Part I

Section 2.1, Problem 30

Solution. This is a first-order linear equation in standard form. Computing the integrating factor, we get

\[\mu(t) = e^{-t} \]

Multiply \(\mu(t) \) to both sides of the equation, we get

\[e^{-t}y - e^{-t}y = e^{-t}(1 + 3 \sin t) \]

\[\Rightarrow [e^{-t}y]' = e^{-t}(1 + 3 \sin t) \]

Thus

\[e^{-t}y = \int e^{-t}(1 + 3 \sin t) dt + C = -e^{-t} + 3 \int e^{-t} \sin t dt + C \]

Computing

\[\int e^{-t} \sin t dt = - \int \sin t d(e^{-t}) \]

\[= -e^{-t} \sin t + \int e^{-t} \cos t dt \]

\[= -e^{-t} \sin t - \int \cos t d(e^{-t}) \]

\[= -e^{-t} \sin t - [e^{-t} \cos t + \int e^{-t} \sin t dt] \]

\[= -e^{-t} \sin t - e^{-t} \cos t - \int e^{-t} \sin t dt \]

Hence \(\int e^{-t} \sin t dt = -(1/2)e^{-t}(\sin t + \cos t) \), and the general solution is:

\[y(t) = -1 - (3/2)(\sin t + \cos t) + Ce^t \]

The initial condition is \(y(0) = y_0 \), so we get \(C = y_0 + 5/2 \), the solution to the initial value problem is

\[y(t) = -1 - (3/2)(\sin t + \cos t) + (y_0 + 5/2)e^t \]

Since \(-1 - (3/2)(\sin t + \cos t) \) will remain finite for any \(t \), and \(e^t \to \infty \) as \(t \to \infty \), we know the solution will remain finite when \(t \to \infty \) only if \((y_0 + 5/2) = 0 \), i.e. \(y_0 = -5/2 \).
Section 2.1, Problem 37

Solution. Consider a first order linear ODE with constant coefficient:

\[x' + ax = g(t) \]

Where \(a \) is any positive constant. Without loss of generality, let \(a = 1 \). The general solution of

\[x' + x = g(t) \]

is

\[x(t) = e^{-t}[\int g(t)e^t \, dt + C] = e^{-t} \int g(t)e^t \, dt + Ce^{-t} \]

Since \(Ce^{-t} \to 0 \) as \(t \to \infty \), it is enough to choose \(g(t) \) so that

\[e^{-t} \int g(t)e^t \, dt = 4 - t^2 \]

then all the solutions of the equation will approach the curve \(x = 4 - t^2 \) as \(t \to +\infty \).

To find \(g(t) \) so that

\[\int g(t)e^t \, dt = e^t(4 - t^2) \]

we take derivatives on both sides: \(g(t)e^t = e^t(4 - t^2 - 2t) \), so \(g(t) = 4 - t^2 - 2t \).

The differential equation we construct is then

\[x' + x = 4 - t^2 - 2t \]

Its general solution is \(x(t) = (4 - t^2) + Ce^{-t} \).

When \(t \to \infty \), \(x(t) \) approaches the curve \(x = 4 - t^2 \) as required.
Section 2.3, Problem 16

Solution. Let $T(t)$ be the temperature of the coffee at time t, then it satisfies the equation:

$$T' = -k(T - 70), \quad T(0) = 200$$

where k is the conduction constant to be determined. The solution of the initial value problem is

$$T(t) = 70 + 130e^{-kt}$$

We know when $t = 1$ min, the temperature of the coffee is 190, hence $T(1) = 190$; use this condition to find the value of k:

$$T(1) = 70 + 130e^{-k} = 190 \quad \Rightarrow \quad k = \ln(13/12)$$

So the temperature of the coffee at time t is given by

$$T(t) = 70 + 130e^{-\ln(13/12)t}$$

Let $T(t) = 150$, we get $t = \ln(13/8)/\ln(13/12) \approx 6.07$ min.

Section 2.5, Problem 26

Solution.

(a) Equilibrium solutions are given by the values of x such that $f(x) = x(a - x^2) = 0$.

- When $a \leq 0$, equilibrium solution is 0.
- When $a > 0$, equilibrium solution is 0, $\pm \sqrt{a}$.

Phase lines:

- When $a < 0$: $f(x) > 0$ when $x < 0$ and $f(x) < 0$ when $x > 0$, so its phase line is:

 \[\begin{array}{c}
 \cdots \rightarrow \bullet \leftarrow \rightarrow \cdots \\
 0 \quad x
 \end{array} \]

- When $a = 0$: $0, f(x) > 0$ when $x < 0$ and $f(x) < 0$ when $x > 0$, so its phase line is:

 \[\begin{array}{c}
 \cdots \rightarrow \bullet \leftarrow \rightarrow \cdots \\
 0 \quad x
 \end{array} \]

- When $a > 0$, the signs of $f(x)$ between the equilibrium points are:

 \[\begin{array}{c}
 + \quad - \quad + \quad - \\
 \cdots \bullet \leftarrow \bullet \rightarrow \cdots \\
 -\sqrt{a} \quad 0 \quad \sqrt{a} \quad x
 \end{array} \]
So the phase line is:

\[-\sqrt{a} \quad 0 \quad \sqrt{a} \quad x \]

Stability properties:
- When \(a < 0 \), 0 is asymptotically stable.
- When \(a = 0 \), 0 is asymptotically stable.
- When \(a > 0 \), 0 is unstable; \(\pm \sqrt{a} \) are asymptotically stable.

(c) See the following bifurcation diagram.

Note: The solid blue curve and the dashed orange line is the location of the equilibrium points versus the parameter \(a \). The solid black lines with arrows are the phase lines corresponding to different range of \(a \). In a bifurcation diagram, we often plot the stable equilibrium points in solid curves, while the unstable equilibrium points in dashed curves.

The bifurcation diagram of \(x' = x(a - x^2) \) resembles a pitch fork, so we call it the pitchfork bifurcation.

Part II

1. A tank initially contains 60 gal of pure water. A mixture containing 1 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min; thus the tank is empty after exactly 1 hour.

 (a) Find the amount of salt in the tank after \(t \) minutes.

 (b) What is the maximum amount of salt ever in the tank?

Solution.

(a) Let \(x(t) \) be the amount of salt in the tank at time \(t \), and we only consider time \(t < 60 \), then it satisfies the equation:

\[
x' = 2 - \frac{3x}{60 - t}, \quad x(0) = 0, \quad t < 60
\]
The equation in standard form is

$$x' + \frac{3x}{60 - t} = 2$$

the integrating factor is

$$\mu(t) = e^{\int \frac{3}{60 - t}dt} = e^{-3\ln|60 - t|} = (60 - t)^{-3}$$

Multiply the integrating factor to the equation we get:

$$[(60 - t)^{-3}x]' = 2(60 - t)^{-3}$$

Since

$$\int 2(60 - t)^{-3}dt = (60 - t)^{-2}$$

The general solution is:

$$x(t) = \frac{(60 - t)^{-2} + C}{(60 - t)^{-3}} = (60 - t) + C(60 - t)^3$$

Substitute the initial condition $x(0) = 0$ we get $C = -1/60^2$. The amount of salt in the tank after t minutes is

$$x(t) = (60 - t) - (60 - t)^3/3600$$

(b) To find the maximum value of $x(t)$, we locate its critical points first:

$$x'(t) = -1 + \frac{1}{1200}(60 - t)^2 = 0$$

The critical point is $t = 60 - 10\sqrt{12}$, and $x''(60 - 10\sqrt{12}) < 0$, so $x(t)$ achieves its maximum at $t = 60 - 10\sqrt{12}$; the maximum amount of salt ever in the tank is

$$x(60 - 10\sqrt{12}) = \frac{20}{3}\sqrt{12} \approx 23.09 \text{ lb}$$