs for
RényiGAN-GP-3.0-L1 and DCGAN-GP-
L1.

Figure 5.1: Evolution of the average FID scores throughout training for RényiGANs.



5.2. EXPERIMENTS 94

(a) DCGAN. (b) RényiGAN-[0, 3].

(c) DCGAN-L1. (d) RényiGAN-[0, 3]-L1.



5.2. EXPERIMENTS 95

(e) DCGAN-GP. (f) RényiGAN-GP-3.0.

(g) DCGAN-GP-L1. (h) RényiGAN-GP-3.0-L1.

Figure 5.2: Plots of the FID scores versus epochs for the best performing RényiGAN
for each version and its DCGAN counterparts for a selection of three trials.



5.2. EXPERIMENTS 96

(a) DCGAN sample images. (b) RényiGAN-[0, 3] sample images.

(c) DCGAN-L1 sample images. (d) RényiGAN-[0, 3]-L1 sample images.



5.2. EXPERIMENTS 97

(e) DCGAN-GP sample images. (f) RényiGAN-GP-3.0 sample images.

(g) DCGAN-GP-L1 sample images. (h) RényiGAN-GP-3.0-L1 sample images.

Figure 5.3: Sample generated images of the best performing RényiGAN in terms of
FID scores for each version and its DCGAN counterpart.



5.2. EXPERIMENTS 98

CelebA

Only three trials were run for a few select α values for RényiStyleGANs due to

the significant increase in computing time. RényiStyleGANs with and without the

simplified gradient penalty were also tested over three trials while controlling the

seed in each trial. Only RényiStyleGAN-3.0-GP was tested because the addition of

the simplified gradient penalties increased computing time. The FID scores were

calculated every 80, 000 images. The best FID scores refers to the lowest FID score

during the networks’ training. The best FID scores for each trial are presented in

Table 5.3. The average and variance of best FID scores taken over the three trails

are presented in Table 5.4.

We present the plots of the average FID scores taken over the three trials versus

epochs in Figure 5.4. We also present the plots of the best performing RényiStyleGAN

with and without gradient penalty for all three trials in Figure 5.5. We present

sample generated images of the best performing RényiStyleGAN and StyleGAN in

Figures 5.6, 5.7, and 5.8.

Table 5.3: RényiStyleGANs experiments on the CelebA dataset: the best FID over
each run seen over three trials.

Trial 1 Trial 2 Trial 3

RényiStyleGAN-3.0 9.67 9.60 10.14
RényiStyleGAN-9.0 11.22 8.33 11.59
StyleGAN 16.20 9.70 17.90

RényiStyleGAN-3.0-GP 3.91 3.92 3.82
StyleGAN-GP 4.06 3.90 3.85



5.2. EXPERIMENTS 99

Table 5.4: RényiStyleGANs experiments on the CelebA dataset: the average and
variance of the best FID score and the average and variance this occurs taken over
three trials.

Average
best FID

score

Best FID
score variance

Average
epoch

Epoch
variance

RényiStyleGAN-3.0 9.80 5.93× 10−2 112.54 75.38
RényiStyleGAN-9.0 10.38 2.12 115.22 111.28
StyleGAN 14.60 12.48 93.78 477.53

RényiStyleGAN-
3.0-GP

3.88 1.84× 10−3 122.05 4.35

StyleGAN-GP 3.92 9.06 ×10−3 119.37 58.94

(a) Average FID scores versus epochs for
RényiStyleGANs and StyleGANs.

(b) Average FID scores versus epochs for
RényiStyleGAN-GPs and StyleGAN-GPs.

Figure 5.4: Evolution of average FID scores throughout training for RényiStyleGANs.



5.2. EXPERIMENTS 100

(a) StyleGAN. (b) RényiStyleGAN-3.0.

(c) StyleGAN-GP. (d) RényiStyleGAN-GP-3.0.

Figure 5.5: Plots of the FID scores versus epochs for the best performing
RényiStyleGANs for each version and their StyleGANs counterparts for trials 1, 2,
and 3.



5.2. EXPERIMENTS 101

(a) StyleGAN: FID score 16.20. (b) RényiStyleGAN-3.0: FID score 9.67.

(c) StyleGAN-GP: FID score 4.06. (d) RényiStyleGAN-3.0-GP:
FID score 3.91.

Figure 5.6: Sample generated images of the best performing RényiStyleGANs for each
version and their StyleGANs counterparts for trial 1.



5.2. EXPERIMENTS 102

(a) StyleGAN: FID score 9.70. (b) RényiStyleGAN-3.0: FID score 9.60.

(c) StyleGAN-GP: FID score 3.90. (d) RényiStyleGAN-3.0-GP:
FID score 3.92.

Figure 5.7: Sample generated images of the best performing RényiStyleGANs for each
version and their StyleGANs counterparts for trial 2.



5.2. EXPERIMENTS 103

(a) StyleGAN: FID score 17.90. (b) RényiStyleGAN-3.0: FID score 10.14.

(c) StyleGAN-GP: FID score 3.85. (d) RényiStyleGAN-3.0-GP:
FID score 3.82.

Figure 5.8: Sample generated images of the best performing RényiStyleGANs for each
version and their StyleGANs counterparts for trial 3.



5.2. EXPERIMENTS 104

5.2.3 Discussion

MNIST

The DCGAN baseline exhibits unstable training as was expected and the addition of

the Rényi loss is able to ameliorate convergence but has similar instabilities. More

specifically, RényiGAN-[0, 3] converged in three out of ten trials, achieving an average

best FID scores of 1.36, while DCGAN experienced mode collapse in all ten trials.

This FID score is comparable to that of applying simplified gradient penalty to the

network. Note that these networks took an average time of 42.33 minutes to train for

one trial.

Applying the L1 normalization drastically improved the convergence of all net-

works with no computational overhead. In fact, on average over 250 epochs and 10

trials, adding L1 normalization on average decreased the training time for one trial

to 41.79 minutes, which is a decrease of 1.27%. This is expected as the L1 normaliza-

tion is similar to the LkGANs generator loss function when k = 1 and γ = − log(2),

which, as we have shown through experiments, improves training stability. Using L1

normalization also has the added benefit of networks converging to an optimal FID

value in fewer epochs than any other convergent networks across all versions. We

note that RényiGAN-[0, 3]-L1 outperforms all other loss functions in Version 2 and it

is sufficient to train it within 50 epochs. The development of a rigorous mathematical

theory that describes this phenomenon is an interesting future direction to better

understand the dynamics of GANs.

In Version 3, RényiGAN-GP-[1.1, 4] performs among the best compared to other

RényiGAN-GP variants, with an identical performance to DCGAN-GP. Moreover, on

average it converges to its best FID score in fewer epochs than DCGAN-GP. Note,



5.2. EXPERIMENTS 105

however, that the use of gradient penalty increases the average computation time

to 47.54 minutes for a single trial, an increase of 12.30% compared to Version 1. The

best performing network in terms of FID score is RényiGAN-GP-3.0-L1, seen in the

Version 4 results of Table 5.1. Note that RényiGAN-GP-0.5-L1, RényiGAN-GP-3.0-

L1, RényiGAN-GP-[0, 0.9]-L1, and DCGAN-GP-L1 exhibit quite similar FID scores as

the difference of 0.02 FID score has no perceivable qualitative effect on the generated

images. However, on average, DCGAN-GP-L1 converges to its optimal FID score in

fewer epochs than its counterparts. On average, these networks with gradient penalty

and L1 normalization took 47.17 minutes to train for a single trial, which is a slight

decrease in computational time compared to applying simplified gradient penalties

only.

In summary, the extra degree of freedom provided by the α parameter yields a

variety of new loss functions and algorithmic designs that gives equivalent or bet-

ter FID scores in fewer epochs when using either L1 normalization or the simplified

gradient penalty. Note that a difference of 0.20 FID score has no noticeable quali-

tative difference in MNIST generated images. In the first version, DCGAN-L1 and

RényiGAN-[0, 3]-L1’s generated images are qualitatively similar. Correspondingly,

there is no discernible difference between Versions 2 and 3. The perceivable disparity

in quality is between the first and the second versions, which has a difference in FID

score of 0.41; see Figure 5.3. Moreover, the meaning of FID scores diminishes after

a certain threshold when the generated images are realistic. It is useful to conduct

experiments to determine these thresholds for commonly used datasets. Hence, the

greatest advantage of RényiGANs when applied to MNIST is its ability to converge

to realistic and diverse generated images quicker than DCGANs in most versions.



5.2. EXPERIMENTS 106

CelebA

For CelebA, we observed that RényiStyleGANs (with α > 1) outperform StyleGANs

in terms of FID scores, with setting α = 3.0 achieving the best average FID score.

However, further investigation on the best range of values of α for RényiStyleGANs

is necessary.

Comparing the performance of RényiStyleGAN in Figure 5.5b to StyleGAN in

Figure 5.5a reveals that RényiStyleGAN performs consistently and does not display

the erratic unstable behaviour of regular StyleGANs. This is also observed in Fig-

ure 5.4a. One explanation for the difference in performance dynamics is that the

Rényi loss dampens the loss of each individual sample in the batch, reducing the

effect of samples that may be given spurious gradient directions. Combined with our

use of the Adam optimizer to keep track of the gradient variance, the overall effect

that dampening has on the entire objective function is normalized out, while still

maintaining the benefit of dampening individual samples from the generator. Addi-

tionally, as we close the gap between StyleGANs with and without gradient penalty,

one benefit of not needing gradient penalty is the significant reduction in computa-

tion time: RényiStyleGAN-3.0 takes 25.63 hours without gradient penalty and 31.8

hours with gradient penalty, yielding a 24% increase in computation time when us-

ing gradient penalty. Lastly, both RényiStyleGAN-GP and StyleGAN-GP perform

identically; see also Figures 5.4b, 5.5c, and 5.5d.



107

Chapter 6

Conclusion

In this thesis, we introduced two new generator loss functions. Motivated by gen-

eralizing LSGANs, we introduced LkGANs, which were analyzed and implemented.

We showed that the theoretical minimum when solving the generator optimization

problem for LkGANs is achieved when the generator’s distribution is equal to the

true distribution of data. Using experiments on MNIST and CelebA datasets, the

new LkGANs loss functions conferred greater training stability and better generated

image quality than LSGANs. Experiments also revealed new theoretical and experi-

mental research directions, such as analyzing the effects of the α, β, and γ parameters

on LkGANs performance. It would also be useful to understand the interplay between

the optimal choice of network architectures and parameters and different choices of

k, α, β, and γ parameters.

A GANs generator loss function based on Rényi cross-entropy measures of order α

(α > 0 and α 6= 1) was next proposed, analyzed and implemented. It was shown that

the classical GANs analytical minimax result expressed in terms of minimizing the

Jensen-Shannon divergence between the generator and the unconstrained discrimina-

tor distributions can be generalized for any α in terms of the broader Jensen-Rényi



108

divergence, with the original GANs loss function provably recovered in the limit of

α approaching 1. We demonstrated via experiments on MNIST and CelebA datasets

that the proposed loss function yields performance improvements over the original

GANs loss function in terms of the quality of the generated images and training sta-

bility. In particular, RényiGANs used with L1 normalization does not need gradient

penalty to reduce the GAN mode collapse problem. Furthermore, RényiStyleGANs

provide more robust convergence dynamics than StyleGANs and can dispose of us-

ing gradient penalty without affecting image fidelity while requiring considerably less

training time. Finally, we note that the Rényi-centric approach studied in this work

can be judiciously adopted to other deep learning neural network architectures. For

future research, it would be useful to examine the effects of the α parameter on the

optimal choice of network architectures and parameters.

Future directions of applications include applying these networks on different

datasets, such as high-dimensional genomic data. For future work, InfoGANs can also

be generalized by using the Arimoto-Rényi mutual information of order α, (α > 0 and

α 6= 1) and deriving a Rényi-centric lower bound, which recovers the LI(g, q) lower

bound as a special case. Another direction for research is to generalize Wasserstein

GANs.



BIBLIOGRAPHY 109

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

[2] Alessandro Achille and Stefano Soatto. Where is the information in a deep neural

network? ArXiv:1905.12213, 2019.

[3] Fady Alajaji and Po-Ning Chen. An Introduction to Single-User Information

Theory. Springer, 2018.

[4] Fady Alajaji, Po-Ning Chen, and Ziad Rached. Csiszár’s cutoff rates for the

general hypothesis testing problem. IEEE Transactions on Information Theory,

50(4):663–678, 2004.



BIBLIOGRAPHY 110

[5] Alexander A. Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep

variational information bottleneck. In Proceedings of the 5th International Con-

ference on Learning Representations, pages 1–19, 2017.

[6] Erdal Arikan. An inequality on guessing and its applications to sequential de-

coding. IEEE Transactions on Information Theory, 42(1):99–105, 1996.

[7] Suguru Arimoto. Information measures and capacity of order α for discrete

memoryless channels. In Topics in Information Theory, Proc. Coll. Math. Soc.

János Bolyai, page 41–52, 1975.

[8] Martin Arjovsky and Léon Bottou. Towards principled methods for training gen-

erative adversarial networks. In Proceedings of the 5th International Conference

on Learning Representations, pages 1–17, 2017.

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In Proceedings of the 34th International Conference on

Machine Learning, volume 70, pages 214–223, 2017.

[10] Shane Barratt and Rishi Sharma. A note on the inception score. In Proceedings

of the International Conference on Machine Learning 2018 Workshop on The-

oretical Foundations and Applications of Deep Generative Models, pages 1–9,

2018.

[11] Moshe Ben-Bassat and Joseph Raviv. Rényi’s entropy and the probability of

error. IEEE Transactions on Information Theory, 24(3):324–331, 2006.

[12] Himesh Bhatia, William Paul, Fady Alajaji, Bahman Gharesifard, and Philippe

Burlina. Rényi Generative Adversarial Networks. ArXiv:2006.02479, 2020.



BIBLIOGRAPHY 111

[13] Lorne L. Campbell. A coding theorem and Rényi’s entropy. Information and

Control, 9:423–429, 1965.

[14] Liqun Chen, Shuyang Dai, Yunchen Pu, Erjin Zhou, Chunyuan Li, Qinliang Su,

Changyou Chen, and Lawrence Carin. Symmetric variational autoencoder and

connections to adversarial learning. In Proceedings of the 22nd International

Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of

Machine Learning Research, pages 661–669, 2018.

[15] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. InfoGAN: Interpretable representation learning by information maximiz-

ing generative adversarial nets. In Advances in Neural Information Processing

Systems, pages 2172–2180, 2016.

[16] Thomas A. Courtade and Sergio Verdú. Cumulant generating function of code-

word lengths in optimal lossless compression. In Proceedings of the IEEE Inter-

national Symposium on Information Theory, pages 2494–2498, 2014.

[17] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-

Interscience, 2nd edition, 2006.

[18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sen-

gupta, and Anil A Bharath. Generative adversarial networks: An overview. IEEE

Signal Processing Magazine, 35(1):53–65, 2018.

[19] Imre Csiszár. Information-type measures of difference of probability distributions

and indirect observations. Studia Sci. Math. Hungarica, 2:299–318, 1967.



BIBLIOGRAPHY 112

[20] Imre Csiszár. Generalized cutoff rates and Rényi’s information measures. IEEE

Transactions on Information Theory, 41(1):26–34, 1995.

[21] Imre Csiszár and János Körner. Information theory: Coding theorems for discrete

memoryless systems. Cambridge University Press, 2nd edition, 2011.

[22] George Cybenko. Approximation by superpositions of sigmoidal functions. Math-

ematics of Control, Signals, and Systems, 2:303–314, 1989.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

geNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion Workshops (CVPR Workshops), pages 248–255, 2009.

[24] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine Learning

Research, 12:2121–2159, 2011.

[25] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for

deep learning. ArXiv:1603.07285, 2016.

[26] Amedeo R. Esposito, Michael Gastpar, and Ibrahim Issa. Robust generalization

via α-mutual information. In Proceedings of the International Zurich Seminar

on Information and Communication, pages 96–100, 2020.

[27] Farzan Farnia and David Tse. A convex duality framework for GANs. In Ad-

vances in Neural Information Processing Systems 31, pages 5248–5258, 2018.



BIBLIOGRAPHY 113

[28] Manuel Gil, Fady Alajaji, and Támas Linder. Rényi Divergence Measures for

Commonly Used Univariate Continuous Distributions. Information Sciences,

249:124–131, 2013.

[29] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice

Hall, 2nd edition, 2002.

[30] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.

ArXiv:1701.00160, 2016.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In Advances in Neural Information Processing Systems, volume 27,

pages 2672–2680, 2014.

[33] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-GAN: Combining maxi-

mum likelihood and adversarial learning in generative models. In Proceedings of

the 32nd Association for the Advancement of Artificial Intelligence Conference

on Artificial Intelligence, pages 3069–3076, 2018.

[34] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron

Courville. Improved training of Wasserstein GANs. In Proceedings of the 31st In-

ternational Conference on Neural Information Processing Systems, pages 5769–

5779, 2017.

http://www.deeplearningbook.org


BIBLIOGRAPHY 114

[35] Abdessamad Ben Hamza and Hamid Krim. Jensen-Rényi divergence measure:

Theoretical and computational perspectives. In Proceedings of the IEEE Inter-

national Symposium on Information Theory, page 257, 2003.

[36] Yun He, Abdessamad Ben Hamza, and Hamid Krim. A generalized divergence

measure for robust image registration. IEEE Transactions on Signal Processing,

pages 1211 – 1220, 2003.

[37] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a

local nash equilibrium. In Advances in Neural Information Processing Systems,

pages 6626–6637, 2017.

[38] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2:359–366, 1989.

[39] Chong Huang, Peter Kairouz, Xiao Chen, Lalitha Sankar, and Ram Rajagopal.

Generative Adversarial Privacy. ArXiv:1807.05306, 2018.

[40] Caleb Ju and Edgar Solomonik. Derivation and analysis of fast bilinear algo-

rithms for convolution. SIAM review (to appear), ArXiv:1910.13367, 2020.

[41] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4401–4410, 2019.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In Proceedings of the 3rd International Conference on Learning Represen-

tations, pages 1–15, 2015.



BIBLIOGRAPHY 115

[43] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In

Proceedings of the 2nd International Conference on Learning Representations,

pages 1–14, 2014.

[44] Durk P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. In Advances in Neural Information Processing Systems, pages

10215–10224, 2018.

[45] Pawel A. Kluza. On Jensen-Rényi and Jeffreys-Rényi type f -divergences induced

by convex functions. Physica A: Statistical Mechanics and its Applications, 2019.

[46] Solomon Kullback and Richard A. Leibler. On information and sufficiency. An-

nals of Mathematical Statistics, 22(1):79–86, 1951.

[47] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 1998.

Available at http://yann.lecun.com/exdb/mnist/.

[48] Moshe Leshno, Vladimir Lin, Allan Pinkus, and Shimon Schocken. Multilayer

feedforward networks with a nonpolynomial activation function can approximate

any function. Neural Networks, 6:861–867, 1993.

[49] Chunyuan Li, Ke Bai, Jianqiao Li, Guoyin Wang, Changyou Chen, and Lawrence

Carin. Adversarial learning of a sampler based on an unnormalized distribution.

In Proceedings of the 22nd International Conference on Artificial Intelligence

and Statistics (AISTATS) 2019, volume 89 of Proceedings of Machine Learning

Research, pages 3302–3311, 2019.



BIBLIOGRAPHY 116

[50] Yingzhen Li and Yarin Gal. Dropout inference in Bayesian neural networks

with alpha-divergences. In Proceedings of the 34th International Conference on

Machine Learning, volume 70, pages 2052–2061, 2017.

[51] Yingzhen Li and Richard E. Turner. Rényi divergence variational inference. In

Advances in Neural Information Processing Systems, volume 29, pages 1073–

1081, 2016.

[52] Jianhua Lin. Divergence measures based on the Shannon entropy. IEEE Trans-

actions on Information theory, 31:145–151, 1991.

[53] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proceedings of International Conference on Computer

Vision, pages 1–11, 2015.

[54] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bous-

quet. Are GANs created equal? A large-scale study. In Advances in Neural

Information Processing Systems, volume 31, pages 700–709. Curran Associates,

Inc., 2018.

[55] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 1–16,

2017.

[56] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and

Stephen Paul Smolley. On the effectiveness of least squares generative adver-

sarial networks. ArXiv:1712.06391, 2017.



BIBLIOGRAPHY 117

[57] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training meth-

ods for GANs do actually converge? In Proceedings of the 35th International

Conference on Machine Learning, volume 80, pages 3481–3490, 2018.

[58] Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Sven Haase, Thomas

Villmann, and Michael Biehl. Divergence based learning vector quantization.

In Proceedings of the 18th European Symposium on Artificial Neural Networks

(ESANN 2010), pages 247–252, 2010.

[59] Frank Nielsen. On a generalization of the Jensen-Shannon divergence.

ArXiv:1912.00610, 2019.

[60] Frank Nielsen and Richard Nock. Entropies and cross-entropies of exponential

families. In Proceedings of the 2010 IEEE International Conference on Image

Processing, pages 3621–3624, 2010.

[61] Frank Nielsen and Richard Nock. On the Chi square and higher-order Chi dis-

tances for approximating f -divergences. IEEE Signal Processing Letters, pages

10–13, 2013.

[62] Michael Nielsen. Neural Networks and Deep Learning. Determination Press,

2015.

[63] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f -GAN: Training gen-

erative neural samplers using variational divergence minimization. In Advances

in Neural Information Processing Systems, volume 29, pages 271–279. Curran

Associates, Inc., 2016.



BIBLIOGRAPHY 118

[64] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. ArXiv:1609.03499,

2016.

[65] Jose C. Principe. Information Theoretic Learning: Rényi’s Entropy and Kernel

Perspectives. Springer Science and Business Media, 2010.

[66] Ziad Rached, Fady Alajaji, and Lorne L. Campbell. Rényi entropy rate for

discrete Markov sources. In Proceedings of the 33rd Conference on Information

Sciences and Systems, pages 613–618, 1999.

[67] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. In Proceedings

of the 9th International Conference on Image and Graphics, pages 97–108, 2017.

[68] Sashank Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam

and beyond. In Proceedings of the 6th International Conference on Learning

Representations, pages 1–23, 2018.

[69] Alfréd Rényi. On measures of entropy and information. In Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol-

ume 1, pages 547–561, 1961.

[70] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Advanced

Series. Duxbury Press, USA, 3rd edition, 2007.

[71] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Sta-

bilizing training of generative adversarial networks through regularization. In



BIBLIOGRAPHY 119

Proceedings of the 31st Conference on Neural Information Processing Systems,

2017.

[72] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, page 533 to 536, 1986.

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[74] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

Xi Chen, and Xi Chen. Improved techniques for training GANs. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems 29, pages 2234–2242. Curran Associates,

Inc., 2016.

[75] Igal Sason. On f -divergences: Integral representations, local behavior, and in-

equalities. Entropy, 20:1–32, 2018.

[76] Claude Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, pages 379–423, 623–656, 1948.

[77] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2818–2826, 2016.



BIBLIOGRAPHY 120

[78] Lucas Theis, Aaron van den Oord, and Matthias Bethge. A note on the evalua-

tion of generative models. In Proceedings of the 4th International Conference on

Learning Representations, pages 1–10, 2016.

[79] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck

principle. In Proceedings of the 2015 IEEE Information Theory Workshop, pages

1–5, 2015.

[80] Francisco J. Valverde-Albacete and Carmen Peláez-Moreno. The case for shifting

the Rényi entropy. Entropy, 21:1–21, 2019.

[81] Tim van Erwen and Peter Harremos. Rényi divergence and Kullback-Leibler

divergence. IEEE Transactions on Information Theory, 60(7):3797 – 3820, 2014.

[82] Sergio Verdú. α-mutual information. In Proceedings of the 2015 IEEE Informa-

tion Theory and Applications Workshop, pages 1–6, 2015.

[83] Zhengwei Wang, Qi She, and Tomas E. Ward. Generative adversarial networks

in computer vision: A survey and taxonomy. ArXiv:1906.01529v3, 2020.

[84] Maciej Wiatrak, Stefano V. Albrecht, and Andrew Nystrom. Stabilizing gener-

ative adversarial network training: A survey. ArXiv:1910.00927v2, 2020.

[85] Kristoffer Wickstrom, Sigurd Lokse, Michael Kampffmeyer, Shujian Yu, Jose

Principe, and Robert Jenssen. Information plane analysis of deep neural networks

via matrix-based Rényi’s entropy and tensor kernels. ArXiv:1909.11396, 2019.

[86] Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian

Weinberger. An empirical study on evaluation metrics of generative adversarial

networks. ArXiv:1806.07755, 2018.



BIBLIOGRAPHY 121

[87] Raymond W. Yeung. Information Theory and Network Coding. Springer, 2008.

[88] Abdellatif Zaidi, Iñaki Estella-Aguerri, and Shlomo Shamai (Shitz). On the infor-

mation bottleneck problems: Models, connections, applications and information

theoretic views. Entropy, 22:1–36, 2020.

[89] Miaoyun Zhao, Yulai Cong, Shuyang Dai, and Lawrence Carin. Bridging maxi-

mum likelihood and adversarial learning via alpha-divergence. In Proceedings of

the 34th Association for the Advancement of Artificial Intelligence Conference

on Artificial Intelligence, volume 34, pages 6901–6908, 2020.



122

Appendix A

Experiments

A.1 Neural network architectures

The StyleGAN architecture were taken directly from [41]. The architectures for the

MNIST dataset are detailed below in Tables A.1 and A.2. We used the architecture

guidelines provided by [67] and the GANs tutorial in [1]. We shorten some of the

common terms used to describe the layers of the networks. A fully connected layer

in a neural network is denoted by FC, while we have used upconv. to denote a

convolution layer that is specifically padded to increase the dimensions of its input

image. The bias in each upconv. layer was not used in an effort to reduce the amount

of parameters and the computational training time. The parameters of the neural

networks were initialized by sampling a Gaussian random variable with mean 0 and

standard deviation 0.01.



A.1. NEURAL NETWORK ARCHITECTURES 123

Table A.1: The generator’s architecture for MNIST dataset.

Generator

Input multivariate Gaussian noise vector of size 784 with mean 0

and a covariance matrix that is the identity matrix of size 784× 784.

FC to 12, 544 neurons.

Reshape into 7× 7× 256 image.

5× 5 upconv. 128 LeakyRELU, batchnorm.

5× 5 upconv. 64 LeakyRELU, stride 2, batchnorm.

5× 5 upconv. 1 channel, tanh activation.

Table A.2: The discriminator’s architecture for MNIST dataset.

Discriminator

Input 28× 28× 1 grey image.

5× 5 conv. 64 LeakyRELU, stride 2, batchnorm,

dropout 0.3.

5× 5 conv. 128 LeakyRELU, stride 2, batchnorm,

dropout 0.3.

FC to one output, 1
1+e−x activation.



A.2. ALGORITHMS 124

A.2 Algorithms

We present the algorithms for LkGANs below. For the MNIST dataset, the constants

of the algorithms are n = 250 epochs or 15 million images and batch size m = 100.

For the CelebA dataset, the constants of the algorithms are n = 125 epochs or 25

million images and the batch size m = 126.

Algorithm 2 Overview of LkGAN-v1-k and LkGAN-v2-k algorithms with and with-
out the simplified gradient penalty.

Initialize neural networks.
Fix number of epochs n.
for i = 0 to n− 1 do

Sample batch size of m noise samples {z1, . . . ,zm} from noise prior pZ
Sample batch size of m examples {x1, . . . ,xm} from the true distribution pX
Update the discriminator by descending its gradient without the simplified

gradient penalty:

∇θ̃

(
1

m

m∑
i=1

[
1

2
(D(xi)− β)2 +

1

2
(D(g(zi))− α)2

])
,

or with the simplified gradient penalty:

∇θ̃

(
1

m

m∑
i=1

[
1

2
(D(xi)− β)2 +

1

2
(D(g(zi))− α)2

]

+5

 1

m

m∑
i=1

∥∥∥∥∥∇x log

(
D(x)

1−D(x)

) ∣∣∣∣
x=xi

∥∥∥∥∥
2

2

).
Update the generator by descending its gradient:

∇θ

(
1

m

m∑
i=1

|D(g(zi))− γ|k
)
,

end for



A.2. ALGORITHMS 125

Algorithm 3 Overview of LkGAN-v1-[1, 3] and LkGAN-v2-[1, 3] algorithms

Initialize neural networks.
Fix generator’s loss function shape, k0 = 1, flag = True and number of epochs
n.
for i = 0 to n− 1 do

if flag then
ki = ki + 0.1
if ki = 3 then

flag = False
end if

else
ki = ki − 0.1
if ki = 1 then

flag = True
end if

end if
Sample batch size of m noise samples {z1, . . . ,zm} from noise prior pZ
Sample batch size of m examples {x1, . . . ,xm} from the true distribution pX
Update the discriminator by descending its gradient:

∇θ̃

(
1

m

m∑
i=1

[
1

2
(D(xi)− β)2 +

1

2
(D(g(zi))− α)2

])
.

Update the generator by descending its gradient:

∇θ

(
1

m

m∑
i=1

|D(g(zi))− γ|ki
)
,

end for

We next present the algorithms for RényiGANs. For the MNIST dataset, the

constants of the algorithms are n = 100 epochs or 6 million images and batch size

m = 100. For the CelebA dataset, the constants of the algorithms are n = 125 epochs

or 25 million images and the batch size m = 126.



A.2. ALGORITHMS 126

Algorithm 4 Overview of RényiGAN-α, RényiGAN-α-L1, and RényiGAN-GP-α-L1

algorithms

Initialize neural networks.
Fix number of epochs n.
for i = 0 to n− 1 do

Sample batch size of m noise samples {z1, . . . ,zm} from noise prior pZ
Sample batch size of m examples {x1, . . . ,xm} from the true distribution pX
Update the discriminator by descending its stochastic gradient without the

simplified gradient penalty:

∇θ̃
(
− 1

m

m∑
i=1

[
logD(xi) + log(1−D(g(zi)))

])
,

or with the simplified gradient penalty:

∇θ̃

(
− 1

m

m∑
i=1

[
logD(xi) + log(1−D(g(zi)))

]
+5

 1

m

m∑
i=1

∥∥∥∥∥∇x log

(
D(x)

1−D(x)

) ∣∣∣∣
x=xi

∥∥∥∥∥
2

2

),
and update the generator by descending its stochastic gradient without L1 nor-
malization:

∇θ
1

α− 1
log

[(
1

m

m∑
i=1

[1−D(g(zi))]
α−1

)]
,

or with L1 normalization:

∇θ

∣∣∣∣∣ 1

α− 1
log

[(
1

m

m∑
i=1

[1−D(g(zi))]
α−1

)]
+ log(2)

∣∣∣∣∣,
end for



A.2. ALGORITHMS 127

Algorithm 5 Overview of RényiGAN-[β1, β2], RényiGAN-[β1, β2]-L1, and
RényiGAN-GP-[β1, β2]-L1 algorithms

Initialize neural networks.
Fix generator’s loss function shape, α0 = x, flag = True and number of epochs
n.
for i = 0 to n− 1 do

if flag then
αi = αi + 0.1
if αi = β2 then

flag = False
end if
if αi = 1.0 then
αi = 1.1

end if
else
αi = αi − 0.1
if αi = β1 then

flag = True
end if
if αi = 1.0 then
αi = 0.9

end if
end if



A.2. ALGORITHMS 128

Sample batch size of m noise samples {z1, . . . ,zm} from noise prior pZ
Sample batch size of m examples {x1, . . . ,xm} from the true distribution pX
Update the discriminator by descending its stochastic gradient without the

simplified gradient penalty:

∇θ̃
(
− 1

m

m∑
i=1

[
logD(xi) + log(1−D(g(zi)))

])
,

or with the simplified gradient penalty:

∇θ̃

(
− 1

m

m∑
i=1

[
logD(xi) + log(1−D(g(zi)))

]
+5

 1

m

m∑
i=1

∥∥∥∥∥∇x log

(
D(x)

1−D(x)

) ∣∣∣∣
x=xi

∥∥∥∥∥
2

2

),
without L1 normalization:

∇θ
1

α− 1
log

[(
1

m

m∑
i=1

[1−D(g(zi))]
α−1

)]
,

or with L1 normalization:

∇θ

∣∣∣∣∣ 1

α− 1
log

[(
1

m

m∑
i=1

[1−D(g(zi))]
α−1

)]
+ log(2)

∣∣∣∣∣,
end for



A.3. MNIST RESULTS 129

A.3 MNIST results

Table A.3: LkGANs-v1 experiments on the MNIST dataset: the best FID over each
run seen over ten trials.

Trial number 1 2 3 4 5 6 7 8 9 10

LkGAN-v1-1.0 3.17 3.24 2.96 3.38 3.12 3.12 3.19 3.17 3.38 2.95
LkGAN-v1-1.2 3.22 3.11 2.97 3.1 3.08 3.18 3.18 3.34 3.12 3.16
LkGAN-v1-1.4 3.31 3.37 3.22 3.19 3.13 3.01 3.2 3.58 3.08 3.67
LkGAN-v1-1.6 2.98 3.17 3.27 3.21 3.14 3.33 3.13 3.26 2.89 2.93
LkGAN-v1-1.8 3.15 3.02 3.02 3.41 3.25 3.28 3.02 3.44 3.3 3.42
LkGAN-v1-2.2 3.48 3.36 3.62 3.54 3.48 3.76 3.45 3.80 3.41 3.20
LkGAN-v1-2.4 3.45 3.84 4.02 3.48 3.30 3.64 3.06 3.81 3.57 3.72
LkGAN-v1-2.6 3.70 4.35 3.78 3.72 3.30 3.92 3.60 4.03 3.65 3.53
LkGAN-v1-2.8 4.05 4.16 3.7 4.53 3.55 3.87 4.23 3.69 3.82 4.25
LkGAN-v1-3.0 4.54 4.04 3.92 4.14 4.31 3.97 3.92 4.37 3.95 4.13

LkGAN-v1-[1, 3] 3.41 3.16 3.89 3.44 3.06 3.71 3.56 3.34 3.68 3.43
LSGAN-v1 3.58 3.24 3.21 3.34 3.28 3.54 3.35 3.3 3.34 3.21



A.3. MNIST RESULTS 130

T
ab

le
A

.4
:

L
k
G

A
N

s-
v
2

ex
p

er
im

en
ts

on
th

e
M

N
IS

T
d
at

as
et

:
th

e
b

es
t

F
ID

ov
er

ea
ch

ru
n

se
en

ov
er

te
n

tr
ia

ls
.

T
ri

al
n
u
m

b
er

1
2

3
4

5
6

7
8

9
10

L
k
G

A
N

-v
2-

1.
0

2.
94

2.
82

58
.6

5
3.

17
58

.6
5

3.
0

58
.0

9
58

.6
5

58
.6

5
3.

07
L

k
G

A
N

-v
2-

1.
2

2.
85

58
.6

5
58

.6
5

3.
11

3.
02

2.
98

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

1.
4

58
.2

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
L

k
G

A
N

-v
2-

1.
6

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
3.

05
3.

22
58

.6
5

3.
11

58
.6

5
L

k
G

A
N

-v
2-

1.
8

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

2.
2

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

2.
4

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

2.
6

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

2.
8

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

3.
0

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
2-

[1
.0
,3
.0

]
58

.6
5

58
.6

5
58

.6
5

3.
57

58
.6

5
3.

31
3.

01
58

.6
5

3.
08

58
.6

5
L

S
G

A
N

-v
2

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5



A.3. MNIST RESULTS 131

T
ab

le
A

.5
:

L
k
G

A
N

s-
v
3

ex
p

er
im

en
ts

on
th

e
M

N
IS

T
d
at

as
et

:
th

e
b

es
t

F
ID

ov
er

ea
ch

ru
n

se
en

ov
er

te
n

tr
ia

ls
.

T
ri

al
n
u
m

b
er

1
2

3
4

5
6

7
8

9
10

L
k
G

A
N

-v
3-

1.
0

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

1.
2

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

1.
4

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

1.
6

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

1.
8

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

2.
2

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

2.
4

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

2.
6

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

2.
8

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

3.
0

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

L
k
G

A
N

-v
3-

[1
.0
,3
.0

]
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
L

S
G

A
N

-v
3

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5

58
.6

5
58

.6
5



A.3. MNIST RESULTS 132
T

ab
le

A
.6

:
R

én
y
iG

A
N

s
ex

p
er

im
en

ts
on

th
e

C
el

eb
A

d
at

as
et

:
th

e
b

es
t

F
ID

ov
er

ea
ch

ru
n

se
en

ov
er

te
n

tr
ia

ls
.

T
ri

al
n
u
m

b
er

1
2

3
4

5
6

7
8

9
10

R
én

y
iG

A
N

-0
.5

58
.6

9
58

.6
9

58
.7

0
58

.6
9

58
.7

0
58

.7
0

58
.7

0
58

.6
9

58
.6

9
58

.6
9

R
én

y
iG

A
N

-3
.0

58
.6

9
58

.6
9

58
.6

9
58

.6
9

1.
66

58
.6

9
58

.6
9

58
.6

1
58

.6
9

58
.6

9
R

én
y
iG

A
N

-[
0,

0.
9]

58
.6

3
58

.3
3

58
.6

3
58

.6
3

58
.6

3
58

.6
3

58
.6

3
58

.6
3

58
.6

3
58

.6
3

R
én

y
iG

A
N

-[
0,

3]
58

.9
0

58
.4

2
1.

44
58

.9
0

58
.9

0
58

.9
0

58
.9

0
1.

36
58

.9
0

1.
29

R
én

y
iG

A
N

-[
1.

1,
4]

58
.6

6
58

.8
9

58
.9

1
58

.6
4

58
.8

7
58

.8
7

58
.8

7
58

.8
7

58
.8

7
58

.8
7

D
C

G
A

N
59

.0
6

59
.0

6
59

.0
6

59
.0

6
59

.0
6

59
.0

6
59

.0
6

59
.0

6
59

.0
6

59
.0

6

R
én

y
iG

A
N

-0
.5

-L
1

2.
20

2.
32

2.
18

2.
36

2.
13

2.
15

2.
31

2.
10

2.
13

2.
17

R
én

y
iG

A
N

-3
.0

-L
1

1.
84

1.
83

1.
81

1.
81

1.
87

1.
69

1.
83

1.
72

1.
81

1.
76

R
én

y
iG

A
N

-[
0,

0.
9]

-L
1

1.
99

2.
24

2.
22

2.
07

2.
14

2.
16

2.
25

2.
10

2.
21

2.
19

R
én

y
iG

A
N

-[
0,

3]
-L

1
1.

88
1.

81
1.

75
1.

74
1.

66
1.

71
1.

85
1.

73
1.

84
1.

70
R

én
y
iG

A
N

-[
1.

1,
4]

-L
1

1.
76

1.
77

1.
75

1.
84

1.
86

1.
92

1.
83

1.
80

1.
73

1.
80

D
C

G
A

N
-L

1
2.

02
1.

89
1.

92
1.

91
1.

91
1.

90
2.

02
1.

88
1.

85
2.

03

R
én

y
iG

A
N

-G
P

-0
.5

1.
48

1.
41

1.
45

1.
35

1.
32

1.
37

1.
26

1.
37

1.
38

1.
28

R
én

y
iG

A
N

-G
P

-3
.0

1.
34

1.
43

1.
32

1.
25

1.
39

1.
39

1.
42

1.
38

1.
36

1.
36

R
én

y
iG

A
N

-G
P

-[
0,

0.
9]

1.
46

1.
28

1.
37

1.
37

1.
37

1.
40

1.
41

1.
34

1.
35

1.
28

R
én

y
iG

A
N

-G
P

-[
0,

3]
1.

43
1.

42
1.

52
1.

37
1.

46
1.

34
1.

36
1.

36
1.

45
1.

36
R

én
y
iG

A
N

-G
P

-[
1.

1,
4]

1.
33

1.
39

1.
54

1.
37

1.
35

1.
36

1.
29

1.
36

1.
33

1.
32

D
C

G
A

N
-G

P
1.

38
1.

29
1.

34
1.

39
1.

39
1.

41
1.

37
1.

32
1.

32
1.

34

R
én

y
iG

A
N

-G
P

-0
.5

-L
1

1.
14

1.
24

1.
16

1.
16

1.
18

1.
18

1.
08

1.
27

1.
14

1.
23

R
én

y
iG

A
N

-G
P

-3
.0

-L
1

1.
21

1.
14

1.
17

1.
14

1.
14

1.
20

1.
06

1.
30

1.
13

1.
20

R
én

y
iG

A
N

-G
P

-[
0,

0.
9]

-L
1

1.
26

1.
15

1.
28

1.
16

1.
10

1.
17

1.
10

1.
21

1.
21

1.
24

R
én

y
iG

A
N

-G
P

-[
0,

3]
-L

1
1.

29
1.

28
1.

32
1.

19
1.

14
1.

14
1.

12
1.

19
1.

35
1.

18
R

én
y
iG

A
N

-G
P

-[
1.

1,
4]

-L
1

1.
29

1.
14

1.
31

1.
19

1.
19

1.
14

1.
20

1.
18

1.
25

1.
14

D
C

G
A

N
-G

P
-L

1
1.

21
1.

26
1.

20
1.

15
1.

15
1.

19
1.

13
1.

19
1.

13
1.

16


	Abstract
	Co-authorship
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Literature review
	Contributions
	Outline

	Preliminaries on information measures and neural networks
	Information measures
	Entropies
	Divergences
	Mutual informations
	Cross-entropies

	Neural networks
	Propagation equations
	Backpropagation equations
	Gradient descent algorithm: Adam optimization
	Convolutional neural networks


	Generative adversarial networks
	Gradient penalties
	Least squares GANs (LSGANs)
	InfoGANs
	Fréchet inception distance: measuring image quality

	Least kth-order GANs (LkGANs)
	Theoretical results
	Experiments
	Methods
	Results
	Discussion


	RényiGANs
	Theoretical results
	Experiments
	Methods
	Results
	Discussion


	Conclusion
	Bibliography
	Experiments
	Neural network architectures
	Algorithms
	MNIST results


