Math 231, Tutorial solutions #4

1. Find the general solution of

\[x'' + x = \tan t, \quad 0 < t < \frac{\pi}{2} \]

Hint:

\[\frac{1}{\cos u} = \sec u, \quad \int \sec u \, du = \ln |\sec u + \tan u| \]

Solution.

We apply the method of variation of parameters,

\[x(t) = u_1 \cos t + u_2 \sin t \]

So the system of equations for \(u_1', u_2' \) is

\[u_1' \cos t + u_2' \sin t = 0 \]

\[-u_1' \sin t + u_2' \cos t = \tan t \]

Which gives

\[u_1' = -\frac{\sin^2 t}{\cos t} = -\frac{1 - \cos^2 t}{\cos t} = -\sec t + \cos t \]

\[u_2' = \sin t \]

This gives \(u_1 = -\ln |\sec t + \tan t| + \sin t + C_1 \) and \(u_2 = -\cos t + C_2 \)

So the general solution is

\[x(t) = u_1 \cos t + u_2 \sin t \]

\[x(t) = -\cos t \ln |\sec t + \tan t| + C_1 \cos t + C_2 \sin t, \quad 0 < t < \frac{\pi}{2} \]
2. Verify that the given functions x_1 and x_2 satisfy the corresponding homogeneous equation; then find the general solution of the given non-homogeneous equation.

$$(1 - t)x'' + tx' - x = 2(t - 1)^2 e^{-t}, \quad 0 < t < 1, \quad x_1(t) = e^t, \quad x_2(t) = t$$

Solution.

We apply the method of variation of parameters. First we need the equation in standard form:

$$x'' + \frac{t}{1-t}x' - \frac{1}{1-t}x = 2(1 - t)e^{-t}, \quad 0 < t < 1$$

So the non-homogeneous term $g(t) = 2(1 - t)e^{-t}$.

The general solution is $x(t) = u_1 x_1 + u_2 x_2$, so the equations for u_1', u_2' are

$$u_1' e^t + u_2' t = 0$$

$$u_1' e^t + u_2' = 2(1 - t)e^{-t}$$

which gives

$$u_1' = -2te^{-2t}, \quad u_2' = 2e^{-t}$$

This gives

$$u_1 = (t + \frac{1}{2})e^{-2t} + C_1, \quad u_2 = -2e^{-t} + C_2$$

So the general solution of the non-homogeneous equation is $x(t) = u_1 x_1 + u_2 x_2$

$$x(t) = (\frac{1}{2} - t)e^{-t} + C_1 e^t + C_2 t$$
3. A spring-mass system has a spring constant of 2 N/m. A mass of \(m \) kg is attached to the spring and a dashpot mechanism that has a damping constant of 1 kg·s/m. If the system is driven by an external force of 4 cos(2t) N,

(a) Determine the steady state response of this system.

(b) Find the value of the mass \(m \) for which the amplitude of the steady state response is maximum.

Solution.

(a) The equation for this system is

\[mx'' + x' + 2x = 4 \cos(2t) \]

The steady state response is the particular solution we find by method of undetermined coefficients. That is \(x_p(t) = A \cos(2t) + B \sin(2t) \).

\[
x'_p(t) = -2A \sin(2t) + 2B \cos(2t)
\]
\[
x''_p(t) = -4A \cos(2t) - 4B \sin(2t)
\]

Plug in to the equation and compare coefficients we get

\[-4mA + 2B + 2A = 4\]
\[-4mB - 2A + 2B = 0\]

which gives

\[A = \frac{1 - 2m}{2m^2 - 2m + 1}, \quad B = \frac{1}{2m^2 - 2m + 1} \]

So the steady state response is

\[x_p(t) = \frac{1 - 2m}{2m^2 - 2m + 1} \cos(2t) + \frac{1}{2m^2 - 2m + 1} \sin(2t) \]

(b) The amplitude of the steady state response is

\[R = \sqrt{A^2 + B^2} = \frac{\sqrt{2}}{\sqrt{2m^2 - 2m + 1}} \]

The amplitude \(R(m) \) reaches its maximum when the denominator \(\sqrt{2m^2 - 2m + 1} \) reaches its minimum; since \(2m^2 - 2m + 1 = 2[(m - \frac{1}{2})^2 + \frac{1}{4}] \geq \frac{1}{2} \), we know \(R \) attains its maximum when \(m = \frac{1}{2} \).