Similarity. Diagonalization

Math 112, week 11

Goals:

- Similarity of matrices.
- Diagonalizable matrices.

Suggested Textbook Readings: Sections §5.2, 5.3
Powers of a matrix.
Given a difference equation $\vec{x}_{k+1} = A\vec{x}_k$ with initial condition \vec{x}_0, then

$$\vec{x}_k = A^k \vec{x}_0$$

Example 1: If $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$, find D^k for any $k \geq 1$.

Theorem: If $D = \begin{bmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & d_n \end{bmatrix}$, then $D^k = \begin{bmatrix} d_1^k & 0 & 0 & 0 \\ 0 & d_2^k & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & d_n^k \end{bmatrix}$
Example 2: If \(A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} \), find \(A^k \) for any \(k \geq 1 \), given that \(A = PDP^{-1} \), where \(P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \), \(D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \).

Definition (Similarity): If \(A \) and \(B \) are \(n \times n \) matrices, then \(A \) is similar to \(B \) if there is an invertible matrix \(P \) such that \(P^{-1}AP = B \), or, equivalently, \(A = PBP^{-1} \).
Theorem: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities.)

Proof.

Note:

1. Two matrices with the same eigenvalues is not sufficient to guarantee similarity.

For example, the matrices

\[
\begin{bmatrix}
2 & 1 \\
0 & 2 \\
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
2 & 0 \\
0 & 2 \\
\end{bmatrix}
\]

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B, then $B = EA$ for some invertible matrix.) Row operations on a matrix usually change its eigenvalues.
Definition: (Diagonalizable) A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix. That is, $A = PDP^{-1}$

The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.
Note:

1. \(A = PDP^{-1} \), with \(D \) a diagonal matrix, if and only if the columns of \(P \) are \(n \) linearly independent eigenvectors of \(A \). In this case, the diagonal entries of \(D \) are eigenvalues of \(A \) that correspond, respectively, to the eigenvectors in \(P \).

2. In other words, \(A \) is diagonalizable if and only if there are enough eigenvectors to form a basis of \(\mathbb{R}^n \). We call such a basis an eigenvector basis of \(\mathbb{R}^n \).

Diagonalizing matrices.

Example 3: Diagonalize the following matrix, if possible.

\[
A = \begin{bmatrix}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{bmatrix}
\]

That is, find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).

Step 1. Find eigenvalues of \(A \).
Step 2. Find three linearly independent eigenvectors of A.

Step 3. Construct P from the vectors in step 2.

Step 4. Construct D from the corresponding eigenvalues.

Note: we can double check if P and D really work:

$AP =$

$PD =$
Example 4: Diagonalize the following matrix, if possible.

\[A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix} \]
Independent Eigenvector Theorem: If $\vec{v}_1, \cdots, \vec{v}_k$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \cdots, \lambda_k$ of a square matrix A, then $\{\vec{v}_1, \cdots, \vec{v}_k\}$ is linearly independent.

Proof.

Theorem: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Example 5: Determine if the following matrices are diagonalizable.

1. \[A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 1 & 7 \\ 0 & 0 & -2 \end{bmatrix} \]

2. \[A = \begin{bmatrix} 1 & 3 \\ -2 & -6 \end{bmatrix} \]

3. \[A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \]
Theorem: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \cdots, \lambda_p$.

a. For $1 \leq k \leq n$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n.