
Reinforcement and Preferential attachment
models via Pólya Urns

by

Somya Singh

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

August 2023

Copyright © Somya Singh, 2023



Abstract

In this thesis, we devise two different types of discrete-time stochastic models using

modified Pólya urn schemes. The first set of models concerns interacting contagion

networks constructed using two-color (red and black) finite memory Pólya urns in

which reinforcing balls are removed M time steps after being added (where M is the

“memory” of the urn). The urns interact in the sense that the probability of drawing a

red ball (which represents an infectious state or an opinion) for a given urn, not only

depends on the ratio of red balls in that urn but also on the ratio of red balls in other

urns in a network representing the interconnections, hence accounting for the effect of

spatial contagion. The finite memory reinforcement provides a diminishing effect of

past draws which represents curing of an infection in an epidemic spread model, or

lessening influence of a popular opinion in a social network. We examine the stochastic

properties of the underlying Markov draw process and construct a class of dynamical

systems to approximate the asymptotic marginal distributions. We also design a

consensus achieving connected network of agents via two-color finite memory Pólya

urns. The interaction between urns is time-varying and is represented via “super-urns”

which combine for each node its own urn with its neighbouring urns. We obtain the

consensus value in terms of the network’s reinforcement parameters and memory.
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In the second part of this thesis, we introduce a novel preferential attachment

model using the draw variables of a modified Pólya urn with an expanding number

of colors, notably capable of modeling influential opinions (in terms of vertices of

high degree) as the graph evolves. Unlike the Barabási-Albert model, the color-coded

vertices in conjunction with the time-varying reinforcing parameter in our model

allows for the vertices added (born) later in the process to potentially attain a high

degree in a way that is not captured by the former. We study the degree count of

the vertices in the graphs generated via our model by analyzing the draw vectors

of the underlying stochastic process. Furthermore, we compare our model with the

Barabási-Albert model via simulations.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Interacting urn networks are widely used in the field of applied mathematics, biology

and computer science to model spread of diseases [34, 35], consensus dynamics [26],

image segmentation [12], propagation of computer viruses in connected devices [18],

and social networks [58].

The first part of this thesis (Chapters 2 and 3) is concerned with networks of

two-color Pólya urns. We are given a network of N urns, represented as a graph

with the urns as vertices and interconnections as edges. At time t = 0, each urn is

composed of some red and some black balls, where different urns can have different

initial compositions, but no urn is empty. At each time instant t, a ball is chosen for

each urn with probability depending on the composition of the urn itself and of the

other urns in the network, and then additional (reinforcing) balls of the color just

drawn are added to the urn. Letting Ui,t denote the ratio of red balls in urn i at time

1



CHAPTER 1. INTRODUCTION 2

t, the draw variable Zi,t, denoting the indicator function of a red ball chosen for urn i

at time t, is governed by

Zi,t =


1 w.p. f(U1,t−1, · · · , UN,t−1)

0 w.p. 1− f(U1,t−1, · · · , UN,t−1)

(1.1)

where “w.p.” stands for “with probability” and f : RN → (0, 1) is a real-valued function

which accounts for interactions in the network of urns. The stochastic process {Zi,t}∞t=1

is commonly known as a reinforcement process generated by an urn model. Although

a variety of reinforcement processes are used to develop interacting networks, Pólya

urns are the most commonly used urn models (there are a few examples based on other

interacting urn networks; e.g., see [38, 52] for interacting Friedman urn networks).

In the first part of this thesis, we devise a contagion model through an interacting

network of modified Pólya urns and study its stochastic properties. We further develop

a consensus achieving network of agents via our urns.

Various other models have been proposed in the literature to portray contagion

in networks using interacting Pólya processes. In [34], the concept of “super urn” for

a network of Pólya urns is utilized to model spatial contagion, where at every time

step and for each urn, a ball is drawn from its “super urn” formed by the collection of

the urn’s own balls and the ones of its neighbours. In [32, 35], optimal curing and

initialization policies were investigated for the network contagion model of [34]. In [49],

the authors introduce a symmetric reinforcement scheme for interacting Pólya urn
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network with (1.1) given by:

Zi,t =


1 w.p.

α

N

∑N

i=1
Ui,t−1 + (1− α)Ui,t−1

0 w.p. 1− α

N

∑N

i=1
Ui,t−1 − (1− α)Ui,t−1

where α ∈ [0, 1] is a fixed number and N is the number of Pólya urns in the network.

An example of a more complicated interaction network is given in [16], where a finite

connected graph with each vertex equipped with a Pólya urn is considered and at

any given time t, only one of the two interacting urns receive balls with probability

proportional to a number of balls raised to some fixed power.

An important characteristic of most reinforcement processes generated via urn

models is that they are non-Markovian in the sense that the composition of each

urn at any given time affects its composition at every time instant thereafter. This

property is not realistic when modelling the spread of infection as one should account

for the possibility that infection is cured (or that the urn is removed, a possibility that

we do not consider here). In this thesis, we consider an interacting Pólya urn network

where each urn has a finite memory, denoted by M ≥ 1, in the sense that, at the time

instant t > M , the reinforcing balls added at time t−M are removed from the urn

and hence have no effect on future draws; see Figure 1.1 for an illustration of this

finite memory reinforcement. This notion of a finite memory Pólya urn was introduced

in [1] (in the context of a single urn modeling error bursts in communication channels)

to account for the diminishing effect of past reinforcements on the urn process, which

is a realistic assumption when modelling contagion in a population. The resulting

network draw variables {Zt}∞t=1 of the Pólya urn with memory M forms a Markov
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chain of order M , see [1].

Figure 1.1: Finite memory Pólya urn.

There are other examples in the literature where a Markovian version of the Pólya

process is studied. In [4], a rescaled Pólya urn model with randomly fluctuating

conditional draw probability is considered. Another Markovian Pólya process is the

Pólya-Lundberg process [48], which was recently adapted in [15] to measure the

dynamics, among many other models such as [54], of the SARS-CoV-2 pandemic.

The techniques used in the analysis of a finite memory Pólya process are quite

different from the ones used for any general random reinforcement process. Standard

techniques used for the latter case include the method of moments [28], Martingale

methods [31, 49], stochastic approximations [21, 29, 41] and the embedding of re-

inforcement processes in continuous-time branching processes [8, 9, 37]. A detailed

discussion on these methods can be found in [5] and the survey [47].

Another interesting feature of Pólya urns is that their reinforcement schemes

represent preferential attachment behavior in the sense that at each time step, we add

balls of a particular color with a probability proportional to the number of balls of that

color in the urn. This reinforcement of adding balls to the urn proportional to the ratio

of balls is commonly known as the “rich gets richer” phenomenon which in the context

of randomly growing graphs/networks refers to reinforcements that favor a high degree
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vertex to stay influential. Preferential attachment graphs have been widely studied

within the areas of statistical mechanics [33, 59], network science [25], probability

theory [39, 50] and game theory [53]. One of the most popular models of a preferential

attachment graph is the so-called Barabási-Albert model [14], which has since been

modified in a variety of ways [6, 42, 61]. Various other models have been devised

thereafter to generate preferential attachment graphs; for example in [17] the growth

of the random graph is competition based. Given a graph at a certain time step, the

new vertex attaches itself to an existing vertex which ends up minimizing a certain

cost function. For a vertex, this cost function depends on its centrality and distance

from the root ensuring that the vertices with higher degrees have lower cost functions.

In [40], a continuous-time equation governing the number of vertices with degree k is

formulated to study citation networks. In [27], a randomly growing graph algorithm

that combines the features of a geometric random graph and a preferential attachment

graph is analysed. In [22], properties of Wikipedia are studied by representing topics

as vertices and hyperlinks between them as edges. Several preferential attachment

hypergraphs (i.e., graphs in which an edge can join any number of vertices) generating

models have also been devised in the literature [10, 30, 36].

Our main objective in Chapter 4 is to introduce a new preferential attachment

graph generating algorithm using a modified Pólya urn model. Various versions of

Pólya urns have been used to model preferential attachment graphs, for instance,

in [24] a generalized Pólya urn process is used to devise a preferential graph generating

algorithm (refer to [23, 45] for a detailed description of this generalized Pólya urn

process). In [19], a preferential attachment type multi-graph (i.e., a graph that can

have more than one edge between a pair of vertices) is constructed using different
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variations of the Pólya urn process which was used to study the spread of viruses

on the internet in [18]. More elaboration on the similarities between Pólya urns and

preferential attachment graphs is given in the survey [47].

The Barabási-Albert model is well known to exhibit a power law distribution as the

number of vertices becomes sufficiently large, given by p(k) ∼ k−3, where p(k) is the

probability of randomly selecting a vertex with degree k in the network. Despite the

fact that this power law can be used to study various properties of the Barabási-Albert

model such as the Hirsch index distribution and the clustering coefficient, see [2, 13, 20]

for definitions, the likelihood of vertices gaining new edges is solely determined by their

degree. This is not realistic, when modeling scenarios where newly added individuals

are accompanied with impactful ideas that can lead to rapid or disruptive influence,

regardless of their initially low degree.

Motivated by the above mentioned shortcomings of the Barabási-Albert network,

we develop in Chapter 4 a preferential attachment graph generating algorithm in

which each vertex is uniquely identified with a color of an expanding color Pólya urn.

To address the concern about the degree being the only factor affecting the likelihood

of vertices forming new connections in the Barabási-Albert algorithm, we introduce

a time-varying reinforcement parameter in our model which enables the vertices to

make more or fewer connections depending on their unique color association and the

time at which they were introduced in the network, i.e., their birth time.
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1.2 Contributions and Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we design and investigate

an interacting network of N two-color finite memory Pólya urns to model the spread of

infection (commonly referred to as contagion) where each urn is associated to a node

(e.g., “individual”) in a general network (e.g., “population”) to delineate its “immunity”

level. Each Pólya urn in the network contains red and black balls which represent

units of “infection” and “healthiness” respectively. The reinforcement of drawing a ball

for each urn is mathematically formulated such that a weighted composition of other

urns in the network affects the drawing process, hence capturing interaction between

urns.

Unlike standard reinforcement processes, we are able to use Markovian properties

in our analysis as our model of interacting urns with finite memory M yields an Mth

order Markov draw process. However, one drawback of working with a memory-M

Markov chain over a network is that the size of its underlying transition probability

matrix grows exponentially with both M and the network size. To account for this

problem, after having introduced our interacting Pólya urn network and investigated

its properties in detail, we formulate a dynamical system to tractably approximate

its asymptotic behaviour. To obtain this dynamical system, we make the assumption

that for any given time t > M , the joint probability distribution of draw processes

at times t − 1, · · · , t −M for any urn is approximately equal to the product of its

marginals. This type of approximation is referred to as a “mean-field approximation”

and is commonly used in the literature on compartmental models, such as the well-

known susceptible-infectious-susceptible (SIS) model [7, 11, 43, 44, 46, 60]. The key
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factor that distinguishes our treatment is the latitude provided by the consideration

of memory M ≥ 1, in contrast to the SIS model which is based on a memory one

(M = 1) Markov chain. In particular, as our simulations, which are performed for

both non-homogeneous and homogeneous networks (of small-to-medium size), verify,

the nonlinear dynamical system that we obtain approximates the true (underlying)

Markov process with improved accuracy as we increase the memory order M . We

also characterize the equilibrium point of this dynamical system, when the nonlinear

dynamical system is approximated by its linear part (the latter approximation is exact

for the case with memory M = 1). More specifically, we show that when M = 1, the

(linear) dynamical system always admits a unique equilibrium (which can be exactly

determined); while for M > 1, we note that the linearized dynamical system has a

unique equilibrium when its governing (block) matrix has a spectral radius less than

unity. In summary, our results provide a novel mathematical framework for the study

of epidemics on networks in realistic scenarios where memory is a consideration. The

results of Chapter 2 were published in part in [56] and [57].

In Chapter 3, we devise a consensus achieving network using a finite memory Pólya

urn network which is somewhat similar to the one studied in Chapter 2, but different in

terms of having time-varying interaction dynamics among the urns. Given a connected

network G, we equip each agent with an urn, initially consisting of balls of two colors,

red and black. The “belief” of each urn (or individual) at a given time instant is the

probability that a red ball is chosen in the drawing process. The draw process utilizes

the spatial interconnections in G via the use of “super-urns” which are introduced in

[12, 34, 35]. At each time instant and for each urn (or individual), a ball is drawn

from its super-urn and returned back to the urn; then reinforcing balls of the color
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just drawn are added to the urn for a limited period of M future time instants, where

M denotes the memory of the urn. Additionally, and important for our objective of

the network reaching consensus, as of time t = M +1, we remove the balls which were

present in the urns initially. The significance of removing initial conditions is that the

individuals forget about their inherent beliefs as of time t ≥ M + 1. We analyse our

network of finite memory Pólya urns and show that for a memory M , the vector of

draw variables forms a time-varying reducible Mth order Markov chain. We study

the structure of this Markov process and show that our network achieves consensus.

We also present an alternate method to show consensus for a homogeneous connected

network. In this method, we obtain a class of linear dynamical systems with time

delay which gives the probability of drawing a red ball from the super-urns at any

time t. We then obtain the consensus value of this connected homogeneous network

by studying the asymptotic properties of these delayed linear dynamical systems. The

results of Chapter 3 were published in part in [55].

In Chapter 4, we construct randomly growing undirected graphs using the draw

variables of a single modified Pólya urn, with an expanding number of colors. The

Pólya urn process is modified in the sense that at each time instant, not only is a

ball drawn and returned to the urn along with a number (potentially time-varying)

of reinforcing balls of the same color, but another ball of a new color is also added

to the urn. This new color corresponds to a new vertex which is added to the graph

at this time instant. More specifically, the network is generated by associating each

incoming vertex to the new color ball added after each draw and by attaching it to

the existing vertex represented by the draw color. The number of colors in the urn

grows without bound with the number of draws, and the generated network has a
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preferential attachment property as the vertices corresponding to dominant colors (i.e.,

colors in the urn with a large number of balls) are more likely to attract newly formed

vertices as their neighbors. The resulting preferential attachment growing graph is

thus constructed via a Pólya urn; this enables us to characterize the degree count of

individual vertices in the network through the draw variables of their corresponding

colors giving each vertex a unique identity which is absent in the Barabási-Albert

model. Indeed, the draw variables of the Pólya urn capture the entire structure of the

graph generated and hence it is enough to study the behaviour of these draw variables

to understand the properties of the graph. Moreover, we use an extra time-varying

parameter to set the number of balls (not necessarily an integer) added to the Pólya

urn to reinforce the color of the drawn ball at each time instant. The time-varying

nature of this parameter allows us for any given vertex to tweak the likelihood of

amplifying or dampening its degree growth depending on the time at which it was

introduced in the network; this feature can be used to regulate the dominance (in

terms of gaining edges) of high degree vertices over low degree ones in the generated

preferential attachment graph. Therefore, unlike the Barabási-Albert algorithm, our

model can be used to generate random networks with a variety of degree distributions

other than power law distributions.

Finally, conclusions and future directions are presented in Chapter 5.



Chapter 2

Interacting Finite Memory Pólya

Networks

2.1 The Model

We consider a network of N finite memory two-color Pólya urns, where each urn can

be associated to a node in an arbitrary network. At time t = 0, urn i contains Ri red

balls and Bi black balls, i = 1, . . . , N . We denote the total number of balls in the ith

urn at time t = 0 by Ti = Ri +Bi, and we assume that there is at least one red and

one black ball in each urn at time t = 0, i.e., Ri > 0 and Bi > 0 for all i. We also

let Ui,t denote the ratio of red balls in urn i at time t, with its initial value (at time

t = 0) given by Ui,0 = Ri/Ti.

We next define the reinforcement scheme, in the form of draw variables, Zi,t,

associated with urn i at time t ≥ 1, for our proposed interacting Pólya contagion

11
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network:

Zi,t =


1 if a red ball is drawn for urn i at time t

0 if a black ball is drawn for urn i at time t

(2.1)

where the process of drawing a ball for urn i is governed by a particular function of

the form (1.1), which is applied simultaneously to all urns. We denote the drawing

random vector at time t by Zt = (Z1,t, Z2,t, · · · , ZN,t). If a red ball (respectively, a

black ball) is drawn for urn i, we add ∆r,i(t) red balls (respectively, ∆b,i(t) black balls)

to urn i. This scheme, which we refer to as the urn scheme, is often captured by a

matrix of the form: ∆r,i(t) 0

0 ∆b,i(t)

 . (2.2)

We assume throughout that ∆r,i(t) > 0 and ∆b,i(t) > 0 for all i ∈ {1, · · · , N}, t ≥ 1

and that all the urns in the network have same memory (say M), where memory of

an urn is defined in Chapter 1 (see also Figure 2.1).

We start with defining an interaction matrix S to be an N × N row-stochastic

matrix with non-negative entries, i.e., each row in S sums to one. Entries of the

interaction matrix S are denoted by sij, where i, j ∈ {1, . . . , N}. The interaction

matrix S can also be thought of as a weighted adjacency matrix of a directed graph

with each vertex equipped with a memory M Pólya urn.

Having defined the interaction matrix, we can now explicitly specify the function f

used in the drawing mechanism (2.1). In particular, we set the probability of choosing
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Figure 2.1: The interaction matrix S can also be thought of as a weighted adjacency
matrix of a directed graph with each vertex equipped with a Pólya urn.

a red ball from urn i at time t as follows:

Zi,t =


1 w.p.

N∑
j=1

sijUj,t−1

0 w.p. 1−
N∑
j=1

sijUj,t−1.

(2.3)

Furthermore, as all draws occur simultaneously as illustrated in Figure 2.1, the draw

variables Zi,t and Zi′,t are conditionally independent given all past draws in the network,

for any i ̸= i′; hence at any time t,

P
(
Z1,t, . . . , ZN,t|{Z1,k}t−1

k=1, . . . , {ZN,k}t−1
k=1

)
=

N∏
i=1

P
(
Zi,t|{Z1,k}t−1

k=1, . . . , {ZN,k}t−1
k=1

)
.

(2.4)

Since each urn in the network has memory M , for each time instant t ≥ M + 1, the
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ratio of red balls in urn i is given by

Ui,t =
Ri +

∑t
k=t−M+1∆r,i(k)Zi,k

Ti +
∑t

n=t−M+1(∆r,i(n)Zi,n +∆b,i(n)(1− Zi,n))
(2.5)

almost surely.1For ease of notation, we define the following (normalized) initial and

reinforcement network parameters:

ρi =
Ri

Ti

, σi = 1− Ri

Ti

, δr,i(t) =
∆r,i(t)

Ti

, δb,i(t) =
∆b,i(t)

Ti

. (2.6)

Substituting (2.6) in (2.5), we obtain

Ui,t =

ρi +
t∑

k=t−M+1

δr,i(k)Zi,k

1 +
t∑

n=t−M+1

(δr,i(n)Zi,n + δb,i(n)(1− Zi,n))

(2.7)

almost surely. We denote this contagion type network of finite memory Pólya urns

with fixed interaction matrix S by IPCN(M,N), where M denotes the memory of

urns in the network and N denotes the number of urns in the network. In the next

two sections, we discuss the analytic properties of this IPCN(M,N) system.

2.2 Markovian property of IPCN(M,N)

We now establish the Markov property of the network draw process {Zt}∞t=1 in the

following proposition:

1All identities involving random variables or vectors are (implicitly) understood to hold almost
surely.
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Proposition 2.1. For an IPCN(M,N) system, the stochastic process given by {Zt}∞t=1

is a time-varying Markov chain of order M .

Proof. Let at = (a1,t, · · · , aN,t) ∈ {0, 1}N . Using (2.3) and by virtue of the conditional

independence of the draw variables Zi,t and Zi′,t given all past draws in the network

for all i ̸= i′, we have for t ≥ M that

P (Zt+1 =at+1|Zt = at, · · · , Z1 = a1)

=
N∏
i=1

P (Zi,t+1 = ai,t+1|Zt = at, · · · , Z1 = a1)

=
N∏
i=1

(
ai,t+1

N∑
j=1

sijUj,t + (1− ai,t+1)(1−
N∑
j=1

sijUj,t)

)
.

As a result, we have that

P (Zt+1 = at+1|Zt = at, · · · , Z1 = a1)

=
N∏
i=1

(
(2ai,t+1 − 1)

N∑
j=1

sij

(
ρj +

t∑
k=t−M+1

δr,j(k)aj,k

)
1 +

t∑
n=t−M+1

(δr,j(n)aj,n + δb,j(n)(1− aj,n))

+ (1− ai,t+1)

)

= P [Zt+1 = at+1|Zt = at, · · · , Zt−M+1 = at−M+1]. (2.8)

Hence the process {Zt}∞t=1 is a time-varying Mth order Markov chain.

In order to write the transition probabilities of this Markov chain, we define

Wt := {Zt, Zt+1, · · · , Zt+M−1}. Since {Zt}∞t=1 is an Mth order Markov chain, the

order of {Wt}∞t=1 is 1. We use (2.8) to give a general formula for the entries of the

transition probability matrix Q(M,N) of the Markov process {Wt}∞t=1, which has 2MN
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states. Note that the transition probability, q(M,N)
ab , of going from state

a = ((a11, a21, · · · , aN1), · · · , (a1M , a2M , · · · , aNM))

to state

b = ((b11, b21, · · · , bN1), · · · , (b1M , b2M , · · · , bNM))

in one time step is nonzero if and only if aij = bi(j−1) for i ∈ {1, · · · , N} and

j ∈ {2, · · · ,M}, where a, b are binary NM tuples. If q(M,N)
ab is nonzero, it is given by

q
(M,N)
ab := q̃

(1)
ab q̃

(2)
ab · · · q̃(N)

ab (2.9)

where

q̃
(d)
ab =



1−
N∑
i=1

sdi

(ρi +
M∑
k=1

δr,i(k)aik)

1 +
M∑
n=1

(δr,i(n)ain + δb,i(n)(1− ain))

if bdM = 0

N∑
i=1

sdi

(ρi +
M∑
k=1

δr,i(k)aik)

1 +
M∑
n=1

(δr,i(n)ain + δb,i(n)(1− ain))

if bdM = 1,

(2.10)

with d ∈ {1, · · · , N}.

We next show that for time-invariant reinforcement parameters (i.e., ∆r,i(t) = ∆r,i

and ∆b,i(t) = ∆b,i for t ≥ 1) the Markov chain {Wt}∞t=1 is an irreducible and aperiodic

Markov chain.



CHAPTER 2. INTERACTING FINITE MEMORY PÓLYA NETWORKS 17

Lemma 2.2. For the IPCN(M,N) with time-invariant parameters, the transition

probability matrix Q(M,N) is irreducible and aperiodic.

Proof. Note that in (2.10), if we set M = 1, δr,i(t) = δr,i and δb,i(t) = δb,i for t ≥ 1,

then it is possible to go from any state to any state in one time step with a positive

transition probability. Hence, the Markov chain is irreducible and aperiodic for memory

M = 1. For memory M > 1 with δr,i(t) = δr,i and δb,i(t) = δb,i for t ≥ 1 , to prove

irreducibility of the Markov chain, we show that given any two states, it is possible to

go from one state to another in finitely many time steps with a positive probability.

Let us fix two arbitrary states, a = ((a11, a21, · · · , aN1), · · · , (a1M , a2M , · · · , aNM )) and

b = ((b11, b21, · · · , bN1), · · · , (b1M , b2M , · · · , bNM )). We next construct an M -step path

(which occurs with a positive probability) between states a and b.

• Suppose the Markov chain is in state Wt = a at time t. At time t+ 1, we go

from state a to state,

Wt+1 = a(0) =
(
Zt+1 = (a12, a22, · · · , aN2),

· · · , Zt+M = (a1M , a2M , · · · , aNM), Zt+M = (b11, b21, · · · , bN1)
)
.

Since aij = a
(0)
i(j−1) for i ∈ {1, 2, · · · , N} and j ∈ {2, 3, · · · ,M}, the transition

probability of going from state a to a(0) is nonzero and can be obtained using (2.9).

• At time t+ 2 we go from state a(0) to state a(1)

Wt+2 = a(1) =
(
Zt+2 = (a13, · · · , aN3), · · · , Zt+M+1 = (b11, · · · , bN1),

Zt+M+1 = (b12, · · · , bN2)
)
.
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Following this pattern of adding one N -tuple from state b at each time step, we will

reach state b in M time steps. In summary, choosing any initial state, we can reach

any other state of the Markov chain in at most M steps. Hence, the Markov chain

is irreducible. Also, note that the period of the state with all zeros is one. Since all

the states of an irreducible Markov chain have the same period, we obtain that this

Markov chain is aperiodic.

Lemma 2.2 guarantees the existence of a unique stationary distribution for the

Markov process {Wt}∞t=1 when the reinforcement parameters are time-invariant. How-

ever, since the transition probabilities for this Markov chain (given in (2.10)) are

complicated, we cannot analytically determine this unique stationary distribution

in general. But we can obtain asymptotic marginal distributions for homogeneous

system parameters (i.e., all parameters are identical and time-invariant across all

urns): Ri = R, Bi = B, ∆r,i(t) = ∆b,i(t) = ∆ for all i ∈ {1, · · · , N} and t ≥ 1. In this

(homogeneous) case, we have

ρ =
R

T
, σ = 1− R

T
, δ =

∆

T
,

where T = R+B is the total number of balls in the urns. In the following example

and theorem, we illustrate the stochastic properties of the underlying Markov process

for a homogeneous IPCN(1, 2) system.

Example 2.3. Given a homogeneous IPCN(1, 2) system with interaction matrix

S =

s11 1− s11

s21 1− s21
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the stationary distribution π = [π00, π01, π10, π11] for the Markov process {(Zt, Zt+1)}

(transition probability matrix Q(1,2)) is given by

π00 =
2σ2δ + σ2 + (1− s11 − s21 + 2s11s21)σδ

2

(1− s11 − s21 + 2s11s21)δ2 + 2δ + 1

π01 =
ρσ(1 + 2δ)

(1− s11 − s21 + 2s11s21)δ2 + 2δ + 1

π10 =
ρσ(1 + 2δ)

(1− s11 − s21 + 2s11s21)δ2 + 2δ + 1

π11 =
ρ(2δ − σ − 2σδ + (1− s11 − s21 + 2s11s21)δ

2 + 1)

(1− s11 − s21 + 2s11s21)δ2 + 2δ + 1
.

It is easy to see that π = [π00, π01, π10, π11] satisfies the equation πQ(1,2) = π. We thus

have

• lim
t→∞

P (Z1,t = 1) = π10 + π11 = ρ, lim
t→∞

P (Z2,t = 1) = π01 + π11 = ρ,

• lim
t→∞

P (Z1,t = 0) = π00 + π01 = σ, lim
t→∞

P (Z2,t = 0) = π00 + π10 = σ.

Also writing (2.7) for M = 1 and taking expectation both sides, we have for i = 1, 2

that

lim
t→∞

E[Ui,t] =
ρ+ δ lim

t→∞
E[Zi,t]

1 + δ
=

ρ+ δ lim
t→∞

P (Zi,t = 1)

1 + δ
= ρ.

Hence, irrespective of the used interaction matrix, the asymptotic marginal (one-

fold) distributions and urn compositions for the IPCN(1, 2) system are the same as

for the single (memory one) Pólya urn studied in [1]; this result is proved in general

in Theorem 2.4 below. We, however, next observe that the asymptotic 2-fold draw

distributions for the IPCN(1, 2) urns do not match their counterparts for the single

Pólya urn process of [1]. Indeed, the 2-fold (joint) distribution vector of the single-urn
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(stationary) Pólya Markov chain in [1] is given by

π̃(2) =

[
σ(σ + δ)

1 + δ
,

ρσ

1 + δ
,

ρσ

1 + δ
,
ρ(ρ+ δ)

1 + δ

]
.

For the homogeneous IPCN(1, 2) system, the joint probability P (Z1,t = a1, Z1,t+1 = b1)

for urn 1 of the homogeneous IPCN(1, 2) system is given by

P (Z1,t = a1, Z1,t+1 = b1) =
∑

a2,b2∈{0,1}

P (Z1,t = a1, Z1,t+1 = b1, Z2,t = a2, Z2,t+1 = b2)

=
∑

a2,b2∈{0,1}

P (Z1,t+1 = b1, Z2,t+1 = b2|Z1,t = a1, Z2,t = a2)P (Z1,t = a1, Z2,t = a2).

Thus noting the conditional independence of Z1,t+1 and Z2,t+1 given (Z1,t, Z2,t), and

using the IPCN(1, 2) matrix Q(1,2) along with the fact that

lim
t→∞

P (Z1,t = a1, Z2,t = a2) = πa1,a2 ,

we obtain

lim
t→∞

P (Z1,t = 0, Z1,t+1 = 0) =
σ(σ + δ)

1 + δ
− π01(1− s11)δ

(1 + δ)

lim
t→∞

P (Z1,t = 0, Z1,t+1 = 1) =
σρ

1 + δ
+

π01(1− s11)δ

(1 + δ)

lim
t→∞

P (Z1,t = 1, Z1,t+1 = 0) =
σρ

1 + δ
+

π01(1− s11)δ

(1 + δ)

lim
t→∞

P (Z1,t = 1, Z1,t+1 = 1) =
ρ(ρ+ δ)

1 + δ
− π01(1− s11)δ

(1 + δ)
,

which shows explicitly by how much the asymptotic 2-fold draw distribution for urn 1
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deviates from π̃(2). Note that by setting s11 = 1, the error term π01(1− s11)δ/(1 + δ)

reduces to zero, making the two distributions match, as expected (since when s11 = 1,

urn 1 only interacts with itself). •

Note that it is much harder to derive in closed-form the stationary distribution

for the homogeneous IPCN(M,N) system with M > 1 and N > 2 but we have the

following asymptotic marginal probabilities for a homogeneous IPCN(M,N) system.

Theorem 2.4. For a homogeneous IPCN(M,N) system

lim
t→∞

P (Zi,t = 1) = ρ (2.11)

for all urns i in the network.

Proof. Let γi = lim
t→∞

E[Zi,t] for i ∈ {1, 2, · · · , N}. Using (2.10), we obtain

γd =
ρ+

∑N
i=1 sdi(Mγi)δ

1 +Mδ

for d ∈ {1, 2, . . . , N}. Let 1N = [1, · · · , 1]T and γ = [γ1, · · · , γN ]T, where T denotes

transposition. Then,

(1 +Mδ)γ = ρ1N + (Mδ)Sγ

which gives

(1 +Mδ)(γ − ρ1N) = (Mδ)S(γ − ρ1N).

Setting γ̃ := γ − ρ1N in the above equation, we have that

Sγ̃ =
1 +Mδ

Mδ
γ̃.
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Since the eigenvalues of S have absolute values less than or equal to one (as S is a

row-stochastic matrix), we obtain that

γ̃ = 0

which implies that

γi = ρ ∀ i ∈ {1, 2 · · · , N}.

Unlike the homogeneous case, we cannot analytically obtain the asymptotic

marginal probabilities for general non-homogeneous IPCN(M,N) system. In the

next section, we construct a class of time-delayed dynamical systems using mean-field

approximations to approximate the asymptotic marginal probabilities for the draw

variables of urns in IPCN(M,N) system with time-invariant reinforcement parameters.

2.3 Dynamical System Models

Throughout this section, we assume that ∆r,i(t) = ∆r,i and ∆b,i(t) = ∆b,i for all urns

i ∈ {1, · · · , N} and t ≥ 1, i.e., the reinforcement parameters are time-invariant. Given

an IPCN(M,N) and an urn i, we denote the probability of making a red draw for

urn i at time t by

Pi(t) := P (Zi,t = 1).
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2.3.1 Exact Dynamical System for M = 1

We first show that an IPCN(1, N) system can be exactly represented via a linear

dynamical system.

Recall from (2.7) and (2.8) with M = 1 that the conditional probability of drawing

a red ball from urn i at time t for the case of time-invariant reinforcement parameters,

given all the draw variables at time t− 1, is as follows:

P (Zi,t = 1|Z1,t−1, Z2,t−1, · · · , ZN,t−1) =
N∑
j=1

sij(ρj + δr,jZj,t−1)

1 + δr,jZj,t−1 + (1− Zj,t−1)δb,j

=
N∑
j=1

si,j(ρj + δr,j)

1 + δr,j
Zj,t−1 +

sijρj
1 + δb,j

(1− Zj,t−1)

=
N∑
j=1

[sijβ
(j)
1 (1)Zj,t−1 + sijβ

(j)
1 (0)(1− Zj,t−1)]

(2.12)

where

β
(j)
1 (k) :=

ρj + kδr,j
1 + kδr,j + (1− k)δb,j

, j ∈ {1, · · · , N}, k ∈ {0, 1}.

Now taking expectation with respect to (Z1,t−1, · · · , ZN,t−1) on both sides of (2.12),

we get

Pi(t) =
N∑
j=1

[β
(j)
1 (1)sijPj(t− 1) + sijβ

(j)
1 (0)(1− Pj(t− 1))]. (2.13)
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To this end, defining the vector P (t) as

P (t) = [P1(t), P2(t), · · · , PN(t)]
T,

we obtain the following dynamical system for the IPCN(1, N) network.

Theorem 2.5. For the IPCN(1, N) system, the infection vector satisfies the equation

P (t) = JN,1P (t− 1) + CN,1 (2.14)

where JN,1 ∈ RN×N , CN,1 ∈ RN×1 are matrices with respective entries:

[JN,1]i×j =
sij(ρj + δr,j)

(1 + δr,j)
− sijρj

(1 + δb,j)
= sij(β

(j)
1 (1)− β

(j)
1 (0))

and [CN,1]i×1 =
N∑
j=1

sijρj
(1 + δb,j)

=
N∑
j=1

sijβ
(j)
1 (0).

Proof. Follows from (2.13).

We next examine the equilibrium of this linear dynamical system.

Theorem 2.6. The linear dynamical system for the IPCN(1, N) system given by (2.14)

has a unique equilibrium point given by P ∗ = (I − JN,1)
−1CN,1 and

lim
t→∞

Pi(t) = P ∗
i

for all i ∈ {1, . . . , N}.

Proof. It is enough to show that the spectral radius of the matrix JN,1 is less than one;
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since the spectral radius is less than, or equal to, the row sum norm of the matrix, it is

enough to show that the row sum norm of JN,1 is strictly less than 1. Since 0 ≤ ρj ≤ 1

and δr,j, δb,j > 0 for all j ∈ {1, 2..., N}, we have

−1 <
(ρj + δr,j)

(1 + δr,j)
− ρj

(1 + δb,j)
< 1 (2.15)

Hence, the sum of absolute values of entries in ith row of the matrix JN,1 satisfies

N∑
j=1

sij

∣∣∣∣(ρj + δr,j)

(1 + δr,j)
− ρj

(1 + δb,j)

∣∣∣∣ < N∑
j=1

sij = 1,

which yields the result.

As an illustration, we find the equilibrium of the linear dynamical system (2.14)

for a much simpler IPCN(1, N) system.

Corollary 2.7. Given an IPCN(1, N) system with S = I,

lim
t→∞

Pi(t) =
ρi(1 + δr,i)

1 + δb,i + ρi(δr,i − δb,i)
. (2.16)

Proof. For an IPCN(1, N) system with S = I, we have that

P (Z1,t−1 = a1, · · · , ZN,t−1 = aN) =
N∏
j=1

P (Zj,t−1 = aj).

In this case, since S = I and hence the draw variables of urns are independent of each

other. The asymptotic value of Pi(t) for i ∈ {1, · · · , N} is given by the equilibrium
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point of the linear dynamical system

P (t) = JN,1P (t− 1) + CN,1

which is given by P ∗ ∈ RN whose ith component is given by (2.16).

Another way to find this equilibrium point is to write the transition probability

matrix for a single urn using (2.8) and solving for stationary distribution to obtain

lim
t→∞

Pi(t). The transition probability matrix for a single non-homogeneous urn i with

time-invariant reinforcement parameters is given by

Q(1,1) =


σi + δb,i
1 + δb,i

ρi
1 + δb,i

σi

1 + δr,i

ρi + δr,i
1 + δr,i

 .

On solving for the stationary distribution, [π0, π1]Q
(1,1) = [π0, π1], we obtain that π1

indeed equals the right-hand side of (2.16).

We also illustrate Theorem 2.6 by examining the special homogeneous case. This

aligns with the result in Theorem 2.4.

Corollary 2.8. For a homogeneous IPCN(1, N) system, the equilibrium of (2.14) is

given by P ∗ = ρ1N , where 1N is vector of ones of size N .

Proof. By Theorem 2.6, the equilibrium P ∗ is given by

P ∗ = (I − JN,1)
−1CN,1.
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Note that the row sums in (I − JN,1) are given by
1

1 + δ
, i.e.,

(I − JN,1)1N =
1

1 + δ
1N .

Therefore,

(I − JN,1)
−1CN,1 = (I − JN,1)

−1

[
ρ

(1+δ)
ρ

(1+δ)
· · · ρ

(1+δ)

]T
= ρ1N .

2.3.2 Approximating Dynamical Systems for M > 1

For IPCN(M,N) systems with M > 1, we resort to using mean-field approximations

for the construction of dynamical systems. We assume that for t sufficiently large and

t > M , for each urn i, Zi,t−1,· · · ,Zi,t−M are approximately independent of each other;

i.e., at any given time instant t > M (where t is sufficiently large), we assume that

P (Zj,t−1, Zj,t−2, · · · , Zj,t−M) ≈
M∏
k=1

P (Zj,t−k), (2.17)

for all j ∈ {1, 2, · · · , N}. For the IPCN(M,N) system, we have from (2.8) that

P (Zi,t =1|(Z1,t−1, · · · , Z1,t−M), · · · , (ZN,t−1, · · · , ZN,t−M))

=
N∑
j=1

sij(ρj + δr,j
M∑
k=1

Zj,t−k)

1 +
M∑
n=1

(δr,jZj,t−n + δb,j(1− Zj,t−n))

. (2.18)
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Now, taking expectation with respect to

((Z1,t−1, . . . , Z1,t−M), . . . , ((ZN,t−1, . . . , ZN,t−M))

on both sides of (2.18) and using the linearity property of expectation, we obtain

P (Zi,t = 1) =
N∑
j=1

E


sij(ρj + δr,j

M∑
k=1

Zj,t−k)

1 +
M∑
n=1

(δr,jZj,t−n + δb,j(1− Zj,t−n))

 (2.19)

=
N∑
j=1

∑
BM

sij(ρj + δr,j
∑M

k=1 ak)

1 +
M∑
n=1

(δr,jan + δb,j(1− an))

P (Zj,t−1 = a1, · · ·Zj,t−M = aM)

where

BM := {(a1, a2, · · · aM) | ak ∈ {0, 1} for k ∈ {1, 2, · · · ,M}}. (2.20)

Now we use the mean-field approximation (2.17) in (2.19) to obtain the following

class of approximating nonlinear dynamical systems

Pi(t) ≈
N∑
j=1

∑
BM

sij(ρj + δr,j
∑M

k=1 ak)

1 +
M∑
n=1

(δr,jan + δb,j(1− an))

M∏
k=1

P (Zj,t−k = ak) = (2.21)

N∑
j=1

∑
BM

sij(ρj + δr,j
∑M

k=1 ak)

1 + δr,j
M∑
n=1

an + δb,j(M −
M∑
n=1

an)

M∏
k=1

(akPj(t− k) + (1− ak)(1− Pj(t− k))).
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For simplicity of notation, we write (2.21) in the following way:

Pi(t) ≈
∑
BM

( N∑
j=1

sijβ
(j)
M (vM)

) M∏
k=1

(akPj(t− k) + (1− ak)(1− Pj(t− k))) (2.22)

where

vM =
M∑
k=1

ak (2.23)

with ak ∈ {0, 1} and k ∈ {1, 2, · · · ,M}, and

β
(j)
M (l) =

ρj + lδr,j
1 + lδr,j + (M − l)δb,j

, j ∈ {1, · · · , N}, l ∈ {0, 1, · · ·M}.

We next give a useful rearranged form of (2.22). In particular, even though (2.22)

appears to be complicated, after some simplifications, the coefficients of the nonlinear

terms follow a binomial pattern. To give an idea of this binomial pattern, we will first

present a few examples and then give a proof of the formula for the rearranged form

of (2.22).

Example 2.9. We note that for the IPCN(2, 2) system, the approximating dynamical

system is given by

Pi(t) ≈
2∑

j=1

sijβ
(j)
2 (0) +

2∑
j=1

2∑
k=1

sij

(
β
(j)
2 (1)− β

(j)
2 (0)

)
Pj(t− k)

+
2∑

j=1

sij

(
β
(j)
2 (2)− 2β

(j)
2 (1) + β

(j)
2 (0)

) 2∏
k=1

Pj(t− k).
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Next, by expansion, we observe that for IPCN(3, 2) system, the approximating dy-

namical system is given by

Pi(t) ≈
2∑

j=1

sijβ
(j)
3 (0) +

2∑
j=1

3∑
k=1

Pj(t− k)sij

(
β
(j)
3 (1)− β

(j)
3 (0)

)
+

2∑
j=1

Pj(t− 1)Pj(t− 2)sij

(
βj
3(0)− 2β

(j)
3 (1) + β

(j)
3 (2)

)
+

2∑
j=1

Pj(t− 2)Pj(t− 3)sij

(
β
(j)
3 (0)− 2β

(j)
3 (1) + β

j)
3 (2)

)
+

2∑
j=1

Pj(t− 1)Pj(t− 3)sij

(
β
(j)
3 (0)− 2β

(j)
3 (1) + β

(j)
3 (2)

)
+

2∑
j=1

Pj(t− 1)Pj(t− 2)Pj(t− 3)sij

(
3β

(j)
3 (1)− 3β

(j)
3 (2)− β

(j)
3 (0) + β

(j)
3 (3)

)
,

where one can already observe the binomial pattern that we hinted at. •

We will now obtain a rearrangement of (2.22) for a general IPCN(M,N) system.

Theorem 2.10. For the IPCN(M,N) system with M > 1, the approximating dynam-

ical system (2.22) can be written as

Pi(t) ≈
N∑
j=1

sijβ
(j)
M (0) (2.24)

+
N∑
j=1

M∑
n=1

[( n∑
k=0

(
(−1)n−k

(
n

k

)
sijβ

(j)
M (k)

))( ∑
(d1,··· ,dn)
∈Hn,M

Pj(t− d1) · · ·Pj(t− dn)

)]
,

where

Hn,M := {(d1, d2, · · · , dn)
∣∣di ∈ {1, · · · ,M}, di < dj for i < j , i, j ∈ {1, · · · , n}}.
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Proof. We show that (2.24) is obtained by a rearrangement of (2.22).

The right-hand side of (2.22) is given by:

N∑
j=1

[∑
BM

sijβ
(j)
M (vM)

M∏
k=1

(
akPj(t− k) + (1− ak)(1− Pj(t− k))

)]
. (2.25)

The constant term can be extracted from (2.25) by setting aj = (0, 0, · · · , 0) in BM

for 1 ≤ j ≤ N and is given by
N∑
j=1

sijρj
1 +Mδb,j

.

Now, fixing j ∈ {1, 2, · · · , N}, we expand the term

∑
BM

sijβ
(j)
M (vM)

M∏
k=1

(akPj(t− k) + (1− ak)(1− Pj(t− k))). (2.26)

Note that the order of (2.26) is M . In order to get the nth degree term (1 ≤ n ≤ M

in (2.26)), we need to choose n corresponding Pj(t − k)’s, where k ∈ {1, 2, · · · ,M}

from the product

M∏
k=1

(akPj(t− k) + (1− ak)(1− Pj(t− k)))

and the rest M − n chosen terms have to be 1. We then look at the coefficient of the

chosen nth order term. Note that the coefficients of the chosen Pj(t− k)’s are either 1

or −1, depending on the tuple aj. Given a tuple aj, there are exactly vM , Pj(t− k)’s

with coefficients 1 and the rest n− vM of them have coefficient −1.
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Summing over all the possible coefficients of the nth degree term of (2.25) we get

n∑
k=0

(−1)n−k

(
n

k

)
sijβ

(j)
M (k)

∑
(d1,··· ,dn)
∈Hn,M

Pj(t− d1) · · ·Pj(t− dn).

Finally, we can obtain the nth degree terms (1 ≤ n ≤ M) for the other N − 1 urns in

exactly the same way as above.

The analysis of the nonlinear dynamical systems given in (2.24) is clearly more

intricate than the one in the case with memory one, where the evaluations were

given by a linear dynamical system, namely (2.14). This being said, given that the

presence of nonlinearity is due to the product of probabilities, we can use a further

approximation by considering the leading linear terms.

Corollary 2.11. The linear part of the dynamical system (2.24) is given by

Pi(t) ≈
N∑
j=1

sijβ
(j)
M (0) +

N∑
j=1

M∑
k=1

sij

(
β
(j)
M (1)− β

(j)
M (0)

)
Pj(t− k). (2.27)

Proof. Setting n = 1 in (2.24) we obtain

Pi(t) ≈
N∑
j=1

sijβ
(j)
M (0)

+
N∑
j=1

(
(−1)

(
1

0

)
sijβ

(j)
M (0) + (−1)2

(
1

1

)
sijβ

(j)
M (k)

)( ∑
d∈H1,M

Pj(t− d)
)

=
N∑
j=1

sijβ
(j)
M (0) +

N∑
j=1

M∑
k=1

sij(β
(j)
M (1)− β

(j)
M (0))Pj(t− k).
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Equation (2.27) gives an approximate linear dynamical system for the IPCN(M,N)

system. Furthermore, for M > 1 network of N urns, we define

P̃ (t) := [P1(t), · · · , P1(t−M), P2(t), · · · , P2(t−M) · · · , PN(t), · · · , PN(t−M)]T.

Using (2.24) and dropping the nonlinear terms, we can write,

P̃ (t) ≈ JN,M P̃ (t− 1) + CN,M (2.28)

where, JN,M is a block matrix with N2 blocks of size M ×M .

JN,M =



JN,M(1, 1) JN,M(1, 2) · · · JN,M(1, N)

JN,M(2, 1) JN,M(2, 2) · · · JN,M(2, N)

... . . . ...
...

JN,M(N, 1) JN,M(N, 2) · · · JN,N(N,N)


NM×NM

.

Here, the diagonal blocks of matrix, JN,M(i, i) are given by

 sii(β
(i)
M (1)− β

(i)
M (0)) · · · sii(β

(i)
M (1)− β

(i)
M (0)) sii(β

(i)
M (1)− β

(i)
M (0))

I(M−1)×(M−1) 0(M−1)×1


M×M

where I(M−1)×(M−1) is the identity matrix of size M − 1 and 0(M−1)×1 is the column

vector of length M−1 with all entries zero. Similarly, the off-diagonal blocks JN,M (i, j)
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are given by

 sij(β
(j)
M (1)− β

(j)
M (0)) · · · sij(β

(j)
M (1)− β

(j)
M (0)) sij(β

(j)
M (1)− β

(j)
M (0))

0(M−1)×(M−1) 0(M−1)×1


M×M

where, 0(M−1)×(M−1) is a matrix of size (M − 1) with all entries zero. Finally, CN,M is

a column matrix with N blocks each of size 1×M given by

CN,M(i) =

[
N∑
j=1

sijβ
(j)
M (0) 0 · · · 0

]T
M×1

.

The linear dynamical system (2.28) has a unique equilibrium which is given by

(I − JN,M)−1CN,M . Even though we leave the examination of stability properties

of the nonlinear dynamical system (2.24) as a future direction, it is worth pointing

out that (2.28) asymptotically converges to the unique equilibrium if and only if the

spectral radius of JN,M is less than one. The possible dependency of this condition to

the interaction matrix and urn properties is also an interesting future direction. A

detailed discussion of other future directions is presented in Chapter 5.

2.4 Simulation Results

We provide a set of simulations2 to illustrate our results. For this purpose, we

have considered four different setups which are aimed at demonstrating the impact

of memory, as well as initial urn compositions and reinforcement parameters. In

particular, for the first two networks with N = 10 (i.e., Figure 2.2 and Figure 2.3), we
2For a complete list of parameters used for generating all figures of this chapter, see the link:

https://www.dropbox.com/sh/19py25reaxnfoyn/AABFdBp98J-9Jkd7zzVfTAQ9a?dl=0

https://www.dropbox.com/sh/19py25reaxnfoyn/AABFdBp98J-9Jkd7zzVfTAQ9a?dl=0
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use δr values that are significantly larger than the δb values in Figure 2.2 and δb values

significantly larger than δr values in Figure 2.3. In Figure 2.4, we consider larger size

non-homogeneous networks with N = 100. We simulate the IPCN(M,N) system for

M = 1, 2, 3 and their corresponding approximating (nonlinear) dynamical systems

given by (2.24). We also simulate the linear approximation (2.27) of the nonlinear

dynamical system for each M = 2, 3. Recall that for M = 1, the linear dynamical

system in (2.14) exactly characterizes the underlying Markov draw process. Finally,

in Figure 2.5, we simulate a homogeneous IPCN(M,N) system.

Throughout, for the given IPCN(M,N) system, we plot the average empirical sum

at time t, which is given by

1

N

N∑
i=1

It(i)

where

It(i) =
1

t

t∑
n=1

Zi,n.

For each plot, the average empirical sum is computed 100 times and the mean value is

plotted against time. For the dynamical systems, we plot the average infection rate at

time t, which is given by
1

N

N∑
i=1

Pi(t).

We first note from the simulations that for the network with M = 1, the linear

system in (2.14) matches the empirical sum of the draw process, as expected since in
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Figure 2.2: Infection rate curves for non-homogeneous IPCN(M,N) systems with
N = 10 nodes and memory M = 1, 2, 3. At t = 0, each urn has a total of 25 balls.
The number of red balls in each urn at t = 0 is chosen randomly between range 5 to
23 so that ρ′s lie in the range 0.2 to 0.92. ∆′

rs are chosen randomly between range 60
to 70 and ∆′

bs are randomly chosen between range 20 to 29. For simplicity, we set the
initial values Pi(0), Pi(1), · · · , Pi(M − 1) all equal to zero for all urns i in the network.
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Figure 2.3: Infection rate curves for non-homogeneous IPCN(M,N) systems with
N = 10 nodes and memory M = 1, 2, 3. At t = 0, the total number of balls in each
urn is 25. The number of red balls in each urn at time t = 0 are chosen randomly
between the range 2 to 17 so that ρ′s lie in the range 0.08 to 0.68. ∆′

rs are chosen
randomly in the range 12 to 30. ∆′

bs are chosen in the range 61 to 80. For simplicity,
we set the initial values Pi(0), Pi(1), · · · , Pi(M − 1) all equal to zero for all urns i.
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Figure 2.4: Infection rate curves for non-homogeneous IPCN(M,N) Barabási-Albert
systems [3] with N = 100 nodes and memory M = 1, 2, 3. At t = 0, the total number
of balls in each urn is 25. The number of red balls in each urn at time t = 0 are chosen
randomly between the range 1 to 10 so that ρ′s lie in the range 0.04 to 0.4. ∆′

rs are
chosen randomly in the range 40 to 50. ∆′

bs are chosen in the range 15 to 25. For
simplicity, we set the initial values Pi(0), Pi(1), · · · , Pi(M − 1) all equal to zero for all
urns i.
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Figure 2.5: Infection rate curves for homogeneous IPCN(M,N) systems with N = 10
nodes and memory M = 1, 2, 3. We set ρ = 0.48, δr = δb = 0.44 for all the urns in the
network. For simplicity, we set the initial values Pi(0), Pi(1), · · · , Pi(M − 1) all equal
to zero for all urns i.



CHAPTER 2. INTERACTING FINITE MEMORY PÓLYA NETWORKS 40

this case the linear system is exact.

We next observe that the nonlinear dynamical system (2.24) is always a good

approximation for the IPCN(M,N) system.

Note that in (2.24), the order of the approximating nonlinear dynamical system

is equal to the memory of the IPCN(M,N) system and therefore, when we drop

nonlinear terms from (2.24) to obtain the linear approximation (2.27), as we expect,

the approximation gets worse. For M > 1, we can see this worsening of linear

approximation in Figure 2.2 and Figure 2.4. However, in some exceptional cases,

the linear approximation performs well. An example of this behavior is presented in

Figure 2.3, where the linear approximations perform as well as the nonlinear ones.

An important aspect of these simulations is that the reinforcement parameters play a

major role in determining the asymptotic value of the probability of infection. For

example in Figure 2.2, since the δr parameters are significantly larger than the δb

parameters (i.e., infection is much more likely than recovery), the asymptotic value

of the plots is higher (i.e., the urns tend towards having a larger composition of red

balls). Similarly in Figure 2.3, since the δb values are significantly larger than the δr

values, the asymptotic value of the plots are lower (i.e., the urns tend towards having

a larger proportion of black balls). Furthermore, the better performance of the linear

system observed in Figure 2.3 relative to Figure 2.2 and Figure 2.4 is attributed to

the fact that the constant term in the linear approximation (given by (2.27)) increases

when δr is increased and decreases when δb is increased. Depending on how large

δr is, the probability of infection as approximated by (2.27) can exceed 1 and hence

the linear approximation does not perform well for these cases. Whereas, no matter

how large δb gets, the probability of infection never gets smaller than 0 and hence the
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linear approximation performs comparatively better in this case.

Lastly, we observe from the simulations for the homogeneous IPCN(M,N) system

in Figure 2.5 that the empirical sum as well as the linear and nonlinear dynamical ap-

proximations converge to ρ irrespective of the memory of the system. This phenomenon

is indeed shown in Theorem 2.4 for any homogeneous IPCN(M,N) system.



Chapter 3

A Consensus Model based on Finite

Memory Pólya urns

In Chapter 2, we formulated a network of finite memory Pólya urns interacting via a

constant interaction matrix. In this chapter, we introduce a finite memory interacting

Pólya urn process over a connected network which models consensus dynamics for

interacting individuals. More specifically, each urn (individual) in the network is

initially equipped with some red and black balls, whose proportions correspond to

the individual’s opinion (or belief) on a certain color. Unlike the previous chapter,

we consider the interactions between urns to be time dependent, for which we use

the concept of “super-urns” [12, 34, 35] to define the draw variables. As defined in

Chapter 1, for an undirected network of urns, a super-urn of an urn (say urn i) consists

of all the balls present in urn i and its neighbouring urns. At each time t, a ball

is drawn from the super-urn of each urn i simultaneously and we define the draw

42
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variables as follows:

Zi,t =


1 if a red ball is drawn from the super urn of urn i

0 if a black ball is drawn from the super urn of urn i.
(3.1)

We can write (3.1) in terms of coefficients of a time dependent interaction matrix

(similar to (2.3) in Chapter 2) as follows:

Zi,t =


1 w.p.

N∑
j=1

sij(t− 1)Uj,t−1

0 w.p. 1−
N∑
j=1

sij(t− 1)Uj,t−1,

(3.2)

such that

sij(t− 1) =
aijXj,t−1∑N
k=1 aikXk,t−1

,

where aij is the (i, j)th entry of the adjacency matrix of the network and Xk,t is

the total number of balls (red + black) in urn k at time t. Note that, unlike the

IPCN(M,N) system which is established in Chapter 2, the interaction matrix is

time-varying here.

We also add an extra reinforcement to the urns of removing all the initial balls

(i.e., all balls which were present in the urns at time t = 0) at time t = M . This extra

removal of initial balls signifies that agents completely forget about their initial beliefs

at the Mth time step. Taking this extra reinforcement into account, the ratio of red

balls in urn i at time t (given by Ui,t) as formulated in (2.5) in Chapter 2 is given by:

Ui,t =
Ri +

∑t−1
k=1 ∆r,i(k)Zi,k

Ti +
∑t−1

n=1∆r,i(n)Zi,n +
∑t−1

n=1(1−∆b,i(n))Zi,n

for t ≤ M, (3.3)
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Ui,t =

∑t−1
k=t−M ∆r,i(k)Zi,k∑t−1

n=t−M ∆r,i(n)Zi,n +
∑t−1

n=t−M ∆b,i(n)(1− Zi,n)
for t ≥ M + 1. (3.4)

almost surely. Furthermore, similar to the IPCN(M,N) system in Chapter 2, the

draw variables for this model are also conditionally independent given all the past

draws in the network. Defining Zt = (Z1,t, Z2,t, · · · , ZN,t) as the network wide draw

tuple, we arrive at the following result.

Lemma 3.1. The stochastic process {Zt}∞t=1 is a time-varying M th order Markov

chain.

Proof. Let at = (a1,t, · · · , aN,t) ∈ {0, 1}N . Using (3.4) and by virtue of the conditional

independence stated in (2.4) in Chapter 2, for t ≥ M + 1 we have that

P (Zt+1 = at+1|Zt = at, · · · , Z1 = a1) =

N∏
i=1


ai,t+1

( ∑
j∈N ′

i

t∑
k=t−M+1

∆r,j(k)aj,k

)
+ (1− ai,t+1)

( ∑
j∈N ′

i

t∑
k=t−M+1

∆b,j(k)(1− aj,k)
)

∑
j∈N ′

i

t∑
n=t−M+1

(∆r,j(n)aj,n +∆b,j(n)(1− aj,n))


(3.5)

where N ′
i is the set of all neighbours of urn i and the urn i itself. As a result, we have

that for all t ≥ M + 1,

P (Zt+1 = at+1|Zt = at, · · · , Z1 = a1)=P (Zt+1 = at+1|Zt = at, · · · , Zt−M+1 = at−M+1).

(3.6)

Hence the process {Zt}∞t=1 is a time-varying Mth order Markov chain.



CHAPTER 3. A CONSENSUS MODEL 45

3.1 Consensus in General Networks

In this section, we obtain the consensus result for our connected network of finite

memory Pólya urns (which we denote by GN ). To begin with, we present the definition

of consensus among agents in an interconnected population.

Definition 3.2. If V represents a group of agents who can access beliefs of a limited

number of agents in V , prescribed by a graph G with vertex set V of size N , and

xi(t) ∈ R represents the belief of agent i ∈ V at time t, then consensus is achieved

when

lim
t→∞

|xi(t)− xj(t)| = 0

for all i, j ∈ V .

Setting Wt := (Zt, Zt+1, · · · , Zt+M−1), Lemma 3.1 states that {Wt}∞t=1 is a Markov

chain of order one. Note that for a network of size N and memory M , the Markov

chain {Wt}∞t=1 has 2MN states. Before stating the next theorem, we define the

following:

Recall that N ′
i is the set of all neighbours of urn i and the urn i itself. We define

N (ℓ)
i :=

⋃
k∈N (ℓ−1)

i

N (ℓ−1)
k ,

where ℓ ≥ 1, and N (0)
k := N ′

k.

Note that in a connected network of urns GN , for every urn i ∈ {1, 2, · · · , N},

there exists n ≥ 1 such that

N ′

i ∪N (1)
i ∪N (2)

i ∪ · · · ∪ N (n)
i = GN . (3.7)



CHAPTER 3. A CONSENSUS MODEL 46

We now use (3.7) to classify the states of the Markov chain {Wt}∞t=1 as either

absorbing or transient.

Theorem 3.3. The Markov chain {Wt}∞t=1 has two absorbing states which are state

0 with all entries zero and state 1 with all entries one. The remaining states are

transient, i.e., {Wt}∞t=1 is an absorbing Markov chain.

Proof. We denote a state of the Markov chain {Wt}∞t=1 by the following length-NM

tuple

a :=
(
(a11, a21, · · · , aN1), · · · , (a1M , a2M , · · · , aNM)

)
where a ∈ {0, 1}NM . Let 0 (resp., 1) be the state for which aij = 0 (resp., aij = 1) for

all i ∈ {1, · · · , N} and j ∈ {1, 2, · · · ,M}. Using (3.5), we obtain that

P (Wt+1 = 0 |Wt = 0) =
N∏
i=1

P (Zi,t+1 = 0 |Wt = 0) = 1.

Similarly, P (Wt+1 = 1 |Wt = 1) = 1. Hence 0 and 1 are both absorbing states of the

Markov chain {Wt}∞t=1. We now show that the remaining states of Wt are transient.

It is enough to show that for any state b /∈ {0,1}, there exists a time tb such that

P (Wtb = 0 |W1 = b) > 0. (3.8)

To show this, we construct a finite length path from state b to state 0 which occurs

with positive probability.

• Suppose the Markov chain is in state Wt = b at time t, with

b :=
(
(b11, b21, · · · , bN1), · · · , (b1M , b2M , · · · , bNM)

)
.
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Note that there exists a component bij = 0 for some i ∈ {1, 2, · · · , N} and

j ∈ {1, 2, · · · ,M}.

• Let

b
′
:=
(
(b

′

11, b
′

21, · · · , b
′

N1), · · · , (b
′

1M , b
′

2M , · · · , b′NM)
)

be a state of the Markov chain {Wt}∞t=0

with b
′

kj = bkj for all k ∈ {1, 2, · · · , N} and j ∈ {1, 2, · · · ,M−1}. Also, b′kM = 0

for all k ∈ N ′
i and b

′

kM = bkM for all k /∈ N ′
i . We will now show that we can go

from state b to b
′ in a single time step, i.e.,

P (Wt+1 = b
′ |Wt = b) > 0.

Note that

P (Wt+1 = b
′ |Wt = b) = P

(
Zt+M = (b

′

1M , b
′

2M , · · · , b′NM) |Wt = b
)

=
N∏
k=1

P (Zk,t+M = b
′

k,M |Wt = b). (3.9)

At time t+M−1, after making the draws and adding and removing corresponding

balls, the super urn of k ∈ N ′
i contains a black ball because Zi,t+j−1 = bi,j = 0

for some j ∈ {1, 2, · · · ,M}. At time t+M , it is possible to draw a black ball

from the super urn of k with probability

P (Zk,t+M = b
′

KM = 0 |Wt = b) > 0.
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For the super urn of k /∈ N ′
i , at time t+M , it is possible to draw a ball which

was added to the urn k at time t+M − 1 i.e.,

P (Zk,t+M = b
′

KM = bKM |Wt = b) > 0.

Hence each term of the product in (3.9) is strictly positive.

• If b′ = 0, then we are done. Otherwise, at the next time step, i.e., at time

t+M + 1, we draw a black ball from super urns of j ∈ N (1)
i (it is possible to

draw a black ball from such a super urn because Zk,t+M = 0 for all k ∈ N ′
i ). For

super urns of j /∈ N (1)
i , it is possible to draw a ball which was added to the urn

j at time t+M .

• Repeating the above procedure, by the virtue of (3.7), we will eventually hit

(with positive probability) the state 0 at some time.

Using this structure of the Markov chain {Wt}∞t=1, we now obtain the consensus

result for our connected network GN of finite memory Pólya urns.

Theorem 3.4. For a general connected network GN ,

lim
t→∞

P (Zi,t = 1) = lim
t→∞

P (Zj,t = 1) for all i, j ∈ {1, 2, · · ·N}.

Proof. We denote the limiting distributions of the Markov chain {Wt}∞t=1 by Π, where
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the entries of Π are denoted by πk1k2···kM with

kj = (k1j, k2j, · · · , kNj) ∈ {0, 1}N for j ∈ {1, 2, · · · ,M}.

The subscript k1k2 · · · kM denotes the state of the Markov chain. By Theorem 3.3, the

limiting distribution of {Wt}∞t=1 is given by Π = (1− π, 0, · · · , 0, π), 0 ≤ π ≤ 1, where

first and the last states of the Markov chain are the absorbing states (corresponding

to states 0 and 1, respectively). Since {Wt}∞t=1 is a reducible Markov chain, there is

no unique limiting distribution. Also, the limiting distribution can vary depending on

W1, i.e., the initial state of the Markov chain. The marginal limiting distribution for

an urn i is given by:

lim
t→∞

P (Zi,t = 1) =
∑
kij=1

j∈{1,2,··· ,M}

πk1k2···kM = π + 0 = π. (3.10)

Hence,

lim
t→∞

P (Zi,t = 1) = π = lim
t→∞

P (Zj,t = 1)

for i, j ∈ {1, · · · , N}, proving the claim.

In the proof of Theorem 3.4, we observe that the consensus value is given by π

which is the asymptotic belief of each individual in the network GN .

Even though it is hard to analytically solve for π in terms of the initial state for a

general network, we can compute the consensus value, i.e. π, for smaller networks.

One such example is presented next.

Example 3.5. Consider a complete network of 3 urns each with memory M = 1 and
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∆r,i(t) = ∆b,i(t) = 1 for i ∈ {1, 2, 3} and t ≥ 1. For simplicity, we relabel the state

space as following:

{000} → 0; {001} → 1; {010} → 2; {100} → 3

{011} → 4; {101} → 5; {110} → 6; {111} → 7

We compute the transition probability matrix for the Markov chain {Wt}∞t=1 using

(3.5) as follows:



1 0 0 0 0 0 0 0

8
27

4
27

4
27

4
27

2
27

2
27

2
27

1
27

8
27

4
27

4
27

4
27

2
27

2
27

2
27

1
27

8
27

4
27

4
27

4
27

2
27

2
27

2
27

1
27

1
27

2
27

2
27

2
27

4
27

4
27

4
27

8
27

1
27

2
27

2
27

2
27

4
27

4
27

4
27

8
27

1
27

2
27

2
27

2
27

4
27

4
27

4
27

8
27

0 0 0 0 0 0 0 1


For a state i, let qi,0 be the probability that the Markov chain starting in state i will

eventually end up in state {000}. Similarly, let qi,7 be the probability that the Markov

chain starting in state i will eventually end up in state {111}. Then by symmetry of

the Markov chain, we have

q1,0 = q2,0 = q3,0 and q4,0 = q5,0 = q6,0,
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q1,7 = q2,7 = q3,7 and q4,7 = q5,7 = q6,7.

Now, using the transition probability matrix we obtain the following equations:

q6,0 =
1

27
+

6

27
q1,0 +

12

27
q6,0

q1,0 =
8

27
+

12

27
q1,0 +

6

27
q6,0.

We further have

q1,0 + q1,7 = 1 and q6,0 + q6,7 = 1.

Solving above equations yields

q1,7 =
1

3
and q6,7 =

2

3
.

which means that if the initial state of this Markov chain is 1, 2 or 3, then the consensus

value is 1
3
, and if the initial state of the Markov chain is 4, 5 or 6, then the consensus

value is 2
3
.

3.2 Consensus in Homogeneous Networks

In this section, we present an alternate approach to show consensus for homogeneous

connected networks by constructing a class of linear dynamical systems with time delay.

We further derive the exact consensus value obtained in such networks by examining

the asymptotic behaviour of these dynamical systems. By homogeneous here, we

mean that all reinforcement parameters are identical, i.e., ∆r,i(t) = ∆b,i(t) = ∆ for all
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i ∈ {1, 2, · · · , N} and t ≥ 1. However we allow the initial composition to be different

among the urns (i.e., even though the individuals update their beliefs with the same

reinforcement parameters, their initial beliefs can be different). Rewriting (3.5) with

the homogeneous conditions, we obtain that for t ≥ M + 1,

P (Zi,t = 1|Zt−1, Zt−2, · · · , Zt−M+1) =

∑
j∈N ′

i

∑t−1
n=t−M Zj,n

(1 + di)M
. (3.11)

where di is the degree of urn i in the network GN . Now, taking expectation of both

sides with respect to the random variables Zt−1, Zt−2, · · · , Zt−M+1 in (3.11), we obtain

P (Zi,t = 1) =

∑
j∈N ′

i

∑t−1
n=t−M P (Zj,n = 1)

(1 + di)M
. (3.12)

We further define Pi(t) := P (Zi,t = 1), to write (3.12) as a discrete-time linear

dynamical system given by

Pi(t) =

∑
j∈N ′

i

∑t−1
n=t−M Pj(n)

(1 + di)M
. (3.13)

In (3.13), Pi(t) depends on Pi(t− 1), · · · , Pi(t−M) in a linear fashion, and therefore,

in the homogeneous case, we obtain a linear dynamical system with time delay. We

next write the dynamical system (3.13) in matrix form. Define

P (t) := (P1(t), · · · , PN(t))
T ,

Xt,M := (P (t), · · · , P (t−M + 1))T .
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Let

BN,M =
1

M
(IN +D)−1(IN + A),

where IN is the identity matrix of size N , D is a diagonal matrix for which ith diagonal

entry is di, and A is the adjacency matrix of the connected network GN . We hence

have the following linear dynamical system:

Xt,M = JN,MXt−1,M (3.14)

where

JN,M =



BN,M BN,M BN,M · · · BN,M

IN 0N 0N · · · 0N

0N IN 0N · · · 0N

...
...

...
...

...

0N 0N · · · IN 0N


is a stochastic block matrix of size NM ×NM . It has M2 blocks each of which is a

square matrix of size N . In the matrix JN,M , IN is identity matrix of size N and 0N

is a square matrix of size N with all entries 0.

We next establish the asymptotic behaviour of the linear dynamical system with

time delay in (3.14).

Theorem 3.6. If GN is a connected homogeneous network with memory M , then we

have that

lim
t→∞

Xt,M(i) = π for i ∈ {1, 2, · · · , NM}, (3.15)



CHAPTER 3. A CONSENSUS MODEL 54

where

π =
M∑
j=1

(M − j + 1)

M

N∑
i=1

v1,iXM,M(i),

Xt,M(i) is the ith entry of the column vector Xt,M , and

v̄ = ((v1,1, · · · , v1,N), · · · , (vM,1, · · · , vM,N))

is the l1-normalized left eigenvector of the matrix JN,M in (3.14) corresponding to eigen-

value λ = 1. Moreover, (v1,1, · · · , v1,N ) is a left eigenvector of BN,1 also corresponding

to eigenvalue λ = 1.

Proof. Since GN is connected, BN,M is a primitive matrix. Since all the entries of

JN,M are non-negative and all the blocks in the first row of JN,M are primitive, for

some positive integer k > 0, all the blocks of Jk
N,M will be sum of positive powers of

BN,M . Since, BN,M is a primitive matrix, there exists h > k such that Jh
N,M has all

positive entries. Hence JN,M is a primitive matrix. Since JN,M is a stochastic and a

primitive matrix, it is a transition probability matrix for an irreducible Markov chain

and the normalized left eigenvector of the matrix JN,M , which we denote by

v̄ = ((v1,1 · · · , v1,N), · · · , (vM,1, · · · , vM,N)),

is the unique stationary distribution for this Markov chain. We can write (3.14) as

Xt,M = J t−M
N,M XM,M
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Taking t → ∞ in the above equation, we obtain

lim
t→∞

Xt,M = VNMXM,M (3.16)

where the limit in Xt,M is taken entry wise and VNM is a square matrix of size NM

with each row given by v̄ (e.g., see [51] for the asymptotic behaviour of irreducible

ergodic Markov chains).

The symmetry in the structure of the block matrix JN,M makes it possible to find

a useful relationship between the entries of the left eigenvector of JN,M corresponding

to eigenvalue λ = 1 in terms of the memory parameter M and the matrix BN1.

The equation

v̄JN,M = v̄

yields the following recursive relations:

(v1,1, · · · , v1,N)BN,M + (v2,1, · · · , v2,N) = (v1,1, · · · , v1,N)

(v1,1, · · · , v1,N)BN,M + (v3,1, · · · , v3,N) = (v2,1, · · · , v2,N)
...

(v1,1, · · · , v1,N)BN,M + (vM,1, · · · , vM,N) = (vM−1,1, · · · , vM−1,N)

which upon solving yields

(v1,1, · · · , v1,N)BN,M = (v1,1, · · · , v1,N)
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and

vj,i =
(M − j + 1)

M
v1,i, j = 1, . . . ,M, i = 1, . . . , N. (3.17)

We obtain (3.15) by substituting (3.17) in (3.16).

3.3 Simulation Results

In this section, we present simulations to illustrate the consensus behaviour of our

network of urns.1 In Figure 3.1, we define the empirical sum of urn i at time t as

It(i) =
1

t

t∑
n=1

Zi,n. (3.18)

For each time instant t, the empirical sum It(i) for node i (i.e., urn or agent/individual

i) is computed 100 times and the arithmetic mean value is plotted against time.

We observe in Figure 3.1 that our network exhibits a consensus behaviour with the

empirical sum for all the urns eventually reaching the same value (we plot the empirical

sums for only 7 urns in Figure 3.1 for better visibility of the curves). In this figure,

the values of the ∆r’s and ∆b’s are taken to be in the range 5 to 15.

We indeed remark that in the long run, the empirical beliefs of the urns (agents)

about the red colored balls align to a value of about 20%; i.e., the agents eventually

gravitate towards favoring the viewpoint represented by the black colored balls.

In Figure 3.2, we plot the trajectory of the delayed linear dynamical systems
1For a complete list of parameters used for generating all figures of this chapter, refer to the link:

https://www.dropbox.com/sh/ojvmeo79wbbdv3g/AAA5onqqo0TrCU7I0iteuzRGa?dl=0

https://www.dropbox.com/sh/ojvmeo79wbbdv3g/AAA5onqqo0TrCU7I0iteuzRGa?dl=0
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1 2

3 4

5 6

7

8

9 10

Figure 3.1: Empirical sum for first seven urns in a network with 10 urns with memory
M = 1. Initial ratio of red balls, ∆r’s and ∆b’s are all taken to be different. We
observe that asymptotically the empirical sum of all the network urns approach a
consensus value.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 3.2: A 15-node connected homogeneous network of finite memory Pólya urns.
We have ∆ = 5 and even through the network is homogeneous, the initial ratio of red
balls are different for all the urns.
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obtained in (3.13) for different values of the memory parameter M which illustrates

the variation of the consensus value with memory for a connected homogeneous

network. As seen in Section 3.2, we can verify the consensus value of a homogeneous

connected network using Theorem 3.6 by computing the fixed points using (3.15). As

an illustration, in the 15-node network of Figure 3.2, we used the following vector of

initial ratio of red balls

ρ =
(
U1,0, U2,0 . . . , U15,0

)
= (0.16, 0.08, 0.12, 0.04, 0.04, 0.04, 0.24, 0.04, 0.16, 0.12, 0.24, 0.08, 0.16, 0.2, 0.12).

Also for M = 1, letting v denote the normalized left eigenvector of the matrix B15,1

corresponding to eigenvalue 1, we obtain (via computations carried up to the nearest

two digits) that

v = (0.04, 0.04, 0.06, 0.06, 0.13, 0.1, 0.07, 0.06, 0.06, 0.04, 0.04, 0.04, 0.07, 0.04, 0.04).

Then, using (3.15), the fixed point is given by ⟨ρ, v⟩ = 0.0988 (where ⟨·, ·⟩ is the

standard inner product). This fixed point is the same as shown by the light blue curve

for M = 1 in Figure 3.2 (the same behaviour is observed for M = 2, 5 and 10); hence,

these simulations indeed verify Theorem 3.6.



Chapter 4

A Preferential Attachment Model

based on a Pólya Urn

4.1 The Model

We construct a sequence of undirected graphs Gt, where t ≥ 0 denotes the time index,

using a Pólya reinforcement process. We start with G0 = (V0, E0), where the initial

vertex and the edge set are respectively, V0 = {c1} and E0 = {(1, 1)}, i.e., a self-loop

on vertex 1. At each time step t ≥ 1, a new vertex enters the graph and forms an edge

with an existing vertex. The latter vertex is selected according to the draw variable of

a Pólya urn with an expanding number of colors as follows:

• At time t = 0, the Pólya urn consists of a single ball of color c1.

• At each time instant t ≥ 1, we draw a ball and return it to the urn along with

∆t > 0 additional (reinforcing) balls of the same color. We also add a ball of a

new color ct+1. We then introduce a new vertex to the graph Gt−1 (corresponding

59
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to the color ct+1) and connect it with the vertex whose color ball is drawn at

time t. This results in the newly formed graph Gt. Note that at time t = 0, the

urn consist of only one c1 color ball. Hence, the draw variable at time t = 1 is

deterministic and corresponds to drawing a c1 color ball.

At any given time instant t, we define the draw random vector

Zt := (Z1,t, Z2,t, · · · , Zt,t)

of length t, where

Zj,t =


1 if a cj color ball is drawn at time t

0 otherwise
for 1 ≤ j ≤ t. (4.1)

The vector Zt is a standard unit vector for all time instances t ≥ 1, and since at time

t = 1 there is only c1 color ball present in the urn, Z1 = Z1,1 = 1. We denote the

“composition” of the Pólya urn at any given time instant t by the random vector

Ut := (U1,t, U2,t, · · · , Ut+1,t),

where

Uj,t =
Number of balls of color cj in the urn at time t

Total number of balls in the urn at time t
, (4.2)

for 1 ≤ j ≤ t+ 1. In the following lemma, we express the vector Ut in terms of the

draw variables.
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Lemma 4.1. Given t ≥ 0, Ut is given by

Ut =
1

1 + t+
t∑

k=1

∆k

(
1 +

t∑
n=1

∆nZ1,n, 1 +
t∑

n=2

∆nZ2,n, · · · , 1 + ∆tZt,t, 1
)
. (4.3)

Proof. To compute the ratio in (4.2), recall that at time n = 0, we have one ball in the

urn (this ball is of color c1) and for each time instant n ≥ 1, we add ∆n + 1 balls to

the urn (∆n of the color drawn and 1 of the new color cn+1). Hence the total number

of balls in the urn at time t is given by 1 +
∑t

n=1(∆n + 1).

To determine the number of balls of color cj in the urn after the tth draw, we note

that the first cj color ball is added to the urn at time j − 1. After that, at every time

instant n (where j ≤ n ≤ t) at which a cj color ball is drawn, we add ∆n balls of cj

color to the urn. Hence, the number of balls of color cj in the urn at time t is equal to

1 +
∑t

n=j ∆nZj,n. Therefore, the ratio of color cj balls in the urn at time t in (4.2) is

given by:

Uj,t =
1 +

∑t
n=j ∆nZj,n

1 + t+
t∑

k=1

∆k

for 1 ≤ j ≤ t+ 1, (4.4)

which yields (4.3).

Remark 4.2. As expected, the sum of the components of Ut in (4.3) is one for all

t ≥ 0. To see this we first note that, for t = 0, U0 = U1,0 = 1. For any time t ≥ 1, we
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have the following from (4.3):

t+1∑
j=1

Uj,t =
1

1 + t+
t∑

k=1

∆k

((t+ 1) +
t∑

n=1

∆nZ1,n +
t∑

n=2

∆nZ2,n + · · ·+∆tZt,t)

=
1

1 + t+
t∑

k=1

∆k

((t+ 1) +
t∑

i=1

t∑
n=i

∆nZi,t)

=
1

1 + t+
t∑

k=1

∆k

((t+ 1) +
t∑

n=1

∆n

t∑
i=n

Zi,t) (4.5)

but since Zt is a standard unit vector for all t ≥ 1, the right-hand side of (4.5)

simplifies as follows:

t+1∑
j=1

Uj,t =
1

1 + t+
t∑

k=1

∆k

((t+ 1) +
t∑

n=1

∆n) = 1.

An illustration of our model is given in Figure 4.1 where we show a sample path

of the random vectors Ut and Zt, for t ≥ 4 and with ∆t = 2. We further write the

conditional probabilities of the draw variables given the past. More specifically, for

1 ≤ j ≤ t, using (4.4), we have that

P (Zt = ej,t |Zt−1, · · · ,Z1) = P (Zj,t = 1 |Zt−1, · · · ,Z1)

= P (a cj color ball is drawn at time t |Zt−1,Zt−2, · · · ,Z1)

= Uj,t−1 =
1 +

∑t−1
n=j ∆nZj,n

1 + (t− 1) +
t−1∑
k=1

∆k

, (4.6)
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Figure 4.1: We illustrate a sample path for constructing a preferential attachment
graph using an expanding color Pólya urn with ∆t = 2. For t = 0, the urn has only one
ball of color c1. This urn corresponds to G0 and U0 = U1,0 = 1. For t = 1, the c1 color
ball is drawn from and returned to the urn (i.e., Z1 = Z1,1 = 1). Two additional c1
color balls are added to the urn along with a new c2 color ball and so U1 = (3/4, 1/4).
For t = 2, a c2 color ball is drawn from and returned to the urn (i.e., Z2 = (0, 1)). Two
additional c2 color balls are added to the urn along with a new c3 color ball; hence
U2 = (3/7, 3/7, 1/7). For t = 3, a c1 color ball is drawn from and returned to the urn
(i.e., Z3 = (1, 0, 0)). Two additional c1 color balls are added along with a new c4 color
ball; thus U3 = (5/10, 3/10, 1/10, 1/10).
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where ej,t represents a standard unit vector of length t whose jth component is 1.

Considering the case where j = t in (4.6), we obtain

Ut,t−1 =
1 +

∑t−1
n=t ∆nZt,n

t+
t−1∑
k=1

∆k

=
1

t+
t−1∑
k=1

∆k

= P (Zt,t = 1)

and hence

P (Zt,t = 1 |Zt−1,Zt−2, · · · ,Z1) = P (Zt,t = 1) =
1

t+
∑t−1

k=1 ∆k

, (4.7)

i.e., the conditional probability of drawing a ball of color ct at time t equals the

marginal probability of drawing a ball of color ct at time t. Similarly, we have that

P (Zt,t = 0 |Zt−1,Zt−2, · · · ,Z1) = P (Zt,t = 0) =
t− 1 +

∑t−1
n=1∆n

t+
∑t−1

k=1 ∆k

, (4.8)

implying that Zt,t is independent of the random vectors {Zt−1,Zt−2, · · · ,Z1}. More

generally, we obtain the marginal probability for the random variable Zj,t for any

1 ≤ j ≤ t by taking expectation on both sides in (4.6) with respect to the random

vectors Zt−1,Zt−2, · · · ,Z1 as follows:

P (Zj,t = 1) = E(Uj,t−1) =
1 +

∑t−1
n=j ∆nP (Zj,n = 1)

t+
∑t−1

k=1∆k

= 1− P (Zj,t = 0), for 1 ≤ j ≤ t. (4.9)

For j = t, the formula in (4.9) for P (Zt,t = 1) reduces to (4.7), but for j < t, the

formula for P (Zj,t = 1) is a recursive function of the marginal probabilities of past
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draw variables: P (Zj,1 = 1), · · · , P (Zj,t−1 = 1).

We further note that, for graph Gt, the edge between the new vertex to one of the

existing vertices in Gt−1 is made using the realization of the draw vector Zt. Using (4.6),

we observe that the conditional probability P (Zt = ej,t|Zt−1, · · · ,Z1) can be written

in terms of the draw variables Zj,j, · · · , Zj,t−1. Hence, all the spatial information of

the graph Gt is encoded in the sequence of random draw vectors {Z1, . . . ,Zt−1,Zt}.

We illustrate this property in the following example, where we retrieve the graph G4

using {Z1,Z2,Z3,Z4}.

Example 4.3. Consider the following realizations for the random draw vectors Z1,

Z2, Z3 and Z4 for all t ≥ 1:

Z1 = 1, Z2 = (1, 0),

Z3 = (0, 1, 0), Z4 = (0, 1, 0, 0).

By construction, the graph G0 consists of only one vertex c1 with a self-loop. Since

we start with only one ball of color c1 in the urn, the random variable Z1 = 1 is

deterministic and results in an edge drawn between the c1 vertex and the new incoming

vertex c2. For t = 2, since Z2 = (1, 0), the new incoming vertex c3 is connected to c1.

Similarly for t = 3, the new vertex c4 is connected to c2 and finally, for t = 4, using

the value of Z4, we connect c5 to c2. Hence, the graph G4 is as shown in Figure 4.2.
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c1 c2

c4c3

c5

Figure 4.2: An illustration of how the sequence of draw vectors {Z4 = (0, 1, 0, 0),Z3 =
(0, 1, 0),Z2 = (1, 0),Z1 = 1} determines G4.

4.2 Analysing the degree count of the vertices in Gt

The goal of this section is to establish a formula for the probability distribution of

degree count of a fixed vertex in the preferential attachment graph constructed via

our modified Pólya process until time t (including time t). We obtain this formula by

writing the degree of a fixed vertex at time t in terms of the total number of balls of

color corresponding to this vertex drawn until time t. To this end, let random variable

Nj,t count the number of draws of color cj from the urn until time t (including time t).

Since by construction, for a fixed color cj, at any time t ≥ j − 1 the degree of vertex

cj at time t, denoted by dj,t, is one more than the number of times a cj color ball is

drawn from the urn until time t; the additional one here is due to the fact that at

each time instant, the new vertex which is added has degree one. Therefore,

dj,t = 1 +Nj,t for all 1 ≤ j ≤ t+ 1,

where Nt+1,t = 0. Also, note that the first time a color cj ball can be drawn is at

time j. In the following theorem, we establish an analytical expression for the marginal
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probability of random variable Nj,t.

Theorem 4.4. Fix t ≥ 1. For a color cj, 1 ≤ j ≤ t, we have that

P (Nj,t = k) =

(4.10)

∑
(i1,··· ,ik)∈A

(t)
j,k

k∏
a=1

(
1+

a−1∑
b=1

∆ib

) t∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)+

p−1∑
l=1,l/∈{i1,··· ,ik}

∆l

)
t−1∏

n=j−1

(
(n+1)+

n∑
m=1

∆m

) for 1 ≤ k ≤ t− j + 1

t∏
p=j

(
(p− 1)+

p−1∑
l=1

∆l

)
t−1∏

n=j−1

(
(n+1)+

n∑
m=1

∆m

) for k = 0,

where

A(t)
j,k =


{(i1, i2, · · · , ik) | 1 = i1 < i2 < · · · < ik ≤ t} for j = 1

{(i1, i2, · · · , ik) | j ≤ i1 < i2 < · · · < ik ≤ t} for 1 < j ≤ t.

(4.11)

Proof. Note that the set A(t)
j,k defined in (4.11) gives all possible ways in which k

elements can be chosen from a set of t− j + 1 consecutive integers. In the context of

our model, this set represents all possible k length tuples of time instants such that a

color cj ball is drawn at each of these time instants. For j = 1, the first draw at t = 1

is deterministic and hence i1 = 1 for j = 1 as given in (4.11). For 1 ≤ k ≤ t− j + 1,

we have the following:
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P (Nj,t = k)

=
∑

(i1,··· ,ik)∈A
(t)
j,k

P (Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · ·Zj,i2−1 = 0,

Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1,

Zj,ik+1 = 0, · · · , Zj,t = 0)

=
∑

(i1,··· ,ik)∈A
(t)
j,k

[P (Zj,t = 0|Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · ,

Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0,

Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−1 = 0)P (Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1,

Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1 = 0, Zj,i3−1 = 0, Zj,i3 = 1,

· · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−1 = 0)]. (4.12)

By substituting (4.6) in the conditional probability expressions in (4.12), we obtain

the following:

P (Zj,t = 0|Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1,

Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0,

· · · , Zj,t−1 = 0)

= 1−
1 +

t−1∑
n=j

∆nZj,n

t+
t−1∑
m=1

∆m
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= 1−
1 +

k∑
l=1

∆il

t+
t−1∑
m=1

∆m

=

(t− 1) +
t−1∑

l=1,l /∈{i1,··· ,ik}
∆l

t+
t−1∑
m=1

∆m

. (4.13)

Now, substituting the conditional probability expression obtained in (4.13) in (4.12),

yields

P (Nj,t = k) =
∑

(i1,··· ,ik)∈A
(t)
j,k

((t− 1) +
∑t−1

l=1,l /∈{i1,··· ,ik}∆l)

t+
∑t−1

m=1∆m

P (Zj,j = 0, · · · , Zj,i1−1 = 0,

Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1,

· · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−1 = 0). (4.14)

Similar to (4.12) and (4.14), we continue to recursively write the joint probability as

a product of conditional and marginal probabilities and substitute the expressions for

the conditional probability using (4.13) as follows:

P (Nj,t = k)

=
∑

(i1,··· ,ik)∈A
(t)
j,k

(
(t− 1) +

∑t−1
l=1,l /∈{i1,··· ,ik}∆l

t+
∑t−1

m=1∆m

)(
(t− 2) +

∑t−2
l=1,l /∈{i1,··· ,ik}∆l

t− 1 +
∑t−2

m=1∆m

)
P (Zj,j = 0,

· · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1 = 0,

· · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−2 = 0)

...
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=
∑

(i1,··· ,ik)∈A
(t)
j,k

[(
(t− 1) +

∑t−1
l=1,l /∈{i1,··· ,ik}∆l

t+
∑t−1

m=1∆m

)(
(t− 2) +

∑t−2
l=1,l /∈{i1,··· ,ik}∆l

t− 1 +
∑t−2

m=1∆m

)
· · ·

(
ik +

∑ik
l=1,l /∈{i1,··· ,ik}∆l

ik + 1 +
∑ik

m=1∆m

)(
1 +

∑k−1
l=1 ∆il

ik +
∑ik−1

m=1∆m

)(
ik − 2 +

∑ik−2
l=1,l /∈{i1,··· ,ik}∆l

ik − 1 +
∑ik−2

m=1 ∆m

)
· · ·

(
ik−1 +

∑ik−1

l=1,l /∈{i1,··· ,ik}∆l

ik−1 + 1 +
∑ik−1

m=1 ∆m

)(
1 +

∑k−2
l=1 ∆il

ik−1 +
∑ik−1−1

m=1 ∆m

)(
ik−1 − 2 +

∑ik−1−2

l=1,l /∈{i1,··· ,ik}∆l

ik−1 − 1 +
∑ik−1−2

m=1 ∆m

)

· · ·

(
1

i1 +
∑i1−1

m=1∆m

)(
i1 − 2 +

∑i1−2
l=1,l /∈{i1,··· ,ik}∆l

i1 − 1 +
∑i1−2

m=1∆m

)
· · ·

· · ·

(
j +

∑j
l=1,l /∈{i1,··· ,ik}∆l

j + 1 +
∑j

m=1 ∆m

)(
j − 1 +

∑j−1
l=1,l /∈{i1,··· ,ik}∆l

j +
∑j−1

m=1∆m

)]

=
∑

(i1,··· ,ik)∈A
(t)
j,k

[ ∏k
a=1(1 +

∑a−1
b=1 ∆ib)∏t−1

n=j−1((n+ 1) +
∑n

m=1∆m)

( i1−2∏
l1=j−1

(l1 +
∑l1

l=1,l /∈{i1,··· ,ik}
∆l)

)
( i2−2∏

l2=i1

(l2 +
∑l2

l=1,l /∈{i1,··· ,ik}
∆l)

)( i3−2∏
l3=i2

(l3 +
∑l3

l=1,l /∈{i1,··· ,ik}
∆l)

)
· · ·

· · ·
( ik−2∏

lk=ik−1

(lk +
∑lk

l=1,l /∈{i1,··· ,ik}
∆l)

)( t−1∏
lk+1=ik

(lk+1 +
∑lk+1

l=1,l /∈{i1,··· ,ik}
∆l)

)]

=
∑

(i1,i2,··· ,ik)∈A
(t)
j,k

∏k
a=1(1 +

∑a−1
b=1 ∆ib)

∏t
p=j,p/∈{i1,··· ,ik}((p− 1) +

∑p−1
l=1,l /∈{i1,··· ,ik}∆l)∏t−1

n=j−1((n+ 1) +
∑n

m=1 ∆m)
.

Therefore, (4.10) holds for 1 ≤ k ≤ t− j + 1. We determine P (Nj,t = 0) as follows:

P (Nj,t = 0) = P (Zj,j = 0, Zj,j+1 = 0, · · · , Zj,t−1 = 0, Zj,t = 0)

= P (Zj,j = 0)
t∏

n=j+1

P (Zj,n = 0 |Zj,j = 0, Zj,j+1 = 0, · · · , Zj,n−1 = 0).

(4.15)
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Now, using (4.6) for the conditional probabilities in (4.15) we obtain

P (Nj,t = 0) =

(
1− 1

j +
j−1∑
m=1

∆m

)(
1− 1

j + 1 +
j∑

m=1

∆m

)
· · ·

(
1− 1

t+
t−1∑
m=1

∆m

)

=

t∏
p=j

((p− 1) +
p−1∑
l=1

∆l)

t−1∏
n=j−1

((n+ 1) +
n∑

m=1

∆m)

.

Hence (4.10) holds for k = 0.

The analytic formula obtained in (4.10) is quite involved when the reinforcement

parameter ∆t is time-varying. For the special case of ∆t = ∆ for all t ≥ 1, Theorem

4.4 reduces to the following corollary.

Corollary 4.5. Fix t ≥ 1. For a color cj, 1 ≤ j ≤ t and ∆t = ∆ for all t ≥ 1, the

marginal probability for Nj,t is given by:

P (Nj,t = k) =

(4.16)

∑
(i1,i2,··· ,ik)∈A

(t)
j,k

k∏
a=1

(
1+(a−1)∆

) t∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆+1)−∆

k∑
l=1

1(il≤p− 1)
)

t−1∏
n=j−1

(
(∆+1)n+1

) for 1 ≤ k ≤ t− j + 1

t∏
p=j

(p− 1)(∆+1)

t−1∏
n=j−1

(
(∆+1)n+1

) for k = 0,

where the set A(t)
j,k is defined in (4.11) and 1(E) is the indicator function of the event E .
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Since the first time instant at which a cj color ball can be drawn from the Pólya

urn is at time j, the total number of draws of a cj color ball till time t can be at most

t− j + 1. Therefore,

t−j+1∑
k=0

P (dj,t = k + 1) =

t−j+1∑
k=0

P (Nj,t = k) = 1,

which implies that P (Nj,t = k) is a probability mass function on the support set

{0, 1, · · · , t− j + 1}. We next verify that P (Nj,t = k) obtained in (4.16) does indeed

sum up to one (over k ranging from zero to t − j + 1) and is hence a legitimate

probability mass function. For simplicity, we focus on the case with ∆t = ∆; the proof

for the general case follows along similar lines. To this end, we write the set A(t)
j,k as

the following disjoint union:

A(t)
j,k = {(i1, i2, · · · , ik) | j ≤ i1 < i2 < · · · < ik ≤ t}

= {(i1, i2, · · · , ik) | j ≤ i1 < i2 < · · · < ik ≤ t− 1} ⊔ B(t)
j,k

= A(t−1)
j,k ⊔ B(t)

j,k, (4.17)

where B(t)
j,k := {(i1, · · · , ik−1, t ) | j ≤ i1 < · · · < ik−1 ≤ t− 1}. Note that

B(t)
j,k = {(i1, · · · , ik−1, t ) | (i1, · · · , ik−1) ∈ A(t−1)

j,k−1}. (4.18)

Theorem 4.6. Fix t ≥ 1. For a color cj, 1 ≤ j ≤ t and ∆t = ∆ for all t ≥ 1, we
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have that

t−j+1∑
k=0

P (Nj,t = k) = 1. (4.19)

Proof. We write the left-hand side of (4.19) using (4.16):

∏t
p=j(p− 1)(∆ + 1)∏t−1

n=j−1((∆ + 1)n+ 1)
+

t−j+1∑
k=1

∑
(i1,··· ,ik)∈A

(t)
j,k

k∏
a=1

(1 + (a− 1)∆)
t∏

p=j,p/∈{i1,··· ,ik}
((p− 1)(∆ + 1)−∆

∑k
l=1 1(il ≤ p− 1))∏t−1

n=j−1((∆ + 1)n+ 1)

(4.20)

Therefore, showing that (4.19) holds is equivalent to showing that:

t∏
p=j

(p− 1)(∆ + 1) +

t−j+1∑
k=1

∑
(i1,··· ,ik)∈A

(t)
j,k

(∏k

a=1

(
1 + (a− 1)∆

) t∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

=
t−1∏

n=j−1

((∆ + 1)n+ 1). (4.21)

We prove (4.21) by induction on t− j + 1 ≥ 1.

Base Case: t − j + 1 = 1 or t = j. For this case, the left-hand side of (4.21) is the

following:

j∏
p=j

(p− 1)(∆ + 1)
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+
∑
A(j)

j,1

(∏1

a=1

(
1 + (a− 1)∆

) j∏
p=j,p ̸=j

(
(p− 1)(∆ + 1)−∆

1∑
l=1

1(il ≤ p− 1)
))

= ( j − 1)(∆ + 1) + 1

which, upon simplification and noting that the set A(j)
j,1 = {j}, equals the right-hand

side of (4.21) for t− j + 1 = 1.

Induction Step: We now show the induction step: assuming that (4.21) is true for

t− j + 1 = s, we show that it holds for t− j + 1 = s+ 1. We thus assume that the

following holds:

j+s−1∏
p=j

((p− 1)(∆ + 1))

+
s∑

k=1

∑
A(j+s−1)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

=

j+s−2∏
n=j−1

((∆ + 1)n+ 1). (4.22)

We next show the induction step using (4.22), by starting from the right-hand side:

j+s−1∏
n=j−1

((∆ + 1)n+ 1) = ((∆ + 1)(s+ j − 1) + 1)

j+s−2∏
n=j−1

((∆ + 1)n+ 1)

(a)
= ((∆ + 1)(s+ j − 1) + 1)

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
s∑

k=1

((∆ + 1)(s+ j − 1) + 1)
∑

A(j+s−1)
j,k

( k∏
a=1

(
1 + (a− 1)∆

)j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)

−∆
k∑

l=1

1(il ≤ p− 1)
))
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(b)
=

s∑
k=1

((∆ + 1)(s+ j − 1)−∆k +∆k + 1)
∑

A(j+s−1)
j,k

( k∏
a=1

(
1 + (a− 1)∆

)
j+s−1∏

p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

+

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

(c)
=

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
s∑

k=1

((∆ + 1)(s+ j − 1)−∆k)
∑

A(j+s−1)
j,k

( k∏
a=1

(
1 + (a− 1)∆

)
j+s−1∏

p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

+
s∑

k=1

(∆k + 1)
∑

A(j+s−1)
j,k

( k∏
a=1

(
1 + (a− 1)∆

)j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)

−∆
k∑

l=1

1(il ≤ p− 1)
))

(d)
=

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

+
s∑

k=1

∑
A(j+s−1)

j,k

( k+1∏
a=1

(
1 + (a− 1)∆

)j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

(e)
=

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))
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+
s+1∑
k=2

∑
A(j+s−1)

j,k−1

( k∏
a=1

(
1 + (a− 1)∆

) j+s−1∏
p=j,p/∈{i1,··· ,ik−1}

(
(p− 1)(∆ + 1)−∆

k−1∑
l=1

1(il ≤ p− 1)
))

(f)
=

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

+
s+1∑
k=2

∑
B(j+s)
j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik−1,j+s}

(
(p− 1)(∆ + 1)−∆

k−1∑
l=1

1(il ≤ p− 1)
))

(g)
=

j+s∏
p=j

(p− 1)(∆ + 1) +

j+s−1∏
p=j

(p− 1)(∆ + 1)

+
∑

A(j+s−1)
j,1

( 1∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1}

(
(p− 1)(∆ + 1)−∆

1∑
l=1

1(il ≤ p− 1)
))

+
s∑

k=2

∑
A(j+s)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)−∆

k∑
l=1

1(il ≤ p− 1)
))

+
s+1∏
a=1

(1 + (a− 1)∆)

(h)
=

j+s∏
p=j

(p− 1)(∆ + 1) +
s+1∑
k=1

∑
A(j+s)

j,k

( k∏
a=1

(
1 + (a− 1)∆

) j+s∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(∆ + 1)

−∆
k∑

l=1

1(il ≤ p− 1)
))
.

In the above set of equations, we obtain (a) by substituting (4.22) in the left-hand

side of (a). In (b), we add and subtract ∆k to the term ((∆ + 1)(s+ j − 1) + 1) and

split the summation across the terms ((∆ + 1)(s+ j − 1)−∆k) and (∆k + 1) in (c).

In (d), we absorb the terms ((∆k+1)(s+ j − 1)−∆k) and (∆k+1) into the product.

We replace k by k − 1 in the fourth term on the left-hand side of (e). We obtain the
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fourth term on the right-hand side of (f) using (4.18). On the right-hand side of (g),

the second term can be written as follows:

j+s−1∏
p=j

(p− 1)(∆ + 1)

=
∑
B(j+s)
j,1

( 1∏
a=1

(
1 + (a− 1)∆

)j+s∏
p=j,p/∈{j+s}

(
(p− 1)(∆ + 1)−∆

0∑
l=1

1(il ≤ p− 1)
))

which is merged with the third term on the right-hand side of (g) to obtain the k = 1

term on the right-hand side of (h). Similarly, for the terms for k = 2 to k = s, we

merge both of the terms on the right-hand side of (f) using (4.17) to obtain the fourth

term on the right-hand side of (g). The last term on the right-hand side of (g) is

evaluation of the fourth term on the right-hand side of (f) at k = s+ 1. Finally (h) is

obtained by writing all the terms under one summation. Hence the proof follows from

induction on t− j + 1.

4.3 Simulation Results

In this section, we present a comparative study1 between our model and the Barabási-

Albert model in terms of following three features:

• Structural differences in small-sized graphs;

• Degree distributions of the graphs obtained;

• Expected birth time of vertices with a fixed degree.
1For details about the simulations of this chapter, refer to the following link:

https://drive.google.com/drive/folders/1uOmz4B6RQ0hRmuu_CTfb02jJ03B1SyEl?usp=
share_link

https://drive.google.com/drive/folders/1uOmz4B6RQ0hRmuu_CTfb02jJ03B1SyEl?usp=share_link
https://drive.google.com/drive/folders/1uOmz4B6RQ0hRmuu_CTfb02jJ03B1SyEl?usp=share_link
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We first illustrate the structural differences between the graphs generated by our

model and the Barabási-Albert model. In the next set of simulations, we compare the

degree distribution of both models by plotting the probability of randomly choosing

a k degree vertex versus k (on a log− log scale) for a graph generated until a fixed

time instant. We give the degree distribution of graphs generated for 5000 time steps

(averaged over 250 simulations) via the standard Barabási-Albert model and our model

with different choices of the reinforcement parameter ∆t and discuss the similarities

and differences obtained in the degree distributions. In the third set of simulations,

we compare both models in terms of vertices expected birth time versus degree, which

we define as follows.

Definition 4.7. Given a random network/graph generated until time t, we define the

vertices expected birth time for a fixed degree k, where 1 ≤ k ≤ t, as the conditional

expectation of all the times when the vertices which have degree k at termination time t

were introduced, given the draw vectors until time t. It is denoted by bt(k) and is given

by the following expression:

bt(k) = E
[∑t

j=1
(j − 1)1

(
(
∑t

n=j
Zj,n = 1) = k

)∣∣Z1,Z2, · · · ,Zt

]
(4.23)

where Z1,Z2, · · · ,Zt are the draw vectors of the Pólya urn. Note that we write (j − 1)

in (4.23) because the vertex j is introduced in the network/graph at time j − 1.

In the experiments, we determine the empirical version of (4.23), which we call

the average birth time and denote it by bt(k) for degree k and termination time t.
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It is given by

bt(k) =

t∑
j=1

(j − 1)1
(
(
∑t

n=j Zj,n = 1) = k
)

t∑
j=1

1
(
(
∑t

n=j Zj,n = 1) = k
) . (4.24)

In Figure 4.3, two 15-vertex networks are depicted, one generated by our model

(on the left-hand side) and the other by the Barabási-Albert model (on the right-hand

side). We make two observations: First, in contrast with the Barabási-Albert model, in

our model all vertices are labelled by distinct colors. This one-to-one correspondence

between vertices and colors encodes all the information of the generated graph in the

draw vectors of the underlying Pólya urn. Second, the maximum degree achieved

is higher in the left-hand side network generated via our model (which achieves a

maximum degree of 11 compared to 6 in the right-hand side Barabási-Albert network).

This happens along one sample path due to the choice of reinforcement parameter

(here ∆t = 5 for all t ≥ 1) in our model which allows for an already selected vertex to

be chosen with a higher probability than in the case of the Barabási-Albert model

where the vertices are chosen proportional to their degree.

In Figures 4.4 and 4.5, we plot the degree distribution (averaged over 250 simula-

tions) of networks generated for four different choices of ∆t: 1, ln(t), f(t), g(t), where

the functions f(t) and g(t) are defined in (4.25). We observe the deviation of the

degree distribution of the graphs generated via our model for the above mentioned

choices of ∆t from the degree distribution of the Barabási-Albert network which follows

the relation p(k) ∼ k−3, where p(k) is the probability of randomly choosing a vertex

of degree k in the network. As observed in Figure 4.4 (a), the slopes of the degree
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Figure 4.3: On the left-hand side is a 15-vertex network generated via the the draws
from a Pólya urn with expanding colors and ∆t = 5 for all t ≥ 1 and on the right-hand
side is a network with 15 vertices generated via Barabási-Albert model. For our model,
unlike the Barabási-Albert model, each vertex is represented by a distinct color which
corresponds to a color type of balls in the Pólya urn at that time instant. Furthermore,
the extra reinforcement parameter ∆t in our model provides versatility in the level
of preferential attachment. The parameter ∆t = 5 in our model enables the central
vertex of the graph on the left-hand side to obtain a higher degree (11 in this case) as
compared to the right-hand side Barabási-Albert network in which the highest degree
achieved is 6.

distribution plots for the Barabási-Albert model and our model with ∆t = 1 are very

similar and hence the networks generated via our model for ∆t = 1 are expected

to show a degree distribution corresponding to p(k) ∼ k−3. The similarity between

the Barabási-Albert algorithm and our model with ∆t = 1 can be represented in the

following way:

P (incoming vertex at time t connects to vertex corresponding to color cj)

= ratio of cj color balls in the expanding color Pólya urn at time t− 1

=
degree of vertex corresponding to color cj in graph Gt−1

sum of degrees in graph Gt−1

= P (incoming vertex connects to the vertex added at time j − 1

in a standard Barabási-Albert network).
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(a) ∆t = 1 (b) ∆t = ln(t)

Figure 4.4: Degree distributions of networks generated until time 5000 (averaged
over 250 simulations) for the Barabási-Albert model and our model with ∆t = 1 and
∆t = ln(t). In (a) the degree distributions of both models are nearly identical. While,
in (b) the degree distributions are quite different.

Hence in the case when ∆t = 1, the mechanisms of both models for iteratively

constructing new vertices and edges are equivalent. However the initialization of our

model is different from the Barabási-Albert model. In our model, the initial graph

has only one vertex with a self-loop, whereas in the Barabási-Albert model, the initial

graph can potentially have more than one vertex equipped with an edge set and no

self-loops. Even though the initialization of both models are different, the equivalent

procedures for adding new vertices and edges between our model with ∆t = 1 and the

standard Barabási-Albert model ensure that the generated graphs via both models will

show similar properties for sufficiently large t. However, it is difficult to analytically

solve for the degree distribution and other properties of our model as its reinforcement

dynamics is much more involved than the Barabási-Albert model.

In Figure 4.4 (b), we observe that the degree distribution of our model with

∆t = ln(t) significantly differs from the degree distribution of Barabási-Albert model.
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The former has a lower probability of obtaining lower degree vertices (degree range

100 − 101) as compared to the latter but has a slightly higher probability of gaining

moderate degree vertices (degree range 50− 150). Additionally, the maximum degree

attained in the case of ∆t = ln(t) for our model in Figure 4.4 is much higher (∼ 103

as compared to only 200 in Barabási-Albert network).

(a) ∆t = f(t) (b) ∆t = g(t)

Figure 4.5: Degree distribution of the Barabási-Albert model and our model generated
for two different choices of ∆t, (a) ∆t = f(t) and (b) ∆t = g(t), where f(t) and
g(t) are defined in (4.25). Both plots are averaged over 250 simulations, where each
simulation is a generation of a 5000-vertex graph.

In Figure 4.5, we present two more cases in which the degree distributions differ

substantially between our model and the Barabási-Albert model. More specifically,

we generate networks via our model for ∆t being an increasing step function f(t) and
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a decreasing continuous function g(t) given by:

f(t) =



1 for 0 ≤ t < 1000

10 for 1000 ≤ t < 2500

100 for 2500 ≤ t ≤ 5000,

g(t) =



10 for 0 ≤ t ≤ 1000

104

t
for 1000 ≤ t ≤ 2000

5 for 2000 ≤ t ≤ 3000

15×103

t
for 3000 ≤ t ≤ 4000

3.75 for 4000 ≤ t ≤ 5000.

(4.25)

We remark from Figure 4.5 that the maximum degree attained in both networks

(generated via ∆t = f(t) and ∆t = g(t)) is higher than in the Barabási-Albert network.

Furthermore, there are more moderate degree nodes (with degree 101−102) in the case

of ∆t = f(t) and less moderate degree nodes in the case of ∆t = g(t) when compared

to the Barabási-Albert network.

In the next set of simulations, we compare (4.24) for our network generated

with ∆t = 1, ln(t), f(t) and g(t) and the Barabási-Albert network. Figure 4.6(a)

demonstrates that in both the Barabási-Albert model and our model for ∆t = 1

vertices of the same degree are born at similar times. The stark similarities between

the Barabási-Albert model and our model for ∆t = 1 in Figures 4.4 and 4.6 strongly

suggest that both models generate networks with very similar structures; however a

rigorous analytic study is required to confirm if our model with ∆t = 1 is stochastically

equivalent to the standard Barabási-Albert model. In Figure 4.6(b), we observe

that for our model with ∆t = ln(t), the network shows slightly more connectivity

in the vertices which are born at similar times as compared to the Barabási-Albert
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(a) ∆t = 1 (b) ∆t = ln(t)

(c) ∆t = f(t) (d) ∆t = g(t)

Figure 4.6: Vertices average birth time versus degree for our model using (a) ∆t = 1;
(b) ∆t = ln(t); (c) ∆t = f(t) and (d) ∆t = g(t) (where the functions f(t) and g(t)
are given in (4.25)) and for the Barabási-Albert network. All networks are generated
for 5000 time steps and the average of 250 such networks is plotted.
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network. This effect of same age vertices showing more connectivity when compared

to Barabási-Albert networks is much more amplified when our model uses ∆(t) = f(t)

as shown in Figure 4.6(c). Both cases provide a much richer algorithm for generating

real-life networks in which the “rich gets richer” phenomenon needs to be dampened as

it allows the more recently born vertices to get more connectivity. In contrast, Figure

4.6(d) shows an amplification of the “rich gets richer” phenomenon when compared to

the Barabási-Albert model as the first two richest vertices achieve a significantly higher

degree (around 3500) compared to all other vertices. The rest of the vertices have very

similar connectivity as that of the Barabási-Albert network. The choice ∆t = g(t) of

the reinforcement parameter in our model provides an algorithm to generate graphs

which are spatially similar to the Barabási-Albert network but demonstrate a higher

effect of preferential attachment.



Chapter 5

Conclusion

5.1 Thesis Summary

In the first part of this thesis, we devised an interacting network of two-color finite

memory Pólya urns. We formulated two types of interaction among the urns; using a

fixed (time-invariant) stochastic matrix and through (time-variant) “super-urns” which

consist of all the balls of the urn and its neighbours. In particular, in Chapter 2, we

presented a network of two-color finite memory Pólya urns interacting via a fixed

stochastic interaction matrix. We showed that the underlying Markov process is

irreducible and aperiodic when the reinforcement parameters are time-invariant and

hence has a unique stationary distribution. We also derived the exact asymptotic

marginal infection distribution for the homogeneous case, i.e., when all the urns have

identical initial conditions and reinforcement parameters. For the non-homogeneous

interacting Pólya contagion network with time-invariant reinforcement parameters,

we constructed dynamical systems to evaluate the network’s infection propagation.

86
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We showed that when memory M = 1, the probability of infection can be exactly

represented by a linear dynamical system which has a unique equilibrium point

to which the solution asymptotically converges. For memory M > 1, we used

mean-field approximations to construct an approximating dynamical system which

is nonlinear in general; we obtained a linearization of this dynamical system and

characterize its equilibrium. We provided simulations comparing the corresponding

linear and approximating nonlinear dynamical systems with the original stochastic

process. Notably, we demonstrated that the approximating nonlinear dynamical

system performs well for all tested values of memory and network size.

In Chapter 3, we demonstrated that a connected network of finite memory Pólya

urns interacting through “super-urns” can be used to model opinion dynamics in a

social network. Using the properties of the underlying reducible Markov process, we

proposed a provably correct consensus dynamics using this model. For the case with

homogeneous reinforcement parameters across individuals, we provided a delayed

dynamical system that can be used to study the asymptotic properties of this model

and determine explicitly the consensus value.

In the second part of this thesis (Chapter 4), we formulated an algorithm for

generating preferential attachment graphs using a modified Pólya urn with expanding

colors and a time-varying reinforcement parameter ∆t. The network obtained is

similar to the Barabási-Albert network for the case ∆t = 1 and gains a significant

amount of versatility when ∆t is a time-varying function. We analysed the draw

vectors of the underlying stochastic process and derived the probability distribution of

a random variable counting the draws of a particular color of this Pólya process. This

random variable can be written in terms of the degree of the vertex in the constructed
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preferential attachment network corresponding to this color. We provided simulation

evidence for the structural similarities between our model and the Barabási-Albert

network for ∆t = 1 and also justified the richness and versatility of our model for

general ∆t.

5.2 Future Work

In this section, we discuss possible directions for future research.

(1) For the IPCN(M,N) system presented in Chapter 2, the underlying Markov

process of the M -length draw vectors is irreducible and aperiodic (see Lemma 2.2)

when the reinforcement parameters are time-invariant. Even though, it may not

be feasible to obtain a closed form formula for the unique stationary distribution

for the general non-homogeneous case, one might be able to solve for the

stationary distribution in some simpler cases such as the one presented in

Example 2.3 for a homogeneous IPCN(2, 2) system. Furthermore, using (2.11)

and setting the stationary distribution of the Markov chain {Wt}∞t=1 for a

homogeneous IPCN(M,N) as Π, where the entries of Π are denoted by πk1k2,··· ,kM

with kj = (k1j, k2j, · · · , kNj) ∈ {0, 1}N for j ∈ {1, 2, · · · ,M}, we obtain

lim
t→∞

P (Zi,t = 1) =
∑
kij=1

j∈{1,2,··· ,M}

πk1k2···kM = ρ. (5.1)

One can analyse ΠQ(M,N) = Π, where the entries of the transition probability

matrix Q(M,N) are given in (2.9), in conjunction with (5.1) to solve for the

stationary distribution of {Wt}∞t=1 for some homogeneous cases.
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(2) An interesting future direction for the IPCN(M,N) system which is developed

in Chapter 2 is to consider time-varying interactions between urns. While we do

analyse one form of time-varying interaction matrix devised via the concept of

“super-urns” defined in [34] to formulate a consensus achieving interacting network

of urns in Chapter 3, additional work is required to study the stochastic properties

of a network of urns with general time-varying interactions. Furthermore, it is

much more challenging to construct a class of dynamical systems for IPCN(M,N)

system with time-varying interactions as carried in Section 2.3 of Chapter 2

using mean-field approximations.

(3) Another useful future direction which we have not explored in this thesis is to

set different memories for different Pólya urns in the interacting networks.

(4) A realistic extension for our model in Chapter 4 is to consider removal of edges

after some time to account for the fading away of popularity of an idea after

some time in a social network. An effective way to add this feature to our model

is to equip the Pólya urn (via which the graph is constructed) with a finite

memory as in [1]. The removal of balls from the urns can be used to setup

removal of edges from the corresponding graph. However, it is problematic to

use a time-invariant memory for the urn because the removal of every edge

after a fixed amount of time will result in the graph not growing. One way of

addressing this concern would be to consider a time-varying memory for the

urn, such that the removal of the edges due to finite memory is slower than the

addition of edges and hence the resultant graph grows with time. For instance,

we can set the memory of the urn as ⌈ln(t)⌉, i.e., a ball is removed from the urn
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⌈ln(t)⌉ steps after its addition to the urn.

(5) Finally, the preferential attachment graph of Chapter 4 relies on the draw

variables of a Pólya urn with a number of colors that grows without bound as

time goes to infinity. Another possible extension of this model is to use an L-color

Pólya urn instead to formulate the graph generating algorithm, where L is a fixed

number of colors. One way in which we can setup this algorithm is as follows:

At time t = 0, the Pólya urn consists of balls of L colors. Correspondingly, we

have an initial graph G0 with L vertices (each vertex corresponding to a unique

color of the urn) and degree of each vertex equals the number of balls of its

corresponding color in the urn. At each time instant t ≥ 1, we draw a ball

and return it to the urn along with ∆t > 0 balls of the same color. We then

introduce a vertex to the graph Gt−1 (corresponding to the color drawn) and

connect it with the existing vertex of the color drawn which has the maximum

degree among all the vertices of that color. This results in the newly formed

graph Gt.

In contrast to our original model in which each vertex of the graph is uniquely

represented by a color in the urn, in this extension, the vertices are grouped into

N categories (each represented by a color of the urn). Each category is given an

initial influence factor in terms of the initial (at time t = 0) number of balls of

its color in the urn. The use of a finite number L of colors (unlike the growing

number of colors used in Chapter 4) for generating a preferential attachment

graph may facilitate the exact analysis of the asymptotic behavior of the graph’s

degree distribution.
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