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Abstract

Optimal binary communication, in the sense of minimizing symbol error rate, with

nonequal probabilities has been derived in [1] under various signalling configurations

for the single-user case with a given average energy E. This work extends a sub-

set of the results in [1] to a two-user orthogonal multiple access Gaussian channel

(OMAGC) transmitting a pair of correlated sources, where the modulators use a sin-

gle phase or basis function and have given average energies E1 and E2, respectively.

These binary modulation schemes fall in one of two categories: (1) transmission sig-

nals are both nonnegative, or (2) one transmission signal is positive and the other

negative. To optimize the energy allocations for the transmitters in the two-user

OMAGC, the maximum a posteriori detection rule, probability of error, and union

error bound are derived. The optimal energy allocations are determined numerically

and analytically. Both results show that the optimal energy allocations coincide with

corresponding results from [1]. It is demonstrated in Chapter 3 that three parame-

ters are needed to describe the source. The optimized OMAGC is compared to three

other schemes with varying knowledge about the source statistics, which influence

the optimal energy allocation. A gain of at least 0.73 dB is achieved when E1 = E2

or 2E1 = E2. When E1 � E2 a gain of at least 7 dB is observed.
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Chapter 1

Introduction

1.1 Digital Communication Systems

Digital communication systems are comprised of a number of elements, each with a

counterpart. Figure 1.1 illustrates a functional diagram and the elements of a typical

communication system.

All digital communication systems begin with a source. The source can be an

analog signal, such as audio or video, or a digital signal, such as computer data.

The source produces messages that must be converted into sequences of elements

from a finite alphabet, usually binary. Representing the output of an analog or

digital source as a sequence of elements from a finite alphabet is known as source

coding, where, ideally, the output of the source is represented using as few elements

as possible [2]. Source coding provides methods of eliminating redundancy from

the source. The output of the source coder, known as the information sequence,

is then passed to the channel coder. The purpose of the channel coder is to add

redundancy, in a controlled manner, into the information sequence, which can be

used after transmission to overcome the effects of noise and interference due to the

channel [2]. This process aims to increase the reliability of the received information

sequence. The output sequence from the channel coder arrives at the modulator,
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Source Source Coding Channel Coding Modulation

Channel

DemodulationChannel DecodingSource DecodingDestination

Area of Study

Figure 1.1: Block diagram representing the components of a communication system,
with a highlighted area of the topic relevant to this document.

which servers as an interface to the communications channel [2]. The main purpose

of the modulator is to map the channel-coded information sequences into signal

waveforms.

After transmission, information is received at the demodulator. The demodulator

receives and processes the channel-corrupted waveforms and reduces them to symbols

representing an estimate of the modulated data sequence [2]. This estimate is passed

to the channel decoder, which using the added redundancy introduced in the channel

encoder, attempts to reconstruct the original information sequence from knowledge

of the code used by the channel coder and the redundancy contained in the received

data. Lastly, the source in reconstructed via the source decoder at the destination.

If an analog output is desired, the source decoder accepts the output sequence from

the channel decoder and attempts to reconstruct the original signal from the source,

using knowledge of the source coding method [2]. However, from errors that may

have occurred during reconstruction, the source may be corrupted or distorted.

It should be noted that the demodulation just described is often referred to as

hard-decision detection. Demodulation and channel decoding may be combined in

one step; this is a topic of soft-decision detection and is not considered in this work.
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1.2 Motivation

This report focuses on modulation and demodulation. The goal is to determine the

optimal energy allocations of two binary modulation schemes that transmit to a com-

mon receiver, such that the data sequences entering the transmitters are positively

correlated. A detailed description of the problem and system is given in Chapter 3.

At the core, this report extends a subset of the results in [1] by Korn et al. from a

single-user additive white Gaussian noise channel to a two-user orthogonal multiple

access Gaussian channel (OMAGC). As it is intuitively unclear where the optimal

energies will lay, it will be interesting to see if the optimal energies of the OMAGC

coincide with results from [1].

1.3 Contributions

To our knowledge, this problem has not been investigated. To find if the optimal

communication schemes for single-user and two-user systems coincide, a number

of important results must be derived. For the two-user case, these results are: a

probability of symbol error calculation, along with a corresponding upper bound.

The single-user results are found in [1]. Next, the optimal transmission energies

are numerically determined using the error probability and analytically determined

using the upper bound. From these results, it is shown that the optimal transmission

energies coincide with the single-user case.

1.4 Organization of Report

Chapter 2 reviews maximum a posteriori detection from the perspective of a typical

digital communication text, followed by a summary of the relevant results of [1]. The

system model, description of the source and the maximum a posteriori detection



1.4. ORGANIZATION OF REPORT 4

rule are given in Chapter 3, where also, the system error probability and union

error bound are derived. Chapter 4 contains a verification of the probability of

error calculations, numerical optimization, analytical optimization, and performance

comparisons. Chapter 5 presents conclusions and discussions of future work.
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Chapter 2

Background

2.1 MAP Detection for Single-User Systems

When discussing modulation and demodulation for single-user communication sys-

tems, it is convenient to introduce constellations points. Modulators consist of a set

of basis functions {ψ1, ψ2, . . . , ψN}, where each ψi : [0, T ] 7→ R and has unit energy,

i.e.
∫ T
0
ψ2
i (t)dt = 1 for i = 1, . . . , N , where T > 0 is finite and R denotes the real

numbers. Outputs from the channel coder will be mapped to linear combinations

of the basis functions. Note, if the channel coder output sequences of length k, the

modulator may look at sequences of length l at a time. Supposing there are M

constellation points, each signal sm can be written as

sm(t) = a1mψ1(t) + a2mψ2(t) + · · ·+ aNmψN(t)

where m ∈ {1, . . . ,M} and aij ∈ R for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. Thus,

S = {sm|m = 1, . . . ,M} is the set of transmission signals or constellation points.

Further define n(t) = (n1(t), . . . , nN(t)) to be an N -tuple from an additive white

Gaussian noise (AWGN) process, where the ni(t) are independent Gaussian random

variables with zero mean and variance σ2 for i = 1, . . . , N . Define r = s + n to be
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the observation vector of the received values, where s ∈ S, and addition is completed

component wise.

For optimal signal detection the goal is to maximize the probability that the

received vector r is correctly mapped back to the transmitted signal s. As a result,

a decision rule based on the posterior probabilities is defined as

P (signal s is transmitted|r)

shortened to P (s|r) [2]. In this case the detected constellation point ŝ is given as

ŝ = arg max
s∈S

P (s|r). (2.1)

In words, the decision criterion requires selecting the signal corresponding to the

maximum of the set of posterior probabilities {P (sm)|r)}Mm=1 [2]. It is shown in [2],

that this criterion maximizes the probability of correct decision and, thus, minimizes

the probability of error. This decision rule is called maximum a posterior (MAP)

detection. Now, using Bayes’ Rule, the above can be written as

ŝ = arg max
s∈S

f(r|s)P (s)

f(r)

where f(r|s) is the conditional probability density function (PDF) of the observation

vector r given that s ∈ S was sent and P (s) is the a priori probability that s ∈ S

was sent. Further, since the denominator of the above is not dependent on s, the

expression becomes

ŝ = arg max
s∈S

f(r|s)P (s).

From here, most communication texts note that simplifications occur when P (s) =
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1/M , i.e., all constellation points are equiprobable. In this case, the decision rule

becomes

ŝ = arg max
s∈S

f(r|s)

which is the so-called maximum likelihood (ML) detection rule (see [2]). However,

the simplification P (s) = 1/M is often unrealistic since it is known that speech,

image and video data exhibit a bias to a subset of the transmission signal set (e.g.

see [3], [4]).

2.2 Optimized Binary Signalling Over Single-User AWGN Channels

In [1], binary modulation schemes are considered for the point-to-point AWGN chan-

nel. Consequently, only two constellation points s1 and s2, based on two (unit-energy)

basis functions ψ1 and ψ2 are needed. Thus, let

s1(t) =
√
E1ψ1(t) and s2(t) =

√
E2ψ2(t)

be arbitrary binary signals given as functions of time, t ∈ [0, T ] for some positive,

finite T , with energies given by

∫ T

0

[
√
Eiψi(t)]

2dt = Ei

for i = 1, 2 having probabilities 0 ≤ p1 = p ≤ 0.5, p2 = 1− p, respectively. Let γ be

the correlation between ψ1(t) and ψ2(t), given by

γ =

∫ T

0

ψ1(t)ψ2(t)dt, −1 ≤ γ ≤ 1
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where we are interested in the cases when ψ1(t) = ψ2(t) and −ψ1(t) = ψ2(t) which

result in γ = 1 and γ = −1, respectively. We call these modulation systems single-

phase modulation schemes. The average energy per bit (or signal) is given by

E = pE1 + (1− p)E2. (2.2)

After sending s(t) ∈ {s1(t), s2(t)} over the channel, the received signal is given by

r(t) = s(t) + n(t)

where n(t) is an AWGN process with power spectral density (PSD) σ2 = N0/2. The

goal of [1] is to derive the optimal energies E1 and E2 which minimize the bit error

probability (BEP) given E, where the BEP is given by

P (e) = P (s2(t)|s1(t))p+ P (s1(t)|s2(t))(1− p) (2.3)

where P (si(t)|sj(t)) = P (ŝ = si(t)|s = sj(t)) is the probability that MAP detection

selects si(t) given that sj(t) was transmitted over the channel for i, j ∈ {1, 2} and

i 6= j. It is shown in [1], using [5], that the above BEP can be written as

P (e) = Q

(√
A− B√

A

)
p+Q

(√
A+

B√
A

)
(1− p)

where

A =
E1 + E2 − 2γ

√
E1E2

2N0

,

B = (1/2) ln(p/(1− p)),
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and

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du.

It is proved in [1], that P (e) is a decreasing function of A, implying that P (e) is

minimized when A is maximized. Next we note that

A =
E1 + E−E1p

1−p − 2γ
√

E1E−E2
1p

1−p

2N0

since

E2 =
E − E1p

1− p
. (2.4)

The problem becomes finding the optimal value of E1 ∈ [0, E/p]. The relevant case

to this report is when γ 6= 0, i.e., the case of nonorthogonal signalling. Consider the

first and second derivatives of A with respect to E1:

∂A

∂E1

=
1

2N0

[
1− 2p

1− p
− γE(E − 2E1p)√

1− p(EE1 − E2
1p)

]
,

∂2A

∂E2
1

= γ
2p(EE1 − E2

1) + (E − 2E1p)
2

2
√

(1− p)(EE1 − E2
1p)

3/2N0

.

Thus, the location of the maximum is dependent on γ.

Case 1: γ > 0: In this case, it is shown in [1] that A is convex with respect

to E1. So the maximum occurs at a boundary point. Since E1 ∈ [0, E/p], [1] shows

that E1 = E/p and E2 = 0 are the optimal energies; this is the on-off keying (OOK)

signalling scheme.

Case 2: γ < 0: In this case, it is shown in [1] that A is a concave function of E1

and attains a maximum when E1 ∈ (0, E/p). The optimal E1 in this case is given by

E1 =
E

2p

[
1 +

1− 2p√
1− 4p(1− p)(1− γ2)

]
.
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The above result is obtained after setting ∂A/∂E1 = 0. From (2.2), the optimal E2

is then given by

E2 =
E

2(1− p)

[
1− 1− 2p√

1− 4p(1− p)(1− γ2)

]
.

As previously mentioned, the case of interest is nonorthogonal signalling, in par-

ticular when γ = 1 and γ = −1. For γ = 1, the optimal energies (from Case 1 above)

are

E1 = E/p and E2 = 0, (2.5)

which is OOK, and for γ = −1, which corresponds to binary pulse-amplitude mod-

ulation (BPAM), the optimal energies are given (from Case 2 above) as

E1 =
E

2p

[
1 +

1− 2p√
1− 4p(1− p)(1− γ2)

]
=
E(1− p)

p
, (2.6)

E2 =
E

2(1− p)

[
1− 1− 2p√

1− 4p(1− p)(1− γ2)

]
=

Ep

1− p
. (2.7)
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Chapter 3

MAP Detection and Probability of Error

3.1 Problem Definition

As outlined in the previous chapter, the optimal energy allocation for binary com-

munication with nonequal probabilities over a single-user AWGN channel has been

determined [1]. This report extends the results of [1] to a two-user orthogonal mul-

tiple access Gaussian Channel (OMAGC) with a correlated source.

First we define our problem and introduce our assumptions and notations. Let,

{(U (n)
1 , U

(n)
2 )} be pairs of an independent and identically distributed (i.i.d.) sequence

of binary-valued random variables, such that U
(n)
i ∈ {0, 1} and 0 ≤ P (U

(n)
i = 0) =

pi < 0.5 for n = 1, 2, 3, . . . and i = 1, 2. Further, for n = 1, 2, 3, . . . let ρ be the

correlation coefficient between U
(n)
1 and U

(n)
2 . Also, we assume for all n, (U

(n)
1 , U

(n)
2 )

follows the joint probability mass function pU1,U2(u1, u2) defined in Section 3.3.

The basis functions represent the physical frequencies, or modulated phases, used

by a transmitter. Transmitter 1 will use {ψ(1)
1 , ψ

(1)
2 } as basis functions and Trans-

mitter 2 will use {ψ(2)
1 , ψ

(2)
2 } as basis functions, such that Transmitters 1 and 2

have correlation γ1 and γ2, respectively. Thus, we are interested in the cases when

γ1 = γ2 = −1, 1 and γ1 = −γ2. When γ1 = γ2 = 1 the transmitters may only

implement positive-valued signals (as ψ
(i)
1 = ψ

(i)
2 for i = 1, 2). Whereas, when
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γ1 = γ2 = −1 the transmitters will use one positive-valued signal and one negative-

valued signal (as −ψ(i)
1 = ψ

(i)
2 for i = 1, 2). When γ1 = −γ2, without loss of gen-

erality we assume γ1 = 1. Recall that these modulation systems are referred to as

single-phase modulation schemes. At time instance n, U
(n)
1 and U

(n)
2 are modulated

independently of one another to carrier signals s
(n)
1 and s

(n)
2 , respectively, across two

independent AWGN memoryless channels having Gaussian noise processes {N (n)
1 }

and {N (n)
2 }, where N

(n)
1 and N

(n)
2 have zero mean and variance σ2

1 and σ2
2, respec-

tively, for all n. For joint MAP detection at time instance n, the received pair is

given by (R
(n)
1 , R

(n)
2 ), where R

(n)
i = s

(n)
i + N

(n)
i for i = 1, 2. The system model is

depicted in Figure 3.1.

U
(n)
1

U
(n)
2

Transmitter 1

Transmitter 2

s
(n)
1

s
(n)
2

+

+

N
(n)
1

N
(n)
2

R
(n)
1 = s

(n)
1 +N

(n)
1

R
(n)
2 = s

(n)
2 +N

(n)
2

MAP
Detector

(Û
(n)
1 , Û

(n)
2 )

Figure 3.1: Block diagram of the system model.

In this report we use uppercase letters to denote random variables and lowercase

letters to represent the corresponding realizations. The goal of this report is to

determine the optimal energies, which minimize the joint symbol error rate (SER)

under joint MAP detection, for each constellation point used by Transmitters 1 and

2, which do not communicate with one another. We do not necessarily assume

that the transmitters implement identical constellation maps. Lastly, we assume

coherent detection and bandpass modulation and demodulation with no restrictions
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on bandwidth.

3.2 Modulation

The modulation schemes when γ1 = γ2 = 1, γ1 = γ2 = −1, and −γ2 = γ1 = 1

are illustrated in Figures 3.2, 3.3, and 3.4, respectively, where Transmitters 1 and 2

have constellation points s10 =
√
E10γ1, s11 =

√
E11 and s20 =

√
E20γ2, s21 =

√
E21,

respectively. Let S1 = {s10, s11}, and S2 = {s20, s21} be the set of transmission

signals for Transmitters 1 and 2, respectively.

Transmitter 1: ψ
(1)
1

0
√
E11

√
E10

Transmitter 2: ψ
(2)
2

0
√
E21

√
E20

Figure 3.2: Modulation scheme for Transmitter 1 and 2 when γ1 = γ2 = 1.

Transmitter 1: ψ
(1)
1

0
√
E11−

√
E10

Transmitter 2: ψ
(2)
2

0
√
E21−

√
E20

Figure 3.3: Modulation scheme for Transmitter 1 and 2 when γ1 = γ2 = −1.

Transmitter 1: ψ
(1)
1

0
√
E11

√
E10

Transmitter 2: ψ
(2)
2

0
√
E21−

√
E20

Figure 3.4: Modulation scheme for Transmitter 1 and 2 when γ1 = −γ2 = 1.
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3.3 Full Description of the Source

We need only three terms to describe the i.i.d. binary correlated source {(U (n)
1 , U

(n)
2 }.

First, by definition

ρ = Cor(U
(n)
1 , U

(n)
2 ) =

Cov(U
(n)
1 U

(n)
2 )√

Var(U
(n)
1 )Var(U

(n)
2 )

where Cor(U
(n)
1 , U

(n)
2 ) is the correlation coefficient between U

(n)
1 and U

(n)
2 , Cov(U

(n)
1 , U

(n)
2 )

is the covariance of U
(n)
1 and U

(n)
2 , and Var(U

(n)
i ) is the variance of U

(n)
i for i = 1, 2

and all n. Letting p11 = P (U1 = 1, U2 = 1) and recalling 1 − p1 = P (U1 = 1), and

1− p2 = P (U2 = 1), we have

Cov(U
(n)
1 , U

(n)
2 ) = E[U

(n)
1 U

(n)
2 ]− E[U

(n)
1 ]E[U

(n)
2 ]

= P (U
(n)
1 = 1, U

(n)
2 = 1)− P (U

(n)
1 = 1)P (U

(n)
2 = 1)

= p11 − (1− p1)(1− p2)

and

Var(U
(n)
1 ) = E[(U

(n)
1 )2]− E[U

(n)
1 ]2

= P (U
(n)
1 = 1)− P (U

(n)
1 = 1)2

= p1(1− p1).

Similarly,

Var(U
(n)
2 ) = p2(1− p2).

Thus,

ρ =
p11 − (1− p1)(1− p2)√
p1(1− p1)p2(1− p2)



3.4. MAP DETECTION 15

and

p11 = ρ
√
p1(1− p1)p2(1− p2) + (1− p1)(1− p2).

Thus, the joint probability mass function (PMF) of the two-dimensional binary

source {(U (n)
1 , U

(n)
2 } is given by

pU1,U2(u1, u2) =



1− (1− p1)− (1− p2) + p11, if u1 = u2 = 0,

(1− p1)− p11, if u1 = 1, u2 = 0,

(1− p2)− p11, if u1 = 0, u2 = 1,

p11, if u1 = u2 = 1.

Thus, we need only p1, p2 and one of ρ or p11 to fully describe our source.

3.4 MAP Detection

By assumption our system is memoryless, so to ease the notation the time indexing

will be dropped. To find the MAP decision rule we consider (2.1), written out for

our system:

(ŝ1, ŝ2) = arg max
(s1,s2)∈S1×S2

P (S1 = s1, S2 = s2|r1, r2)

where si ∈ Si is a modulated constellation point for i = 1, 2. The above can be

written more compactly as

ŝ = arg max
s∈S1×S2

P (s|r) (3.1)

where ŝ ∈ S1×S2 is the detected constellation point pair and r = (r1, r2) is the pair

of received values from the channel. Using Bayes’ rule

ŝ = arg max
s∈S1×S2

fR1,R2|S1,S2(r|s)P ((S1, S2) = s)

fR1,R2(r)
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where fR1,R2|S1,S2(r|s) is the conditional PDF of r given s and P ((S1, S2) = s) is

the a priori probability that the pair s was transmitted. Hence, P ((S1, S2) = s) =

pU1,U2(c(s1), c(s2)), where c( · ) is the constellation mapping function, which takes

transmission signals and maps them to binary digits, i.e., c(sij) = j, for i ∈ {1, 2}

and j ∈ {0, 1}. Further, fR1,R2(r) is the pdf of the received values; however, having

no dependence on s this term has no effect on the maximization, and can be dropped.

Thus,

ŝ = arg max
s∈S1×S2

fR1,R2|S1,S2(r|s)pU1,U2(c(s1), c(s2)).

Recall that the AWGN terms N1 and N2 are independent. Consequently, given s1,

and s2, R1 and R2 are conditionally independent. Thus, from the above

ŝ = arg max
s∈S1×S2

e
− (r1−s1)

2

2σ21
− (r2−s2)

2

2σ22 pU1,U2(c(s1), c(s2))

= arg max
s∈S1×S2

e
− (r1−s1)

2

2σ21 e
− (r2−s2)

2

2σ22 pU1,U2(c(s1), c(s2)).

Further, taking the natural logarithm, a strictly increasing function, of the above

expression, we obtain

ŝ = arg max
s∈S1×S2

ln

[
e
− (r1−s1)

2

2σ21 e
− (r2−s2)

2

2σ22 pU1,U2(c(s1), c(s2))

]

= arg max
s∈S1×S2

[
ln pU1,U2(c(s1), c(s2))−

r21 + s21 − 2r1s1
2σ2

1

− r22 + s22 − 2r2s2
2σ2

1

]
.

Lastly, the terms r21 and r22 do no influence the maximization and so can be dropped.

Thus,

ŝ = arg max
s∈S1×S2

[
ln pU1,U2(c(s1), c(s2))−

s21 − 2r1s1
2σ2

1

− s22 − 2r2s2
2σ2

1

]
(3.2)

is the MAP detection rule. We note that s21 = E1i and s22 = E2j, the energies of the

respective signals, where i, j ∈ {0, 1}.
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3.5 Probability of Error

Using the MAP detection rule derived in the previous section, we now determine

the probability of symbol error. Let e denote the error event, i.e., the event that

ŝ = (ŝ1, ŝ2) 6= (s1, s2) = s. We are interested in determining P (e) = Pr{ŝ 6= s} =

1− Pr{ŝ = s}, which from Bayes’ rule can be written as

P (e) = 1−
∑

s∈S1×S2

P (ŝ = s|s)P (s) (3.3)

where P (ŝ = s|s) is the probability of correct detection given that s ∈ S1 × S2 was

sent and P (s) is the a priori probability of the pair contained in s. We wish to write

P (ŝ = s|s) in terms of the MAP decision rule. Let

h(s) = h(s1, s2) = ln pU1,U2(c(s1), c(s2))−
s21 − 2R1s1

2σ2
1

− s22 − 2R2s2
2σ2

2

(note that since Ri = si + Ni for i = 1, 2, h(s) is a random variable). Now let us

consider the case when s = (s10, s20), then

P (ŝ = s|s = (s10, s20)) = P

(
h(s10, s20) = max

(s1,s2)∈S1×S2
h(s1, s2)

∣∣∣s = (s10, s20)

)
.

However, it will be convenient to express the above probability without the ‘max’

operation. Consider,

P

(
h(s10, s20) = max

(s1,s2)
h(s1, s2)

∣∣∣∣s = (s10, s20)

)
= P

(
h(s10, s20) ≥ h(s11, s20),

h(s10, s20) ≥ h(s11, s21),
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h(s10, s20) ≥ h(s10, s21)

∣∣∣∣s = (s10, s20)

)
= P

(
h(s11, s20)− h(s10, s20) ≤ 0,

h(s11, s21)− h(s10, s20) ≤ 0,

h(s10, s21)− h(s10, s20) ≤ 0

∣∣∣∣s = (s10, s20)

)
.

Note that h(s1, s2) will follow a Gaussian distribution since N1 and N2 are Gaussian.

The difference h(s)−h(t) where s, t ∈ S1×S2 such that s 6= t will also be Gaussian.

Letting,

X1 = h(s11, s20)− h(s10, s20) (3.4)

X2 = h(s11, s21)− h(s10, s20) (3.5)

X3 = h(s10, s21)− h(s10, s20). (3.6)

yields

X1 = ln pU1,U2(c(s11), c(s20))−
E11 − 2R1s11

2σ2
1

− E20 − 2R2s20
2σ2

2

−
[
ln pU1,U2(c(s10), c(s20))−

E10 − 2R1s10
2σ2

1

− E20 − 2R2s20
2σ2

2

]
= ln

pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+
E10 + 2R1s11 − E11 − 2R1s10

2σ2
1

= ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+
E10 − E11 + 2(s11 − s10)R1

2σ2
1

= ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

R1
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where R1 = s10 + N1 follows a N(s10, σ
2
1) distribution, where N(a, b) denotes a

Gaussian random variable with mean a and variance b, since s = (s10, s20). Thus,

µX1 = E[X1] = ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

s10,

σ2
X1

= Var(X1) =

(
s10 − s11

σ2
1

)2

Var(R1) =
(s11 − s10)2

σ2
1

.

Hence, X1 follows a N(µX1 , σ
2
X1

) distribution. A similar calculation shows X3 follows

a N(µX3 , σ
2
X3

) distribution where

µX3 = E[X3] = ln
pU1,U2(c(s10), c(s21))

pU1,U2(c(s10), c(s20))
+
E20 − E21

2σ2
2

+
s21 − s20

σ2
2

s20,

σ2
X3

= Var(X3) =

(
s20 − s21

σ2
2

)2

Var(R2) =
(s21 − s20)2

σ2
2

.

Now, X2 can be expressed in terms of X1 and X3. Indeed,

X2 = ln pU1,U2(c(s11), c(s21))−
E11 − 2R1s11

2σ2
1

− E21 − 2R2s21
2σ2

2

−
[
ln pU1,U2(c(s10), c(s20))−

E10 − 2R1s10
2σ2

1

− E20 − 2R2s20
2σ2

2

]
= ln

pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s20))
+
E10 − E11

2σ2
1

+
E20 − E21

2σ2
2

+
s11 − s10

σ2
1

R1 +
s21 − s20

σ2
2

R2

= ln
pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s20))
+
E10 − E11

2σ2
1

+
E20 − E21

2σ2
2

+
s11 − s10

σ2
1

R1 +
s21 − s20

σ2
2

R2

= ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

R1 − ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))

+ ln
pU1,U2(c(s10), c(s21))

pU1,U2(c(s10), c(s20))
+
E20 − E21

2σ2
2

+
s21 − s20

σ2
2

R2

− ln
pU1,U2(c(s10), c(s21))

pU1,U2(c(s10), c(s20))
+ ln

pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s20))
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= X1 − ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))
+X3 − ln

pU1,U2(c(s10), c(s21))

pU1,U2(c(s10), c(s20))

+ ln
pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s20))

= X1 +X3 − ln pU1,U2(c(s11), c(s20)) + ln pU1,U2(c(s10), c(s20))

− ln pU1,U2(c(s10), c(s21)) + ln pU1,U2(c(s10), c(s20))

+ ln pU1,U2(c(s11), c(s21))− ln pU1,U2(c(s10), c(s20))

= X1 +X3 + ln
pU1,U2(c(s10), c(s20))pU1,U2(c(s11), c(s21))

pU1,U2(c(s11), c(s20))pU1,U2(c(s10), c(s21))

To ease notation let

α = ln
pU1,U2(c(s10), c(s20))pU1,U2(c(s11), c(s21))

pU1,U2(c(s11), c(s20))pU1,U2(c(s10), c(s21))
. (3.7)

Thus,

P (ŝ = s|s = (s10, s20)) = P

(
h(s10, s20) = max

(s1,s2)
h(s1, s2)

∣∣∣∣s = (s10, s20)

)
= P (X1 ≤ 0, X2 ≤ 0, X3 ≤ 0|s = (s10, s20))

= P (X1 ≤ 0, X1 +X3 + α ≤ 0, X3 ≤ 0|s = (s10, s20)).

For α > 0 the joint event {X1 ≤ 0, X1 + X3 + α ≤ 0, X3 ≤ 0|s = (s10, s20)} can be

represented as a region in the (x1, x3)-plane as shown in the Figure 3.5. Thus,

P (X1 < 0, X1 +X3 + α < 0, X3 < 0|s = (s10, s20))

=

∫ 0

−∞

∫ 0

−∞
fX1,X3(x1, x3)dx1dx3 −

∫ 0

−α

∫ 0

−x3−α
fX1,X3(x1, x3)dx1dx3.

where fX1,X3(x1, x3) is the joint pdf of X1 and X3. To determine this density, we

note X1 and X3 are independent since X1 and X3 are functions of the independent
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x3

x1

x1 = −x3 − α

Figure 3.5: Error event when s = (s10, s20) in the (x1, x3)-plane.

random variables N1 and N2, respectively. Hence

fX1,X3(x1, x3) =
1

2πσX1σX3

exp

{
−1

2

[
(x1 − µX1)

2

σ2
X1

+
(x3 − µX3)

2

σ2
X3

]}
.

As a final step step, since X1 and X3 are independent and letting

∆X =

∫ 0

−α

∫ 0

−x3−α
fX1,X3(x1, x3)dx1dx3,

we write

P (ŝ = s|s = (s10, s20)) = Q

(
µX1

σX1

)
Q

(
µX3

σX3

)
−∆X . (3.8)

Note that if −α > 0, then ∆X = 0. When s = (s11, s21), s = (s10, s21), and

s = (s11, s20) the results are analogous to those above. A summary is presented

below:
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Case 1: s = (s11, s21)

In this case (3.8) is written as

P (ŝ = s|s = (s11, s21)) = Q

(
µY1
σY1

)
Q

(
µY3
σY3

)
−∆Y

where

µY1 = E[Y1] = ln
pU1,U2(c(s10), c(s21))

pU1,U2(c(s11), c(s21))
+
E11 − E10

2σ2
1

+
s10 − s11

σ2
1

s11

µY3 = E[Y3] = ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s11), c(s21))
+
E21 − E20

2σ2
2

+
s20 − s21

σ2
2

s21

σ2
Y1

= Var(Y1) =
(s10 − s11)2

σ2
1

σ2
Y3

= Var(Y3) =
(s20 − s21)2

σ2
2

and

∆Y =


∫ 0

−α

∫ 0

−y3−α fY1,Y3(y1, y3)dy1dy3 if α > 0

0 otherwise

where

fY1,Y3(y1, y3) =
1

2πσY1σY3
exp

{
−1

2

[
(y1 − µY1)2

σ2
Y1

+
(y3 − µY3)2

σ2
Y3

]}
.

Case 2: s = (s10, s21)

In this case (3.8) is written as

P (ŝ = s|s = (s10, s21)) = Q

(
µZ1

σZ1

)
Q

(
µZ3

σZ3

)
−∆Z
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where

µZ1 = E[Z1] = ln
pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s21))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

s10

µZ3 = E[Z3] = ln
pU1,U2(c(s10), c(s20))

pU1,U2(c(s10), c(s21))
+
E21 − E20

2σ2
2

+
s20 − s21

σ2
2

s21

σ2
Z1

= Var(Z1) =
(s11 − s10)2

σ2
1

σ2
Z3

= Var(Z3) =
(s20 − s21)2

σ2
2

and

∆Z =


∫ 0

α

∫ 0

−z3+α fZ1,Z3(z1, z3)dz1dz3 if α < 0

0 otherwise

where

fZ1,Z3(z1, z3) =
1

2πσZ1σZ3

exp

{
−1

2

[
(z1 − µZ1)

2

σ2
Z1

+
(z3 − µZ3)

2

σ2
Z3

]}
.

See Appendix A for an explanation on why ∆Z = 0 for α > 0 as opposed to ∆X =

∆Y = 0 if α ≤ 0.

Case 3: s = (s11, s20)

In this case (3.8) is written as

P (ŝ = s|s = (s11, s20)) = Q

(
µW1

σW1

)
Q

(
µW3

σW3

)
−∆W

where

µW1 = E[W1] = ln
pU1,U2(c(s10), c(s20))

pU1,U2(c(s11), c(s20))
+
E11 − E10

2σ2
1

+
s10 − s11

σ2
1

s11
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µW3 = E[W3] = ln
pU1,U2(c(s11), c(s21))

pU1,U2(c(s11), c(s20))
+
E20 − E21

2σ2
2

+
s21 − s20

σ2
2

s20

σ2
W1

= Var(W1) =
(s10 − s11)2

σ2
1

σ2
W3

= Var(W3) =
(s21 − s20)2

σ2
2

and

∆W =


∫ 0

α

∫ 0

−w3+α
fW1,W3(w1, w3)dw1dw3 if α < 0

0 otherwise

where

fW1,W3(w1, w3) =
1

2πσW1σW3

exp

{
−1

2

[
(w1 − µW1)

2

σ2
W1

+
(w3 − µW3)

2

σ2
W3

]}
.

Again, see Appendix A for the sign change in α.

Finally, the probability of error as seen in (3.3) is given as

P (e) = 1−
[
Q

(
µX1

σX1

)
Q

(
µX3

σX3

)
−∆X

]
pU1,U2(c(s10), c(s20))

−
[
Q

(
µY1
σY1

)
Q

(
µY3
σY3

)
−∆Y

]
pU1,U2(c(s11), c(s21))

−
[
Q

(
µZ1

σZ1

)
Q

(
µZ3

σZ3

)
−∆Z

]
pU1,U2(c(s10), c(s21))

−
[
Q

(
µW1

σW1

)
Q

(
µW3

σW3

)
−∆W

]
pU1,U2(c(s11), c(s20)). (3.9)

Remark: Letting p1 = p2 = p, p11 = (1− p)2, E1 = E2, and γ1 = γ2 we have that

P (e) = 1− P (ŝ = s)

= 1− P (ŝ1 = s1, s2 = s2)

= 1− [P (ŝ1 = s1)]
2
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by the orthogonality of the channels and the symmetry of the transmitters and

since in this case U1 and U2 become independendent of each other with identical

distribution vector given by (p, 1 − p) (i.e., the two-dimensional source reduces to

two independent Bernoulli(p) sources). From here the probability of error can be

calculated as

P (e) = 1− [P (ŝ1 = s1)]
2

= 1− [P (ŝ1 = s1|s1 = s11)P (s1 = s11) + P (ŝ1 = s1|s1 = s10)P (s1 = s10)]
2

= 1− [P (ŝ1 = s1|s1 = s11)(1− p) + P (ŝ1 = s1|s1 = s10)p]
2.

Lastly, notice that P (ŝ1 = s1|s1 = s11)(1 − p) + P (ŝ1 = s1|s1 = s10)p is exactly the

expression seen in (2.3), namely the BEP in [1].

3.6 Union Bound on the Probability of Error

From [2] the union bound gives

P (e) =
∑

s∈S1×S2

P (e|s)P (s) ≤
∑

s∈S1×S2

∑
s̃ 6=s

P (es̃s)P (s) =
∑

s∈S1×S2

P (s)
∑
s̃ 6=s

P (es̃s)

where for s̃, s ∈ S1 × S2, es̃s is the event that s̃ has a higher MAP metric than s,

given that s was transmitted, i.e.,

P (es̃s) = P (h(s̃) > h(s)).

Now, letting s = (s10, s20), we have

∑
s̃ 6=s

P (es̃s) = P (h(s11, s20) > h(s10, s20))
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+ P (h(s11, s21) > h(s10, s20))

+ P (h(s10, s21) > h(s10, s20))

= 1− P (h(s11, s20)− h(s10, s20) < 0)

+ 1− P (h(s11, s21)− h(s10, s20) < 0)

+ 1− P (h(s10, s21)− h(s10, s20) < 0)

= 1− P (X1 < 0) + 1− P (X2 < 0) + 1− P (X3 < 0) (3.10)

where X1, X2, and X3 are as before, given in (3.4), (3.5), and (3.5), respectively.

Recall that X2 = X1 +X3 + α, where X1 and X3 are independent. Thus,

P (X1 < 0) = Q

(
µX1

σX1

)
P (X3 < 0) = Q

(
µX3

σX3

)
.

Further,

P (X2 < 0) = Q

µX1 + µX3 + αX√
σ2
X1

+ σ2
X3


since

E[X1 +X3 + α] = E[X1] + E[X3] + α = µX1 + µX3 + α

and

Var(X2) = Var(X1 +X3) = Var(X1) + Var(X3) = σ2
X1

+ σ2
X3

by independence of X1 and X3. Thus, we can write (3.10) as

∑
s̃ 6=s

P (es̃s) =

(
1−Q

(
µX1

σX1

))
+

1−Q

µX1 + µX3 + αX√
σ2
X1

+ σ2
X3

+

(
1−Q

(
µX3

σX2

))
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= 3−Q
(
µX1

σX1

)
−Q

µX1 + µX3 + αX√
σ2
X1

+ σ2
X3

−Q(µX3

σX2

)

The cases for letting s = (s11, s21), s = (s10, s21), and s = (s11, s20), are analogously

derived. We obtain

P (e) =
∑

s∈S1×S2

P (e|s)P (s)

≤
∑

s∈S1×S2

P (s)
∑
s̃ 6=s

P (es̃s)

=

3−Q
(
µX1

σX1

)
−Q

µX1 + µX3 + α√
σ2
X1

+ σ2
X3

−Q(µX3

σX3

)P (c(s10), c(s20))

+

3−Q
(
µY1
σY1

)
−Q

µY1 + µY3 + α√
σ2
Y1

+ σ2
Y3

−Q(µY3
σY3

)P (c(s11), c(s21))

+

3−Q
(
µZ1

σZ1

)
−Q

µZ1 + µZ3 − α√
σ2
Z1

+ σ2
Z3

−Q(µZ3

σZ3

)P (c(s10), c(s21))

+

3−Q
(
µW1

σW1

)
−Q

µW1 + µW3 − α√
σ2
W1

+ σ2
W3

−Q(µW3

σW3

)P (c(s11), c(s20)).

(3.11)

Lastly, we will denote (3.11) as PUB(e).
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Chapter 4

Optimization of Signal Energies and Numerical

Results

4.1 Verification of Probability of Error Derivation

To confirm the validity of the probability of error result derived in Chapter 3, we will

compare simulation results to error probabilities obtained from (3.9). We assume for

Sections 4.1–4.4 that γ1 = γ2 = γ ∈ {−1, 1}. Moreover, we will include the union

bound in the comparison. Consider the error probability plots when γ = 1 and

γ = −1 in Figures 4.1 and 4.2 respectively. In this report we use the signal to noise

ratio (SNR) defined in [6], namely

SNR =
E1 + E2

σ2
1 + σ2

2

. (4.1)

For these simulations, 4×106 of source data pairs were transmitted, and σ1 = σ2 = 2,

E1 and E2 were varied from 2 to 20. Further we used p1 = p2 = 0.1 and ρ = 0.9.

As one can see from Figures 4.1 and 4.2, the simulation and error probabilities

obtained from (3.9) coincide. Also, as is expected the union bound, (3.11), provides

a rather tight upper bound on the probability of error.
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Figure 4.1: Error probability plots for γ = 1.

4.2 Numerical Optimization of E10 and E20

At this point it seems unclear wether or not the optimal energy allocation, which

minimize P (e) (given in (3.9)) of our system will match [1]. On one hand the MAP

detection depends on the correlation coefficient of the source sample pairs. On the

other hand, the transmitters have no way of cooperating.

As a first step to optimization we consider numeric analysis of (3.9). For γ = 1,

consider Figures 4.3 and 4.4, where we set E1 = E2 and 2E1 = E2, respectively. For

γ = −1, consider Figures 4.5 and 4.6 for cases E1 = E2 and 2E1 = E2, respectively.

In all four figures, ‘∗’ denotes the location of the numerically determined minimum.

In all figures in this section we chose, p1 = p2 = 0.1, and ρ = 0.9. For Figures 4.3–4.6,
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Figure 4.2: Error probability plots for γ = −1.

σ1 = σ2 = 4. For Figures 4.3 and 4.5, E1 = E2 = 10, whereas for Figures 4.4 and 4.6

E1 = 10 and E2 = 20. In Tables 4.1 and 4.2 we give a comparison of the results of

[1] and our numerical experiments, for γ = 1 and γ = −1, respectively. From these

tables we can deduce for these particular values that the optimal energies of our

system coincide with the results from [1] (or see (2.5) and (2.6)–(2.7)). For a more

complete picture consider, for γ = 1, Figures 4.7 and 4.8 corresponding to E1 = E2

and 2E1 = E2, respectively, and for γ = −1, Figures 4.9 and 4.10 corresponding

to E1 = E2 and 2E1 = E2, respectively. For Figures 4.7-4.10, E1 ∈ [2, 20] and

σ1 = σ2 = 2. These figures show the optimal values for E10 and E20 as functions

of SNR. For comparison purposes we also plotted in Figures 4.7-4.10 the curves

representing the analytic results from [1]. In Figures 4.7-4.10 we see that for all SNR
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Figure 4.3: Numerical optimization when γ = 1 and E1 = E2.

Numerically
optimal E10

E10 from [1]
Numerically
optimal E20

E20 from [1]

γ = 1 100 100 100 100
γ = −1 90 90 90 90

Table 4.1: Comparison of our numerical optimization results and [1] for E10 and E20

when E1 = E2.

values the optimal values for E10 and E20 coincide with the results from [1].
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Figure 4.4: Numerical optimization when γ = 1 and 2E1 = E2.

Numerically
optimal E10

E10 from [1]
Numerically
optimal E20

E20 from [1]

γ = 1 100 100 200 200
γ = −1 90 90 180 180

Table 4.2: Comparison of our numerical optimization results and [1] for E10 and E20

when 2E1 = E2.
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Figure 4.5: Numerical optimization when γ = −1 and E1 = E2.

4.3 Analytical Optimization of E10 and E20

In the previous section it was numerically demonstrated that the optimal energies

for E10 and E20 match the results of [1]. However, the terms ∆V for V = X, Y, Z,W

in the probability of error expression (3.9) are hard to handle when analytical op-

timizing. To work around this, first we will show that limσ1,σ2→0 PUB(e) = 0, to

verify (3.11) in the asymptotically high SNR regime. Then, we analytically optimize

PUB(e).
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Figure 4.6: Numerical optimization when γ = −1 and 2E1 = E2.

4.3.1 Union Error Bound Vanishes with Increasing SNR

Considering (3.11) and letting

λX1 = ln[pU1,U2(c(s11), c(s20))/pU1,U2(c(s10), c(s20))]

we note

µX1

σX1

=
λX1σ1√

(s11 − s10)2
+

E10 − E11

2σ1
√

(s11 − s10)2
+

s11 − s10
σ1
√

(s11 − s10)2
s10 (4.2)

where

s10 =
√
E10γ, s11 =

√
E11, and E11 =

E1 − E10p1
1− p1

.
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Figure 4.7: Numerical optimization vs. results in [1] when γ = 1 and E10 = E20.

Combining this with (4.2) yields

µX1

σX1

=
λX1σ1√(√

E1−E10p1
1−p1 −

√
E10γ

)2
+
E10 − E1−E10p1

1−p1 + 2
(√

E1−E10p1
1−p1 −

√
E10γ

)√
E10γ

2σ1

√(√
E1−E10p1

1−p1 −
√
E10γ

)2 .

The numerator of the second summation term is

E10 −
E1 − E10p1

1− p1
+ 2

(√
E1 − E10p1

1− p1
−
√
E10γ

)√
E10γ
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Figure 4.8: Numerical optimization vs. results in [1] when γ = 1 and 2E10 = E20.

= E10 −
E1 − E10p1

1− p1
+ 2
√
E10

√
E1 − E10p1

1− p1
γ − 2E10

= −

(√
E10γ −

√
E1 − E10p1

1− p1

)2

.

Letting

A1 =

(√
E10γ −

√
E1−E10p1

1−p1

)2
σ2
1

we can write

µX1

σX1

=
λX1√
A1

−
√
A1

2
.
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Figure 4.9: Numerical optimization vs. results in [1] when γ = −1 and E10 = E20.

A similar derivation shows

µX3

σX3

=
λX3√
A2

−
√
A2

2

where

A2 =

(√
E20γ −

√
E2−E20p2

1−p2

)2
σ2
2

and λX3 = ln
pU1,U2(c(s10), c(s21))

pU1,U2(c(s10), c(s20))
.

Further, looking separately at the numerator and denominator of

µX1 + µX3 + α√
σ2
X1

+ σ2
X3

,
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Figure 4.10: Numerical optimization vs. results in [1] when γ = −1 and 2E10 = E20.

we find

µX1 + µX3 + α =
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

s10 +
E20 − E21

2σ2
2

+
s21 − s20

σ2
2

s20

+ λX1 + λX3 + α

=
E10 − E1−E10p1

1−p1 + 2
(√

E1−E10p1
1−p1 −

√
E10γ

)√
E10γ

2σ2
1

+
E20 − E2−E20p2

1−p2 + 2
(√

E2−E20p2
1−p2 −

√
E20γ

)√
E20γ

2σ2
2

+ λX1 + λX3 + α

= −A1 + A2

2
+ λX1 + λX3 + α,
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and

√
σ2
X1

+ σ2
X3

=

√
(s11 − s10)2

σ2
1

+
(s21 − s20)2

σ2
2

=

√√√√(√E10γ −
√

E1−E10p1
1−p1

)2
σ2
1

+

(√
E20γ −

√
E2−E20p2

1−p2

)2
σ2
2

=
√
A1 + A2.

Hence

µX1 + µX3 + α√
σ2
X1

+ σ2
X3

=
λX1 + λX3 + α√

A1 + A2

−
√
A1 + A2

2
.

Further, analogous arguments show that

µY1
σY1

=
λY1√
A1

−
√
A1

2

µY3
σY3

=
λY3√
A2

−
√
A2

2

µY1 + µY3 + α√
σ2
Y1

+ σ2
Y3

=
λY1 + λY3 + α√

A1 + A2

−
√
A1 + A2

2

where

λY1 = ln[pU1,U2(c(s10), c(s21)))/(pU1,U2(c(s11), c(s21)))]

λY3 = ln[pU1,U2(c(s11), c(s20)))/(pU1,U2(c(s11), c(s21))].

Note that, written in terms of A1 or A2, µZ1/σZ1 and µZ3/σZ3 are analogous to

µY1/σY1 and µX3/σY1 , respectively. Similarly, µW1/σW1 and µW3/σW3 are analo-

gous to µY1/σY1 and µX3/σX3 , respectively. Lastly, the derivations of (µZ1 + µZ3 −

α)/(
√
σ2
Z1

+ σ2
Z3

) and (µW1 +µW3 −α)/(
√
σ2
W1

+ σ2
W3

) are both analogous to (µX1 +



4.3. ANALYTICAL OPTIMIZATION OF E10 AND E20 40

µX3 + α)/(
√
σ2
X1

+ σ2
X3

). Thus, we can write (3.11) as

PUB(e) =

[
3−Q

(
λX1√
A1

−
√
A1

2

)
−Q

(
λX3√
A2

−
√
A2

2

)
−Q

(
λX1 + λX3 + α√

A1 + A2

−
√
A1 + A2

2

)]
P (c(s10), c(s20))

+

[
3−Q

(
λY1√
A1

−
√
A1

2

)
−Q

(
λY3√
A2

−
√
A1

2

)
−Q

(
λY1 + λY3 + α√

A1 + A2

−
√
A1 + A2

2

)]
P (c(s11), c(s21))

+

[
3−Q

(
λZ1√
A1

−
√
A1

2

)
−Q

(
λZ3√
A2

−
√
A1

2

)
−Q

(
λZ1 + λZ3 − α√

A1 + A2

−
√
A1 + A2

2

)]
P (c(s10), c(s21))

+

[
3−Q

(
λW1√
A1

−
√
A1

2

)
−Q

(
λW3√
A2

−
√
A1

2

)
−Q

(
λW1 + λW3 − α√

A1 + A2

−
√
A1 + A2

2

)]
P (c(s11), c(s20)) (4.3)

where

λZ1 = ln[(pU1,U2(c(s11), c(s21)))/(pU1,U2(c(s10), c(s21)))]

λZ3 = ln[(pU1,U2(c(s10), c(s20)))/(pU1,U2(c(s10), c(s21)))]

λW1 = ln[(pU1,U2(c(s10), c(s20)))/(pU1,U2(c(s11), c(s20)))]

λW3 = ln[(pU1,U2(c(s11), c(s21)))/(pU1,U2(c(s11), c(s20)))]

When showing (4.3) vanishes as SNR increased, we also show (3.9) vanishes, since

recalling 0 ≤ P (e) ≤ PUB(e). Looking at the terms in (4.3), we have

lim
σ1,σ2→0

[
3−Q

(
λV1√
A1

−
√
A1

2

)
−Q

(
λXV 3√
A2

−
√
A2

2

)
−Q

(
λV1 + λV3 ± α√

A1 + A2

−
√
A1 + A2

2

)]
= 0.
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since as σ1, σ2 → 0, A1, A2 →∞, and as A1, A2 →∞, (λV1/
√
A1)−(

√
A1/2)→ −∞,

(λV3/
√
A2)−(

√
A2/2)→ −∞, and (µV1 +µV3±α)/(

√
σ2
V1

+ σ2
V3

)−(
√
σ2
V1

+ σ2
V3

)/2→

−∞ for V = X, Y Z,W . Lastly, note that limx→−∞Q(x) = 1. Thus,

lim
σ1,σ2→0

P (e) = lim
σ1,σ2→0

PUB(e) = 0.

4.3.2 Analytical Optimization of the Union Error Bound

Now, to minimize (3.11) we must maximize A1 and A2 with respect to E10 and E20,

respectively, by the same reasoning used to conclude that limσ1,σ2→0 PUB(e) = 0. We

have

∂A1

∂E10

=
2A1

σ2
1

 γ√
E10

− p1

(1− p1)
√

E1−p1E10

1−p1


∂2A1

∂E2
10

=
2

σ2
1

γE2
1

√
E1−p1E10

1−p1

2E
3/2
10 (E1 − p1E10)2

.

Thus, for γ = 1, A1 is a convex function with respect to E10. As such the maximum

will occur on a boundary point (recall that E10 ∈ [0, E1/p1]). Evaluating A1 at

the boundary points shows the maximum occurs at E1/p1. When γ = −1, A1 is a

concave function in E10; thus, solving

∂A1

∂E10

=
A1

σ2
1

 γ√
E10

− p1

(1− p1)
√

E1−p1E10

1−p1

 = 0

shows the maximum occurs when

E10 =
E1(1− p1)

p1
.
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Hence, the results for E10 when γ = 1 and γ = −1 exactly coincide with (2.5) and

(2.6), respectively. A similar analysis of A2 yields the same results for E20. Thus,

analytic optimization of the union bound gives energy values which coincide with [1].

4.4 Performance Comparison

Since the optimal energies for our system coincide with that of [1]—the single-user

case—it is interesting to examine if there exists a performance increase when using

the optimal scheme from this report. To explore this question we consider three

other modulation schemes. Recall from Chapter 3 that to fully describe the source

we need P (U1 = 0) = p1, P (U2 = 0) = p2 and one of ρ or p11 = P (U1 = 1, U2 = 1).

The three schemes make different assumptions about the source statistics, although

all schemes use the same source data; see Table 4.3 for detailed descriptions of the

schemes. All schemes employ joint MAP detection at the demodulator, although for

Schemes 1 and 2 this joint detection translates into parallel (single-user) detection.

It is important to note that Scheme 2 is two independent systems implementing

the signalling schemes of [1] (here independence implies a correlation coefficient of

zero). Further, note that Scheme 4 represents our system studied in Chapter 3 and

Sections 4.1-4.3. Constellation points are determined using (2.5), (2.6), and (2.7).

Lastly, modulation schemes prefaced with ‘parallel’ imply the use of two single-user

detectors.

The values used in the simulations are: σ1 = σ2 = 2 and E1 ∈ [2, 20]. In Figures

4.13 and 4.16, E2 = 2 for all trials. Further, p1 = p2 = 0.1 and ρ = 0.9 unless

otherwise specified by Table 4.3. Lastly, 4 × 106 source data pairs are transmitted

for each curve.

Using the optimal energy allocation derived in the previous section, we consider

the following simulation setup: for γ = 1, Figures 4.11 and 4.12 use E1 = E2 and
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2E1 = E2, respectively. Further, in Figure 4.13, E2 is a constant; in this case we

observe the behaviour of the schemes when E1 ≈ E2 at low SNR and E1 � E2 at

high SNR. Similarly, for γ = −1, Figures 4.14, 4.15, and 4.16 use E1 = E2, 2E1 = E2,

and E2 held constant, respectively.

From the figures in this section, the use of the optimal energy allocation used in

Schemes 2 and 4 improves performance so long as E1 6� E2 (see Figures 4.11-4.12

and 4.14-4.15). Further, in all scenarios Scheme 4 outperforms Schemes 1-3, since

this scheme implements optimal energies and has knowledge of the source statistics

in full. The possible gains, in terms of dB, using Scheme 4 over Schemes 1-3 are seen

in Table 4.5.

In Figures 4.13 and 4.16 there is a SNR value in which Scheme 3 begins to perform

better than Scheme 2. Recall, in these plots E2 is constant. For arguments sake let

us assume the source pair (1, 1) is transmitted (since it is the most often transmitted

signal at 89.1 percent) and Transmitter 1 communicates without error. Also take

γ = 1. When SNR = 6 dB, then E1 = 46 dB, the MAP detection for Scheme 2

fails when N2 > 2.11σ2, while MAP detection for Scheme 3 does not. However,

when SNR = 1 dB, then E2 = 6 dB. In this case, when N2 > 2.0σ2 MAP detection

for Scheme 3 fails, whereas for MAP detection is correct of Scheme 2. Thus, low

and high SNR’s influence the MAP metrics of Scheme 2 and 3 differently, and the

performance of these schemes changes accordingly.
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Scheme 1 Scheme 2 Scheme 3 Scheme 4
Known Source

Statistics
None p1 and p2 ρ p1, p2, and ρ

Assumptions of
Unknown Statistics

p1 = p2 = 0.5
and ρ = 0

ρ = 0 p1 = p2 = 0.5 None

γ = 1
Constellation

Points
si0 = 2Ei
si1 = 0

si0 = Ei/pi
si1 = 0

si0 = 2Ei
si1 = 0

si0 = Ei/pi
si1 = 0

Modulation
Scheme

Parallel OOK Parallel OOK Joint OOK Joint OOK

γ = −1
Constellation

Points
si0 = −Ei
si1 = Ei

si0 = −Ei(1−pi)
pi

si1 = Eipi
(1−pi)

si0 = −Ei
si1 = Ei

si0 = −Ei(1−pi)
pi

si1 = Eipi
(1−pi)

Modulation
Scheme

Parallel Antipodal
Signalling

Parallel BPAM
Joint Antipodal

Signalling
Joint BPAM

Table 4.3: Description of the modulation schemes used for a performance comparison. All schemes use the same
source, but different assumptions are made about the source statistics in each scheme.
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Gain from using
Scheme 4 over:

Scheme 1 Scheme 2 Scheme 3

γ = 1
E1 = E2 > 9.87 dB ≈ 0.73 dB > 9.87 dB
2E1 = E2 > 9.87 dB ≈ 0.73 dB ≈ 7.83 dB
E2 = constant > 10.7 dB > 10.7 dB ≈ 8.43 dB

γ = −1
E1 = E2 > 8.25 dB ≈ 0.73 dB ≈ 4.95 dB
2E1 = E2 ≈ 7.83 dB ≈ 0.73 dB ≈ 5.88 dB
E2 = constant > 10.7 dB > 10.7 dB ≈ 7.17 dB

Table 4.4: Summary of gains possible when using our system (Scheme 4) over
Schemes 1-3. Any value marked with a ‘>’ represents the gains are greater
the range of tested SNR values.

4.5 Optimization when γ1 = −γ2

First we note that as seen in Chapter 3 without loss of generality we let γ1 = 1 and

γ2 = −1. Then when performing numerical analysis with the same values seen in

Section 4.2, we find that the optimal values coincide with [1]; consult Table 4.6 for

a comparison of the optimal energy allocation when numerically determined versus

values from [1].

Further, we note that A1 and A2 can be written as follows

A1 =

(√
E10γ1 −

√
E1−E10p1

1−p1

)2
σ2
1

A2 =

(√
E20γ2 −

√
E2−E20p2

1−p2

)2
σ2
2

.

Recall that PUB(e) is minimized when A1 and A2 are maximized. Further, since A1

depends on E1 and E10 only and A2 depends on E2 and E20 only, we can optimize

these independently of one another. Thus, we have that (2.5) maximizes A1 and

(2.6) maximizes A2. Thus, analytically and numerically the optimal energies when

γ1 = 1 and γ2 = −1 coincide with [1].
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Figure 4.11: Comparison of schemes when γ = 1 and E1 = E2.

Gain from using
Scheme 4 over:

Scheme 1 Scheme 2 Scheme 3

γ = 1
E1 = E2 > 9.87 dB ≈ 0.73 dB > 9.87 dB
2E1 = E2 > 9.87 dB ≈ 0.73 dB ≈ 7.83 dB
E2 = constant > 10.7 dB > 10.7 dB ≈ 8.43 dB

γ = −1
E1 = E2 > 8.25 dB ≈ 0.73 dB ≈ 4.95 dB
2E1 = E2 ≈ 7.83 dB ≈ 0.73 dB ≈ 5.88 dB
E2 = constant > 10.7 dB > 10.7 dB ≈ 7.17 dB

Table 4.5: Summary of gains possible when using our system (Scheme 4) over
Schemes 1-3. Any value marked with a ‘>’ represents the gains are greater
the range of tested SNR values.
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Figure 4.12: Comparison of schemes when γ = 1 and 2E1 = E2.

We perform a similar performance comparison for the four schemes described in

the previous section (using the same simulation values); in this case Transmitter 1

implements OOK, and Transmitter 2 implements BPAM. Here there are five possible

scenarios since γ1 = 1 and γ2 = −1. These scenarios are E1 = E2, 2E1 = E2,

E1 = 2E2, E1 is constant and E2 is a constant. However, we only present the best

performing scheme of E1 = E2 and 2E1 = E2. We do the same for the case where

E1 is constant and where E2 is a constant, respectively. Figures 4.17, 4.18, and 4.19

correspond to E1 = E2, 2E1 = E2 and E1 constant, respectively, where we note

that the performance curves are similar to those seen in the previous section. In

particular when E1 is constant we get the crossover in performance between Schemes

2 and 3. The explanation of this crossover in the previous section holds here. Lastly,
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Figure 4.13: Comparison of schemes when γ = 1 and E2 is a constant.

Numerically
optimal E10

E10 from [1]
Numerically
optimal E20

E20 from [1]

E1 = E2 100 90 100 90
2E1 = E2 100 180 100 180
E1 = 2E2 200 90 200 90

Table 4.6: Comparison of our numerical optimization results and [1] for γ1 = 1 and
γ = −1.

note for Figures 4.17, 4.18, and 4.19 our scheme (Scheme 4) performs best, with at

least 0.73 dB, 0.73 dB, and 6.85 dB increase in performance over the other schemes,

respectively.
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Figure 4.14: Comparison of schemes when γ = −1 and E1 = E2.
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Figure 4.15: Comparison of schemes when γ = −1 and 2E1 = E2.



4.5. OPTIMIZATION WHEN γ1 = −γ2 51

−4 −2 0 2 4 6 8
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

SNR (dB)

L
o
g

1
0
 P

(e
)

 

 

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Figure 4.16: Comparison of schemes when γ = −1 and E2 is a constant.
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Figure 4.17: Comparison of schemes when −γ2 = γ1 = 1 and E1 = E2.
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Figure 4.18: Comparison of schemes when −γ2 = γ1 = 1 and 2E1 = E2.
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Figure 4.19: Comparison of schemes when −γ2 = γ1 = 1 and E1 is constant.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this report we have shown that for the orthogonal multiple access Gaussian chan-

nel, with nonequiprobable correlated sources, the optimal transmission energies co-

incide with those seen in [1] for the single-user case. As shown in Chapter 3, three

parameters are needed to describe the source. The optimized OMAGC is compared

to three schemes which vary how many the three source parameters are known. A

gain of at least 0.73 dB is achieved when E1 = E2 or 2E1 = E2, where E1 and E2

are the given average energies of Transmitters 1 and 2, respectfully. When E1 � E2

a gain of at least 7 dB is seen. Further we have shown that our system, which knows

all three parameters of the source, outperforms all those other schemes.

5.2 Future Work

A next step would to be consider arbitrary correlation between basis functions. In

doing so, an interesting alteration could be made to the system model. Namely, one

can replace the orthogonal channels with a ‘additive Gaussian’ channel, where the

two transmitted signals are added to one another and then transmitted across the

channel. In this case there is one noise term. To be specific, using notation from
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Chapter 3, r = s1 + s2 + N , where N is a N(0, σ2) random variable. As in this

document, it would be interesting to see if the optimal energies coincide with [1].
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Appendix A

Complementary Calculations

A.1 Sign Change In α

In Chapter 3, the terms denoted with Z,W cause a sign change in α. Since the two

cases are analogous we consider the terms denoted by Z. Consider

Z1 = ln
pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s21))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

R1

Z3 = ln
pU1,U2(c(s10), c(s20))

pU1,U2(c(s10), c(s21))
+
E21 − E20

2σ2
2

+
s20 − s21

σ2
2

R2

Z2 = ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s21))
+
E10 − E11

2σ2
1

+
s11 − s10

σ2
1

R1

+
E21 − E20

2σ2
2

+
s20 − s21

σ2
2

R2.

Then,

Z2 = ln
pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s21))
+ Z1 − ln

pU1,U2(c(s11), c(s21))

pU1,U2(c(s10), c(s21))

+ Z3 − ln
pU1,U2(c(s10), c(s20))

pU1,U2(c(s10), c(s21))

= Z1 + Z3 + ln pU1,U2(c(s11), c(s20))− ln pU1,U2(c(s10), c(s21))

− ln pU1,U2(c(s11), c(s21)) + ln pU1,U2(c(s10), c(s21))
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− ln pU1,U2(c(s10), c(s20)) + ln pU1,U2(c(s10), c(s21))

= Z1 + Z3 + ln
pU1,U2(c(s10), c(s21))pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))pU1,U2(c(s11), c(s21))
.

However, (3.7) gives

α = ln
pU1,U2(c(s10), c(s20))pU1,U2((c(s11), c(s21))

pU1,U2(c(s11), c(s20))pU1,U2(c(s10), c(s21))
;

then

−α = − ln
pU1,U2(c(s10), c(s20))pU1,U2((c(s11), c(s21))

pU1,U2(c(s11), c(s20))pU1,U2(c(s10), c(s21))

= ln

[
pU1,U2(c(s10), c(s20))pU1,U2((c(s11), c(s21))

pU1,U2(c(s11), c(s20))pU1,U2(c(s10), c(s21))

]−1
= ln

pU1,U2(c(s10), c(s21))pU1,U2(c(s11), c(s20))

pU1,U2(c(s10), c(s20))pU1,U2(c(s11), c(s21))
.

Thus,

Z2 = Z1 + Z3 − α

and by the same reasoning

W2 = W1 +W3 − α.
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