Math 112, Homework #10

Question 1: (Bases for null space and column space) Find a basis for NulA and a basis for ColA for each of the following matrices. Check if the rank-nullity theorem is satisfied.

\[
A = \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0
\end{bmatrix}, \quad A = \begin{bmatrix}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{bmatrix}
\]

Question 2: (Eigenvalues and eigenvectors) For each of the following matrices, find all the eigenvalues and the corresponding eigenvectors.

\[
A = \begin{bmatrix}
3 & -1 \\
-1 & 3
\end{bmatrix}, \quad A = \begin{bmatrix}
2 & 0 & -1 \\
4 & 1 & -4 \\
2 & 0 & -1
\end{bmatrix}, \quad A = \begin{bmatrix}
-1 & 4 & -2 \\
-3 & 4 & 0 \\
-3 & 1 & 3
\end{bmatrix}
\]

Question 3: Let \(A = \begin{bmatrix} 3 & k \\ -2 & 5 \end{bmatrix} \)

(1) Find conditions on \(k \) so that \(\lambda = -1 \) is an eigenvalue of \(A \).

(Hint: Use the fact that \(\lambda \) is an eigenvalue if and only if \(|A - \lambda I| = 0 \).)

(2) Find conditions on \(k \) so that all eigenvalues of \(A \) are real numbers.

(3) Find conditions on \(k \) so that \(A \) has exactly one (real) eigenvalue with multiplicity two. Find the eigenvalue.

(Hint: Find the characteristic equation for \(A \). It is a quadratic equation, determine when the quadratic equation has two distinct real roots, one repeated real root, or no real roots.)

Question 4: Let \(A = \begin{bmatrix} a & 1 & b \\ 1 & 0 & 0 \\ 0 & 1 & a \end{bmatrix} \),

1. Find conditions on \(a, b \) so that \(\lambda = -2 \) is an eigenvalue.

(Hint: Use the characteristic equation and the fact that \(\lambda \) is an eigenvalue if and only if \(|A - \lambda I| = 0 \).)
2. Find conditions on a, b so that \[
\begin{bmatrix}
0 \\
3 \\
3
\end{bmatrix}
\] is an eigenvector and find the corresponding eigenvalue. (Hint: Use the definition of eigenvalues and eigenvectors: $A\vec{x} = \lambda \vec{x}$.)

Question 5:

1. Show that if λ is an eigenvalue of A, then λ^n is an eigenvalue of A^n for any positive integer n.

2. Show that if A is invertible and λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1}.

 Hint: Use the definition of eigenvalues: $A\vec{x} = \lambda \vec{x}$.

3. Show that A and A^T have the same eigenvalues.

 Hint: Observe the characteristic equation of A and A^T.