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Partially and Fully Integrable Modules
over Lie Superalgebras

IVAN DIMITROV AND IVAN PENKOV

Abstract. V. Kac and M. Wakimoto have observed in [KW] that for certain

most natural affine Lie superalgebras g like g = \sl(m + nε) (m 6= 0, 1, n 6= 0, 1)

or g = \osp(m + nε) (m 6= 1, 2, n 6= 1), an irreducible highest weight g-module
cannot be g0-integrable unless it is the trivial module. Motivated by this
fact, we introduce the notion of a partially integrable module for a large class
of infinite-dimensional Lie superalgebras g. We also give a general definition
of a highest weight module. We then prove an explicit criterion for partial
integrability of irreducible highest weight g-modules. For the classical affine
Lie superalgebras, which we consider in detail, this gives a stronger version
of results of Kac-Wakimoto. However, our theorem can be applied to many
other cases, in particular to g = Wpol(m + nε). We discuss this case briefly.
Finally, for classical affine Lie superalgebras g we announce a description of
a class of irreducible g-modules which are g0-integrable but are not highest
weight modules. These are the loop modules introduced in the case of affine
Lie algebras by V. Chari and A. Pressley.

Introduction

This paper originated in an attempt to understand the notion of integrability
which V. Kac and M. Wakimoto, [KW], introduced for highest weight modules over
classical affine Lie superalgebras g. The point is that those integrable g-modules
are not integrable as g0-modules 1) . The following question arises: is it true
that there is no reasonable class of g-modules which are integrable as g0-modules?
The answer is certainly no because for instance the loop modules (introduced by
V. Chari and A. Pressley for affine Lie algebras, see [CP]) are also defined for g

and are g0-integrable. However, loop modules are not highest weight modules. It
turned out that in the case of the highest weight modules considered by Kac and
Wakimoto we are actually dealing with the phenomenon of partial integrability.
In this paper we give a definition of a partially integrable module for a general
class of infinite-dimensional Lie superalgebras. This definition applies not only to
highest weight modules, and moreover the notion of a highest weight module is
not routine in our context. Therefore we also give a rather general definition of
a highest weight module. Our main result is a criterion for partial integrability
of irreducible highest weight modules. It generalizes a theorem proved earlier by
V. Serganova and the second author, [PS], which characterizes finite-dimensional
irreducible modules over a finite-dimensional Lie superalgebra.

In the second part of the paper we consider in detail various classical affine Lie
superalgebras. The above theorem enables us to completely characterize certain

1)Throughout this paper the term “integrability”has the same meaning as in the book of V.
Kac [K2]. The problem of whether the fully integrable or partially integrable modules we consider
can be integrated to a group action could be addressed in a separate publication.
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maximal families of line superalgebras (or “rank 1 subsuperalgebras”) with respect
to which a highest weight module can be integrable. We also discuss the case of the
Lie superalgebra Wpol(m + nε) of polynomial vector fields of m even and n odd
indeterminates.

In the third part we introduce the category of bounded g-modules and announce
an explicit criterion for integrability of irreducible modules in this category. As
a corollary we obtain that all bounded g0-integrable irreducible modules are loop
modules. We intend to present these and other results in more detail in a forth-
coming publication.

Acknowledgment. Discussions with Victor Kac, Alexei Rudakov and Vera
Serganova have been very helpful and stimulating. Both authors have been sup-
ported in part by NSF Grant DMS 9500755.

Notation

The ground field is C and, if the opposite is not explicitly stated, all vector
spaces are defined over C and are automatically assumed to be Z2-graded. All
Lie superalgebras are also defined over C . A right lower index 0 or 1 will always
refer to Z2-grading. The upper index ∗ denotes dual space and Π denotes the
functor of parity change on vector spaces (Π acts also on the representations of any
Lie superalgebra). The signs ⊂+ or ⊃+ denote semi-direct sum of Lie superalgebras.
If a vector space V = V0 ⊕ V1 has finite dimension, its dimension dimV is an
element of the Clifford ring Z[ε], ε being an odd variable with ε2 = 1. One has
dim V = dim V0 + dim(ΠV1) · ε.

1. Partially integrable highest weight modules: general theory

1.1. A class of Lie superalgebras g. Let g be any complex Lie superalgebra,
which has a nilpotent self-normalizing finite-dimensional Lie subsuperalgebra h such
that as h-module g decomposes as

(1) h⊕ ( ⊕
α∈∆⊂h∗0\0

g(α)),

where for each α the linear space g(α) is a direct sum of finite-dimensional h-modules
whose composition factors over h0 are 1− or ε−dimensional modules on which h0

acts via α : h0 → C. The set ∆ (i.e. the set of non-zero α’s occuring in (1)) is by
definition the set of roots of g. A root α is even iff g

(α)
0 6= 0, and respectively odd

iff g
(α)
1 6= 0 (α may well be both even and odd). We denote the even roots by ∆0

and the odd roots respectively by ∆1. Clearly ∆ = ∆0 ∪∆1. A 1-dimensional real
subspace of h∗0 will be called a line of g if l ∩∆ 6= ∅.

Any finite-dimensional Lie superalgebra (see [PS]), as well as any Kac-Moody
Lie algebra, belongs to the above class. Our main examples (see 2.1) will be var-
ious affine Lie superalgebras. However, the polynomial versions of the infinite-
dimensional Cartan series of Lie superalgebras, in particular Wpol(m + nε) :=
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der(S·(Cm+nε)) 2), also belong to this class, see 2.2. In what follows we will as-
sume the pair h ⊂ g to be fixed and will call h a Cartan subsuperalgebra of g.

C will denote the category of g-modules V , such that as a h-module V decomposes
as ⊕

µ∈h∗0
V (µ), each V (µ) being a direct sum of finite-dimensional h-modules whose

composition factors over h0 are 1- or ε-dimensional h-modules on which h0 acts via
µ : h0 → C, and such that µ 6= 0 at least for one µ. V (µ) are the generalized weight
spaces of V .

1.2. Borel subsuperalgebras of g and highest weight g-modules. We start
by defining triangular decompositions of ∆. Let F be a flag of maximal length which
consists of real subspaces in h∗0 : F = {0=F 0⊂F 1⊂F 2⊂· · ·⊂F 2n−1⊂F 2n =h∗0},
where n = dimC h0. Then using F we can split ∆ into two non-intersecting sets as
follows:

(2)
∆+ = ((F 2n)

+ ∩∆) t ((F 2n−1)
+ ∩∆) t · · · t ((F 1)

+ ∩∆),

∆− = ((F 2n)
− ∩∆) t ((F 2n−1)

− ∩∆) t · · · t ((F 1)
− ∩∆),

where (F k)+ and (F k)− denote respectively the two connected components of
F k\F k−1. The signs + and − are assigned to connected components arbitrar-
ily, therefore F can determine in this way up to 22n different decompositions. Each
decomposition (2) is by definition a triangular decomposition of ∆. Given a trian-
gular decomposition (2), by reversing the signs we obtain the opposite triangular
decomposition.

Clearly, a triangular decomposition does not necessarily determine the flag F ,
i.e. different flags can define the same triangular decomposition. Moreover, some-
times the decomposition depends actually only on a subflag of F . For example,
if dim g < ∞, any triangular decomposition is actually determined by a real re-
gular subspace P of h∗0 (regular means that P ∩ ∆ = ∅) of dimension 2n − 1. In
other words, the reader will check straightforwardly that in this case for any tri-
angular decomposition there exists a regular 2n − 1-dimensional real subspace P

so that this given decomposition is determined by an arbitrary flag F of the form
{0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ F 2n−1 = P ⊂ F 2n = h∗0}. For any triangular decomposition
(g being possibly infinite-dimensional) the length of a shortest flag by which it is
actually determined, is a combinatorial invariant of that decomposition.

A Lie subsuperalgebra b = h⊃+( ⊕
α∈∆+

g(α)), corresponding to some triangular

decomposition ∆ = ∆+ t∆−, is by definition a Borel subsuperalgebra of g. We set
n± = ⊕

α∈∆±
g(α). Then b = h⊃+n+. When we need to refer to n± for a given b we

will write n±(b). The Borel subsuperalgebra b− = h⊃+n− (defined by the opposite
triangular decomposition) is the Borel subsuperalgebra opposite to b. Any Borel
subsuperalgebra defines a partial order on h∗0:

µ≤bη ⇔ η = µ +
∑

i

αi, αi ∈ ∆+, or µ = η.

2)In [PS] and [P] only finite-dimensional Lie superalgebras are considered and derS·(Cnε) is
denoted simply by W(n). In the notation of the present paper der S·(Cnε) = W(nε) = Wpol(nε).
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Two Borel subsuperalgebras b1 and b2 are adjacent if they correspond respec-
tively to triangular decompositions (∆+)1 t (∆−)1 and (∆+)2 t (∆−)2 such that

(3) (∆+)1\((∆+)1 ∩ l) = (∆+)2\((∆+)2 ∩ l)

for some line l of g. A line l of g is simple for a Borel subsuperalgebra b if one
can find a Borel subsuperalgebra b′ so that b and b′ are adjacent and (3) holds. A
sequence of Borel subsuperalgebras . . . , bi1 , . . . , bik , . . . is a chain if bin and bin+1

are adjacent for every n ∈ Z. Given a chain . . . , bi1 , . . . , bik , . . . , it determines a
sequence of lines . . . , li1 , . . . , lik−1 , . . . , where lij is the unique simple line for both
bij and bij+1 . If dim g < ∞, any pair of Borel subsuperalgebras b and b′ (which
contains the fixed Cartan subsuperalgebra h) can be connected by a finite chain
b = b1, . . . , bk = b′. This of course is not true when dim g = ∞.

If b is a Borel subsuperalgebra, its finite-dimensional irreducible modules are in
bijective correspondence with the finite-dimensional irreducible h-modules. Indeed,
if ν is a finite-dimensional irreducible b-module, one shows exactly as in Proposition
2 of [PS] that there is a non-zero h-submodule ν̃ of ν on which n+ acts trivially.
Since ν is irreducible and n+ is an ideal in b, ν = ν̃. Conversely, if ν is an irreducible
h-module, one can always endow it with a b-action by letting n+ act trivially on ν.

Irreducible finite-dimensional modules over any nilpotent Lie superalgebra have
been described by V. Kac in [K1]. Kac’s result, applied to h, states that any linear
function λ ∈ h∗0, such that λ|[h0,h0] = 0, determines a finite-dimensional irreducible
h-module ν′λ. Moreover, ν′λ is the induced module U(h) ⊗U(p) λ̌, where p is a Lie
subsuperalgebra of h with p ⊃ hλ := h0⊕(hλ)1, for (hλ)1 := {h1 ∈ h1|λ([h1, h

′
1]) = 0

∀h1 ∈ h1}, and such that p is a maximal subsuperalgebra for which λ (considered as
a 1-dimensional h0-module) extends to a 1-dimensional p-module λ̌. Furthermore,
obviously ν′′λ = Πν′λ is also a well-defined finite-dimensional irreducible g-module
(which may or may not be isomorphic to ν′λ), and the second part of Kac’s result
states that any finite-dimensional irreducible h-module is isomorphic to ν′λ or ν′′λ
for some λ ∈ h∗0, λ|[h0,h0] = 0. In what follows νλ will denote a finite-dimensional
irreducible b-module which as h-module is isomorphic either to ν′λ or to ν′′λ . An
element λ ∈ h∗0 is by definition a weight of g iff νλ is well-defined, i.e. iff λ|[h0,h0] = 0.

If νλ is an irreducible finite-dimensional b-module, then the induced g-module

Ṽb(νλ) := U(g)⊗U(b) νλ

is by definition the Verma module with b-highest weight space νλ. It is crucial that
Ṽb(νλ) is an object of the category C (for λ 6= 0 in the special case when b = g)
and that Ṽb(νλ) has a unique maximal proper g-submodule. The first statement
is obvious and the second statement is a straightforward corollary of the defini-
tion of a Borel subsuperalgebra. This implies that Ṽb(νλ) has a unique irreducible
g-factormodule which we shall denote by Vb(νλ). Vb(νλ) is by definition the ir-
reducible b-highest weight g-module with highest weight space νλ. More generally,
any factormodule of Ṽb(νλ) is a b-highest weight module with highest weight space
νλ. In what follows Ob will denote the category of g-modules which admit a fi-
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nite filtration whose factors are b-highest weight modules, and OC
b will denote the

subcategory of Ob whose objects are also objects of C.

1.3. Line subsuperalgebras and integrability of g-modules. To every
line l of g we can assign a line subsuperalgebra gl, which is by definition the Lie
subsuperalgebra of g generated by all g(α) for α ∈ l ∩∆. We will call a line l finite
(respectively infinite) iff dim gl < ∞ (respectively dim gl = ∞). The results of
[PS] enable us to classify all line superalgebras gl for finite l. Indeed, the following
Proposition is an immediate corollary of Proposition 3 in [PS].

Proposition 1. If dim gl < ∞, then there are the following alternatives:

(i) gl is nilpotent;
(ii) gl ' r⊂+sl(2);
(iii) gl ' r⊂+osp(1 + 2ε),

where in (ii) and (iii) r is the radical of gl and this radical is nilpotent. ¤

We will say that a finite line l is of type (i), (ii), or (iii), respectively if (i), (ii),
or (iii) holds.

If b is a Borel subsuperalgebra of g, then for any l we set bl = hl⊂+(n+)l, where
hl = h∩gl and (n+)l = n+∩gl. However bl is not necessarily a Borel subsuperalgebra
of gl. For instance, if l is finite, bl is a Borel subsuperalgebra of gl iff l is of types
(ii) or (iii). For l of type (i), gl coincides with its own Cartan subsuperalgebra.
Nevertheless, for any finite l, we can define a gl-module Vbl(νλl), λl being the
restriction of a weight λ ∈ h∗0 to hl

0, where hl = gl ∩ h. Indeed, if l is of type (ii) or
(iii), then Vbl(νλl) is the irreducible bl-highest weight gl-module with highest weight
space νλl , νλl being an irreducible hl-module corresponding to λl. If l is of type (i),
Vbl(νλl) is the unique (up to isomorphism) finite-dimensional irreducible gl-module
which contains νλl as hl-submodule and (when considered as gl

0-module) consists of
a single generalized weight space of weight λ′, λ′ being the extension of λl by zero on
(n±)l

0 (where (n±)l = n±∩gl). For l of type (ii) or (iii), Vbl(νλl) exists for any λ. But
in order Vbl(νλl) to be finite-dimensional, λl must satisfy an additional condition
(for instance, when gl ' sl(2) λl must be integral and dominant). For l of type
(i), Vbl(νλl) (being defined as a finite-dimensional module) exists iff λ|[gl

0,gl
0]

= 0.
Therefore, for any finite l the finite-dimensionality condition on λl with respect to
bl is a condition on λl which ensures that dim Vbl(νλl) < ∞ (or that Vbl(νλl) exists
for l of type (i) ).

If V is an object of C and l is a line of g, we will call V l − integrable iff every
gα ∈ g(α) for α ∈ l ∩ ∆ acts locally nilpotently on V . If L is an arbitrary subset
of the set of lines of g, then V is L − integrable whenever it is l-integrable for all
l ∈ L. We will call V is partially integrable iff it is L-integrable for some proper
subset L of the set of all lines of g.

If dim g < ∞, and V is an irreducible g-module, then V is l-integrable for all
lines l of g iff dim V < ∞. If g is a Kac-Moody Lie algebra, the accepted notion
of integrability, see for instance [K2], is in our terminology Lf -integrability, Lf

being the set of all finite lines of g. One of the starting points of the present
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paper was the observation of Kac-Wakimoto, see [KW], that for the affine Lie
superalgebra ̂sl(m + nε), m, n ≥ 2, see 2.1.1 below, a highest weight module with
non-zero highest weight can not be Lf -integrable and is therefore at most partially
integrable.

Let us observe also that any subcategory C′ of C defines a partial order on the
set of subsets of lines of g. Indeed, if L1 and L2 are two sets of lines, then we put

L1 ≤C′ L2

iff each L2-integrable module V ′ of C′ is necessarily L1-integrable. A straightfor-
ward checking confirms that ≤C′ is a well-defined partial order. For a fixed C′ the
maximal elements with respect to the order ≤C′ can be of considerable interest and
in Theorem 2 in 2.1.3 we will describe explicitly some ≤OC

b -maximal sets.3)

1.4. Partial integrability of highest weight modules. Our main result in
the first part of the paper is a general criterion for partial integrability of highest
weight g-modules. It applies to certain sets of finite lines L which we call con-
nected. By definition, a set of lines of g L is connected if there exists a set of Borel
subsuperalgebras B(L) with the properties:

- any two Borel subsuperalgebras b′, b′′ ∈ B(L) can be connected by a finite chain
b′ = b1, . . . , bk = b′′, such that the corresponding sequence of lines l1, l2, . . . , lk−1

belongs to L,
- for any l in L there exists b(l) ∈ B(L), such that l is a simple line for b(l).
If L is connected, B(L) is not necessarily unique. This becomes clear when

considering examples. If the contrary is not explicitly stated, when writing B(L)
below we will mean an arbitrary but fixed choice of B(L). If g is finite-dimensional,
the set of all lines of g is connected. If g is any of the affine Lie superalgebras
defined in 2.1.1, the set Lf of all finite lines of g is connected.

If now b = b1, . . . , bk = b′ is a chain of Borel subsuperalgebras from B(L), so
that the corresponding sequence of lines l1, . . . , lk−1 belongs to L, and λ ∈ h∗0 is
a weight of g, there is a natural way to define a weight λi for each i = 1, . . . , k

so that λ1 = λ. The definition is inductive. Assume that λ1 = λ and that λi is
defined up to i = j. The line lj is either of type (i), or respectively of types (ii)
and (iii). Consider first the case when lj is of type (i). If λj satisfies the condition
λj |

[glj
0 ,glj

0 ]
= 0, then λj+1 is by definition the bj+1 ∩ (h + glj )-highest weight of

an irreducible h + glj -module with bj ∩ (h + glj )-highest weight λj . According to
Proposition 6 in [PS], in this case

(4) λj+1 = λj + chS·((n−1 )lj /f−
λlj

),

S· denoting supersymmetric algebra (here Grassmann algebra since (n−1 )lj is a

3)It may be worth to note that although a g-module V from the category Ob need not be
l-integrable for any line l of g, V is automatically b-integrable, i.e. V is lb-integrable for all lines
lb of the Lie superalgebra b.



D i m i t r o v ,  I v a n  K . / P a p e r / 2 0 0 2 - 1 1 - 0 5

PARTIALLY AND FULLY INTEGRABLE MODULES OVER LIE SUPERALGEBRAS 55

purely odd space) and f−
λlj

, being the left kernel of the pairing

(n−1 )lj × (n+
1 )lj [·,·]−−→glj

0 → h0 ∩ glj

0
λlj

−−→C .

If λj |
[glj

0 ,glj
0 ]
6= 0, formula (4) still makes sense and therefore, when lj+1 is of type

(i), one can simply define λj+1 by formula (4). If now lj is of type (ii) or (iii), we
define λbj+1

b to be the weight of g obtained by applying to λbj

b the only non-trivial
Weyl group reflection of the Lie algebra (h + glj )0. (For any finite-dimensional
Lie algebra with Cartan subalgebra h′, the Weyl group is the subgroup in AutCh′

generated by reflections along each of the roots of the semi-simple part of g, by
definition each such reflection being identical on the intersection of h′ with the
radical of the Lie algebra. The semi-simple part of (h + glj )0 is sl(2) and the Weyl
group is Z2). In this way λi is defined for any i and in particular for i = k. In some
cases it is clear that λk depends only on λ, on b, and on b′, but not on the chain
which connects b and b′. If the latter is true, we set λk = λb′

b and say that λb′
b is

well-defined.
We are now able to formulate our main result about integrability for highest

weight modules. Informally speaking, it states that, if the adjoint representation
of g is L-integrable and L is a connected set of finite lines, the condition of L-
integrability of Vb(νλ) for any b ∈ B(L) (and any νλ) can be localized to each
individual line l in L, after passing to a suitable Borel subsuperalgebra b(l) for
which l is simple. Here is the precise statement.

Theorem 1. Let L ⊂ Lf be connected set of lines of g, such that g is L-
integrable as g-module, and let Vb(νλ) be an irreducible b-highest weight module
for b ∈ B(L). Then Vb(νλ) is L-integrable, iff, for every b′ ∈ B(L) and for any
simple line l′ ∈ L of b′, λb′

b is well-defined and the weight (λb′
b )l′ of gl′ satisfies the

finite-dimensionality condition with respect to (b′)l′ .

Proof. It is similar to the proof of Theorem 1 in [PS], the same idea being
applied here in a more general situation. Assume first that Vb(νλ) is L-integrable.
We claim that then Vb(νλ) ' Vb′(νλb′

b
) for any b′ ∈ B(L), i.e. that Vb(νλ) is a b′-

highest weight module with highest weight space νλb′
b

. Indeed, let b = b1, . . . , bk =
b′ be a chain connecting b and b′, and let l1, . . . , lk−1 be the corresponding sequence
of lines. Vb(νλ) is l1-integrable (since l1 ∈ L) and thus the U(gl1)-submodule
U((n−)l1)·νλ of Vb(νλ) is of finite dimension. Therefore if λ(l1) is a weight, such that
Vb(νλ)(λ(l1)) ∩ (U((n−)l1) · νλ) 6= ∅ and λ(l1) is maximal with respect to the partial
order ≤(b−)l1 on h∗0 induced by (b−)l1 4), then n+(b2) annihilates Vb(νλ)(λ(l1)) ∩
(U((n−)l1) · νλ). Indeed, n−(b) ∩ gl1 annihilates Vb(νλ)(λ(l1)) ∩ (U((n−)l1) · νλ)
because of the maximality of λ(l1), while g(α) for α ∈ ∆+\(∆+ ∩ l1) annihilate
Vb(νλ)(λ(l1)) ∩ (U((n−)l1) · νλ) because of the simplicity of the line l1 for b, i.e.
because of the fact that [g+

α , g−l1 ] ∈ ⊕
β∈∆+\(∆+∩l1)

g(β) for any α ∈ ∆+\(∆+ ∩ l1),

4)by definition µ ≤
(b−)l1 η ⇔ η = µ +

P
i

αi, αi ∈ ∆− ∩ l1, or µ = η.
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g+
α ∈ g(α), and any g−l1 ∈ n−(b) ∩ gl1 . This means that an irreducible h-submodule

of Vb(νλ)(λ(l1)) ∩ (U((n−)l1) · νλ) is a b2-submodule of Vb(νλ), i.e. that Vb(νλ) is
a b2-highest weight g-module, or equivalently that Vb(νλ) ' Vb2(νλ(l1)) for some
irreducible b2-module νλ(l1). But therefore λ(l1) equals λ2 and the latter equals
λb2

b , i.e. in particular λb2

b is well-defined. Thus we have simply

Vb(νλ) ' Vb2(ν
λb2

b
)

for a certain ν
λb2

b
. Continuing the process now, i.e. applying the same argument to

Vb2(ν
λb2

b
) and to the line l2, etc. (since Vb2(ν

λb2
b

) is l2-integrable, etc.), we obtain
a chain of g-isomorphisms

Vb(νλ) ' Vb2(ν
λb2

b
) ' Vb3(ν

λb3
b

) ' · · · ' Vb′(νλb′
b

).

This implies in particular that λb′
b is well-defined and that Vb′(νλb′

b
) is L-integrable.

If now l′ ∈ L is a simple line of b′, the gl′-module U((n−)l′)·νλb′
b

is finite-dimensional

because of the l′-integrability of Vb′(νλb′
b

) and thus λb′
b necessarily satisfies the finite-

dimensionality condition with respect to (b′)l′ . In this way we have proved that the
L-integrability of Vb(νλ) implies that, for each b′ ∈ B(L) and for any of its simple
lines l′ ∈ L, λb′

b is well-defined and satisfies the finite-dimensionality condition with
respect to (b′)l′ .

It remains to establish the opposite, i.e. that if λb′
b is well-defined for all b′ ∈

B(L) and if all respective conditions on finite-dimensionality for the simple lines of
all b′ are satisfied, then Vb(νλ) is L-integrable. Let us show first that, for a simple
line l of b, Vb(νλ) is l-integrable whenever λl satisfies the finite-dimensionality
condition with respect to bl. We start with the observation that, if this latter
condition is satisfied, one has U((n−)l) · νλ < ∞. (Indeed, otherwise the maximal
proper submodule of U((n−)l) · νλ with zero intersection with νλ would generate
a proper g-submodule of Vb(νλ) and this would contradict to the irreducibility of
Vb(νλ) ). Moreover, there is a natural surjection of U(gl)-modules

(5) µ : U(( ⊕
α∈∆−

α 6∈l1

g(α))⊂+h)⊗U(gl) U((n−)l) · νλ → Vb(νλ)

such that
µ(g′ ⊗ g′′ · v) = g′ · g′′ · v

for g′ ∈ U(( ⊕
α∈∆−

α 6∈l1

g(α))⊂+h), g′′ = U(gl). Therefore in order to establish the l-

integrability of Vb(νλ), we need to establish the l-integrability of the tensor product
in (5). But, being finite-dimensional, U((n−)l) · νλ is obviously l-integrable, and,
as the reader will verify, the l-integrability of U(( ⊕

α∈∆−

α6∈l1

g(α))⊂+h) follows from the

l-integrability of g. Since l-integrability is preserved by taking tensor product,
we obtain that Vb(νλ) is l-integrable, being a gl-factormodule of a l-integrable gl-
module.
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Let now l′ be any line in L. Let b′(l′) be a Borel subsuperalgebra for which l′

is simple. Connect b and b′(l′) by a chain b = b1, . . . , bk = b′(l′) such that the
corresponding sequence of lines l1, l2, . . . , lk−1 belongs to L. The crucial point is to
note that, since (λbi

b )li satisfies the finite-dimensionality condition with respect to
bi for each i = 1, . . . ,k−1, we obtain by applying consecutively the same arguments
as in the first part of the proof that Vb(νλ) is a bi+1-highest weight g-module for
i = 1, . . . , k − 1, i.e. in particular that Vb(νλ) is a b′-highest weight g-module.
(Indeed, at the i-th step we conclude that U((n−)li) · ν

λbi

b
< ∞ because (λbi

b )li

satisfies the finite-dimensionality condition with respect to bi, and then we show as
in the beginning of the proof that this gives Vbi(ν

λbi

b
) ' Vbi+1(ν

λbi+1
b

).) But then
Vb(νλ) ' Vb′(νλb′

b
), and the above argument ensures the l′-integrability of Vb′(νλb′

b
).

The proof of Theorem 1 is complete. ¤
The above arguments imply also

Corollary 1. Let L be a connected set of finite lines of g, such that g is a L-
integrable module. Fix b ∈ B(L). Then for a b-highest weight irreducible g-module
V the following two conditions are equivalent:

- V is L-integrable;
- V is a b′-highest weight g-module for any b′ ∈ B(L). ¤

2. Applications: the cases of classical affine
Lie superalgebras and of Wpol(m+nε)

2.1. Affine Lie superalgebras.
2.1.1. Definitions. In what follows k denotes a finite-dimensional Lie superal-

gebra and Σ = Σ0 ∪ Σ1 is the set of roots of k. If t is an even formal variable and
D = t d

dt , we define the Lie superalgebras kloop by setting

kloop = k⊗ C[t, t−1]⊂+CD.

The bracket in kloop is determined by the relation

(6) [x⊗ tm + rD, y ⊗ tn + sD] = [x, y]⊗ tn+m + nry ⊗ tn −msx⊗ tm

for x, y ∈ k, r, s ∈ C. Let hk be a (fixed) Cartan subsuperalgebra of k. Then
hloop = hk ⊕ CD is a Cartan superalgebra of kloop.

Suppose that (·|·) is an even invariant bilinear form on k. Set k̂ = kloop⊃+CK,
where K is an even formal variable. k̂ is a central extension of kloop and its bracket
is determined by the relation

(7)
[x⊗ tm + pK + rD, y ⊗ tn + uK + sD] = [x, y]⊗ tn+m + nry ⊗ tn−

−msx⊗ tm + mδm,−n(x|y)K.

ĥ = hloop ⊕ CK is a Cartan subsuperalgebra of k̂0 and (·|·) extends to an even
invariant form (̂·|·) on k̂, where

̂(x⊗ tn|y ⊗ tm) = δn,−m(x|y), ̂(x⊗ tn|K) = ̂(x⊗ tm|D) = 0,
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(̂K|K) = (̂D|D) = 0, (̂K|D) = 1.

(̂·|·) is non-degenerate whenever (·|·) is non-degenerate. An odd invariant bilinear
form (·|·) on k also defines a central extension of kloop. The relation which determines
its bracket is the same as (7), but in this case K is an odd formal variable. The
resulting algebra will be denoted by k̂ as well.

We will consider also the following twisted affine Lie superalgebras:

kloop
tw = (k0 ⊗ C[t2, t−2]⊕ k1 ⊗ tC[t2, t−2])⊂+CD ⊂ kloop,

k̂tw = ((k0 ⊗ C[t2, t−2]⊕ k1 ⊗ tC[t2, t−2])⊂+CD)⊃+CK ⊂ k̂.

Below we shall assume that k is a simple classical Lie superalgebra and that (·|·)
is non-degenerate. This means that (·|·) is even when g ' sl(m + nε) (m 6= n),
psl(n+nε) (n > 1), osp(m+2nε), G(3), F(4) and that (·|·) is odd when g ' psq(n)
(n > 2). (In all other cases k admits no non-degenerate invariant form). g will be
one of the Lie superalgebras defined above and h will be its respective Cartan
subsuperalgebra.

Define c ∈ (hloop)∗ by setting c|hk
= 0, c(D) = 1. Putting c(K) = 0, we extend

c to a linear function on ĥ when ĥ is defined. We define also d ∈ ĥ∗ by setting
d|hloop = 0, d(K) = 1. Γ will denote the real vector space spanned by the roots of
k (i.e. Γ = RΣ), and Γ̂ := Γ⊕ Rc.

Here are the root systems of all g considered. If g = kloop or g = k̂, then

∆ = {α + nc | α ∈ Σ, n ∈ Z} ∪ {nc | n ∈ Z\{0}},
∆0 = {α + nc | α ∈ Σ0, n ∈ Z} ∪ {nc | n ∈ Z\{0}},

∆1 =
{ {α + nc | α ∈ Σ1, n ∈ Z} when (hk)1 = 0
{α + nc | α ∈ Σ1, n ∈ Z} ∪ {nc | n ∈ Z\{0}} when (hk)1 6= 0.

If g = kloop
tw or k̂tw, then

∆ = {α+2nc | α∈Σ0, n∈Z} ∪ {α+(2n + 1)c | α∈Σ1, n∈Z} ∪ {nc | n∈Z\{0}},
∆0 = {α+2nc | α∈Σ0, n∈Z} ∪ {2nc | n ∈ Z\{0}},

∆1 =
{ {α + (2n + 1)c | α ∈ Σ1, n∈Z} when (hk)1 = 0
{α + (2n + 1)c | α ∈ Σ1, n∈Z} ∪ {(2n + 1)c | n∈Z\{0}} when (hk)1 6= 0.

In all cases we define the imaginary line of g lim as lim := Rc.

2.1.2. Standard Borel subsuperalgebras. For all g introduced in 2.1.1, the
length of the shortest flag by which a given triangular decomposition is determined
is less or equal to 2. Indeed, it is a straightforward observation that any triangular
decomposition is either determined by a regular real hyperplane in h∗0 (i.e. there
exists a hyperplane P so that the given decomposition is determined by any flag
0 ⊂ F 1 ⊂ · · · ⊂ F 2n−1 = P ⊂ F 2n = hg∗0 ) or by a flag lim ⊂ P where (P\(P ∩
lim))∩∆ = ∅ (i.e. there exists a hyperplane P with P ⊃ lim, (P\(P ∩ lim))∩∆ = ∅,
so that the given decomposition is determined by any flag 0 ⊂ F 1 = lim ⊂ · · · ⊂
F 2n−1 = P ⊂ F 2n = h∗0 ). A Borel subsuperalgebra of g is standard if it can
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be determined by a regular hyperplane. A Borel subsuperalgebra that cannot be
determined by a regular hyperplane is imaginary.

If b is standard, there always exits a real linear functional ϕ on Γ̂ with ∆± =
{α ∈ ∆ | ϕ(α)>

<0} and ϕ(c) 6= 0. Indeed, for a standard b, Γ̂ ∩ P is a hyperplane
in Γ̂ and ϕ is determined uniquely by the requirements ϕ(∆+) > 0, ϕ(Γ̂ ∩ P ) = 0.

Conversely, if ϕ ∈ (Γ̂)∗ and ϕ(α) 6= 0 ∀α ∈ ∆, then ∆+
ϕt∆−

ϕ is a standard triangular
decomposition, where ∆±

ϕ = {α ∈ ∆ | ϕ(α)>
<0}. After multiplying ϕ by 1

|ϕ(c)| we
can assume that ϕ(c) = ±1. In what follows ϕb will denote such a normalized
functional corresponding to a standard Borel subsuperalgebra b of g.

We call a subset {β1, . . . , βs} of ∆ a basis of ∆ if every α ∈ ∆ can be represented
in a unique way as α =

∑s
i=1 ciβi for ci ∈ Z, and all ci are either non-negative or

non-positive. Every basis of ∆ defines a Borel subsuperalgebra: its roots are all
α =

∑s
i=1 ciβi with non-negative ci’s. The opposite is not true since the imaginary

Borel subsuperalgebras of g do not admit a basis. However any standard Borel
subsuperalgebra is determined by a basis. More precisely, we have

Proposition 2. Every standard Borel subsuperalgebra of g is determined by a
unique basis of ∆. Any basis of ∆ is of the form

(8) α1 + n1c, α2 + n2c, . . . , αs + nsc,−α + ns+1c,

where α1, . . . , αs is a basis of Σ, α = b1α1 + b2α2 + · · ·+ bsαs is the longest root of
Σ with respect to this basis, and

- b1n1 + b2n2 + · · ·+ bsns + ns+1 =
{

1 if c ∈ ∆+

−1 if c ∈ ∆−

for g = k̂, g = kloop, g = ̂psq(r)tw, g = psq(r)loop
tw ,

- b1n1 + b2n2 + · · ·+ bsns + ns+1 =
{

2 if c ∈ ∆+

−2 if c ∈ ∆−

for g = k̂tw, g = kloop
tw , k 6= psq(n).

Sketch of the proof. A straightforward way to establish the Proposition is
to consider each case for g separately. Here we will present the proof for g = k̂,
where k = osp((2r+1)+2nε), r ≥ 2. One has Σ = {±εi,±δp,±2δp,±εi±εj ,±δp±
δq,±εi ± δp | 1 ≤ i 6= j ≤ r, 1 ≤ p 6= q ≤ n}, see [K1]. It is clear that every set of
the form (8) is a basis of ∆ and that it determines a standard Borel subsuperalgebra
of g. We need to prove the converse. Let b be a standard Borel subsuperalgebra
of g. Consider the numbers {ϕb(±εi)} := ϕb(±εi) − [ϕb(±εi)] and {ϕb(±δp)} :=
ϕb(±δp)− [ϕb(±δp)], where 1 ≤ i ≤ r, 1 ≤ p ≤ n, and [x] denotes the integer part
of x. One checks, using the fact that ϕb(εi) and ϕb(δp) are never integers, that
{ϕb(εi)}+ {ϕb(−εi)} = {ϕb(δp)}+ {ϕb(−δp)} = 1. Therefore setting
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a1 =
{

ε1 if {ϕb(ε1)} ≤ 1
2

−ε1 if {ϕb(−ε1)} < 1
2

,

...

an =
{

εn if {ϕb(εn)} ≤ 1
2

−εn if {ϕb(−εn)} < 1
2

,

an+1 =
{

δ1 if {ϕb(δ1)} < 1
2

−δ1 if {ϕb(−δ1)} < 1
2

,

...

an+r =
{

δr if {ϕb(δr)} < 1
2

−δr if {ϕb(−δr)} < 1
2

,

we can assume, after suitably reordering the sequence a1, . . . , an+r, that

{ϕb(a1)} < {ϕb(a2)} < · · · < {ϕb(ar+n)} ≤ 1
2
.

The reader will verify then immediately that

ar+n − ar+n−1, ar+n−1 − ar+n−2, . . . , a2 − a1, a1

is a basis of Σ. Denoting this basis by α1, . . . , αr+n, and setting ni = [ϕb(αi)],
i = 1, . . . , r + n, we obtain the desired basis of b by formula (8). ¤

All Borel subsuperalgebras considered in 2.1.3 and 2.1.4 will be assumed stan-
dard. The unique basis of ∆ which determines b will be referred to as the basis of
b and its elements are by definition the simple roots of b.

2.1.3. Partial integrability and maximal families of lines. Note that in
all cases considered g0 has certain distinguished Lie subalgebras. Let the semi-

simple part of k0 be isomorphic to
ik⊕

i=1
ki, where 1 ≤ ik ≤ 3. (For instance ik = 2

when k = sl(m + nε), m > 1 n > 1, and in this case k1 ' sl(m), k2 ' sl(n);
ik = 3 only for D(2, 1;α) and then k1 ' k2 ' k3 ' sl(2)). We will consider ki as
Lie subalgebra of k0. Then for g = kloop we set gi

0 = (ki)loop, for g = k̂ we set
gi
0 = k̂i (where k̂i is defined via the restriction of (·|·) to ki), and for g = kloop

tw or
g = k̂tw we set respectively gi

0 = (ki)loop ∩ g and gi
0 = k̂i ∩ g. By ∆i we denote the

roots of gi
0 considered as a subset of ∆. Furthermore Li

f = {l ∈ Lf | l ∩∆i 6= ∅},
Lodd := {l ∈ Lf | gl ' sl(1 + ε)}. For every standard Borel subsuperalgebra b of
g, b ∩ gi

0 is a Borel subalgebra of gi
0, where 1 ≤ i ≤ ik. Finally, let Γi be the real

vector space spanned by ∆i.
The following Theorem gives an explicit description of all ≤OC

b -maximal sets of
lines and of corresponding sets B(Lm). In this way, given b we know explicitly its
maximal set Lm, and conversely, given Lm we know all Borel subsuperalgebras b′

to which it corresponds (see Corollary 1 in 1.4).

Theorem 2. Let b be a fixed Borel subsuperalgebra of g and C′ = OC
b .

a) Let g= ̂sl(m+ε), ̂sl(1+nε), ̂sl(m+ε)tw, ̂sl(1 + nε)tw, or g = ̂osp(m + 2nε),
̂osp(m + 2nε)tw for m = 1, 2. Then Lm = Lf is the only set of lines which
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is maximal with respect to ≤C′ , and Bm(Lm) = {b′ |ϕb′(c) = ϕb(c)} is the
largest among all sets B(Lm) such that b ∈ B(Lm).

b) Let g = ̂sl(m + nε), ̂sl(m + nε)tw for m,n ≥ 2, or g = ̂osp(m + 2nε),
̂osp(m + 2nε)tw for m > 2, or g = F̂(4), F̂(4)tw, or g = Ĝ(3), Ĝ(3)tw.

Then a family of lines Lm is maximal with respect to ≤C′ iff it is of the
form L′ = L1 ∪ L2 ∪ Lodd, where either L1 = L1

f and L2 = Θ2 ∩ L2
f , or

L2 = L2
f and L1 = Θ1 ∩ L1

f , and Θi 5) is a real hyperplane in Γi which
admits a basis of elements from ∆i. If Bm(Lm) = {b′ | ϕb′(c) = ϕb(c) and
Θ2 (resp. Θ1) contains dimΘ2 (resp. dimΘ1) simple roots of b′ ∩ g2

0 (resp.
b′ ∩ g1

0)} for L1 = L1
f (resp. L2 = L2

f ), then Bm(Lm) is the largest among
all sets B(Lm) such that b ∈ B(Lm).

c) Let g = sl(m + nε)loop, sl(m + nε)loop
tw , osp(m + 2nε)loop, osp(m + 2nε)loop

tw ,
D(2, 1; α)loop, D(2, 1; α)loop

tw , F(4)loop, F(4)loop
tw , G(3)loop, G(3)loop

tw , p̂sq(n),
̂psq(n)tw, psq(n)loop, psq(n)loop

tw . Then a family of lines Lm is maximal with
respect to ≤C′ iff it is of the form L′′ = (∪ik

i=1L
i)∪Lodd, where Li = Θi∩Li

f ,
Θi being a real hyperplane in Γi which admits a basis of elements from ∆i.
If Bm(Lm) = {b′ | ϕb′(c) = ϕb(c) and Θi contains dimΘi simple roots of
b′ ∩ gi

0 for 1 ≤ i ≤ ik and there exists a chain b = b1, · · · , bk = b′ with
corresponding lines l1, . . . , lk−1 in Lm}, then Bm(Lm) is the largest among
all sets B(Lm) such that b ∈ B(Lm).

Sketch of Proof. The proof is based on

Proposition 3. Let l be a Kac-Moody Lie algebra whose Dynkin diagram is of
finite or affine type (see [K2], Chap. 4), bl be a standard Borel subalgebra in l,
and λ be a weight of l. If Lλ

bl
is the set of all finite lines of l for which Vbl

(νλ)
is Lλ

bl
-integrable, then there exists a vector subspace Ξλ

bl
in the real vector space

spanned by the roots of l so that ` ∈ Lλ
bl

iff ` ⊂ Ξλ
bl

.

We will present the proof of this Proposition in a forthcoming article. In the
present paper we restrict ourselves to deducing the statement of Theorem 2 from
Proposition 3.

a) First of all, for any g considered in the Theorem (i.e. for g as in a), b), or c) ),
if Vb(νλ) is lim-integrable, then necessarily λ = 0, i.e. Vb(νλ) is not in C. Therefore
Lm ⊂ Lf . In order to prove that Lm = Lf it suffices to prove that in this case there
exists at least one weight λ0 6= 0 for which Vb(νλ0) is Lf -integrable. In 2.1.4 we will
write down explicitly the necessary and sufficient condition for the Lf -integrability
of Vb(νλ) for any λ, which will give Lm = Lf immediately. The statement about
Bm(Lm) in a) is obvious.

b) Assuming that Vb(νλ0) is Lf -integrable for some λ0, we obtain that the irre-
ducible gi

0-module with b ∩ gi
0-highest weight λ0|h∩gi

0
is Li

f -integrable for i = 1, 2.
But this implies λ0(K) ≥ 0 and λ0(K) ≤ 0, i.e. λ0(K) = 0, which gives λ0 = 0, (see
[K2], Chap. 10). Therefore Lm 6= Lf . If we assume that Vb(νλ0) is L-integrable

5)In the cases considered ik = 2 and thus i = 1, 2.
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for some non-empty L ⊂ Lf , Proposition 3 implies that L is contained in one of
the sets L1 ∪ L2 ∪ Lodd.

Let now L′ = L1 ∪ L2 ∪ Lodd be a fixed set of finite lines as in the statement
of the Theorem. We need to prove that there exists λ0 6= 0 for which Vb(νλ0) is
L′-integrable. For each g considered such a λ0 can be written down explicitly. Note
that L′ is connected (this is a straightforward checking), so we can apply Theorem
1 to L′. Let’s show how to find λ0 for g = ̂sl(m + nε), n > 1.

Fix L′ as L1∪L2∪Lodd where L1 = L1
f . It is straightforward to verify that there

exists a Borel subsuperalgebra b′ of g = ̂sl(m + nε) with the following properties:
- there is a chain b = b1, . . . , bk = b′ such that, if `1, . . . , `k−1 is the correspond-

ing set of lines, then g`i ' sl(1 + ε) for i = 1, . . . , k − 1,
- the simple roots of b′ are of the form εi1 − εi2 + s1c, . . . , εim − δj1 + smc,

δj1−δj2 + t1c, . . . , δjn
−εi1 + tnc,6) where (i1, . . . , im) is a permutation of (1, . . . ,m)

and (j1, . . . , jn) is a permutation of (1, . . . , n), s1 + · · ·+ sm + t1 + · · ·+ tn = 1, and
δjp

− δjp+1 + tpc ∈ Θ2 for p = 1, . . . , n− 1.
The first property implies that Vb(νλ) is a b′-highest weight module for any

λ (since Vb(νλ) is automatically `-integrable for any ` with g` ' sl(1 + ε) ), and
therefore it is enough to find a non-zero weight (λ0)′ for which Vb′(ν(λ0)′) is Lm-
integrable. If λ′ is such that

(9) (λ′, εi − δj) + rλ′(K) 6∈ Z for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, r ∈ Z,

one verifies using Theorem 1 that the Lm-integrability of Vb′(νλ′) is equivalent to
the following conditions on λ′:

(10)

(λ′, εip − εip+1 + spc) ∈ Z+, p = 1, . . . , m− 1;
(λ′, δjq − δjq+1 + tqc) ∈ Z−, q = 1, . . . , n− 1;
(λ′′, εim − εi1 + (sm + t1 + ·+ tn)c) ∈ Z+, where

λ′′ = λ′ − (εim − δj1 + smc)− (εim − δj2 +(sm + t1)c)− · · ·
· · · − (εim − δjn + (sm + t1 + · · ·+ tn−1)c).

It is an elementary computation to check that (9) and (10) have a non-zero solution
(λ0)′.

The statement about Bm(Lm) follows from the observation that Bm(Lm) is the
largest among all sets of Borel subsuperalgebras which contain b and such that
if b′ ∈ Bm(Lm) and b′ = b1, . . . , bk = b′′ is a chain with corresponding lines
`1, . . . , `k−1, where `i ∈ Lm for i = 1, . . . , k − 1, then b′′ ∈ Bm(Lm). This proves
b).

c) In this case one proceeds exactly as in b), see also 2.1.4. ¤

2.1.4. A finite algorithm which determines whether Vbbb(νλ) is Lm-
integrable. If one applies directly Theorem 1 to Vb(νλ) one is faced with checking
the finite-dimensionality conditions for infinitely many line subsuperalgebras. How-
ever, for the Lie superalgebras considered in Theorem 2 it is not hard to write down

6)ε1, . . . , εm, δ1, . . . , δn denotes here the dual basis of a standard basis in the Cartan subalgebra
of gl(m + nε); an explicit form of Σ is {εi − εj , δk − δl, εi − δk | 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n}.
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a finite algorithm which checks the Lm-integrability of Vb(νλ). We leave it to the
reader to formally prove this algorithm in each case by using Theorem 1.

a) Assume that Theorem 2 a) holds.
- Let g = ̂sl(m + ε), ̂sl(1 + nε), ̂sl(m + ε)tw, ̂sl(1 + nε)tw, ̂osp(2 + 2nε),
̂osp(2 + 2nε)tw. If α1, . . . , αN , αN+1 are the simple roots of b (where N = m for g =

̂sl(m + ε), ̂sl(m + ε)tw, and N = n for g = ̂sl(1 + nε), ̂sl(1 + nε)tw, ̂osp(2 + 2nε),
̂osp(2 + 2nε)tw), without loss of generality we can assume that gRαN ' gRαN+1 '

sl(1 + ε). Then Vb(νλ) is integrable iff

2(λ, αi)/(αi, αi) ∈ Z+ for 1 ≤ i ≤ N − 1

and
{

2(λ, αN + αN+1)/(αN + αN+1, αN + αN+1) ∈ Z+ when (λ, αN ) = 0
2(λ− αN , αN + αN+1)/(αN + αN+1, αN + αN+1) ∈ Z+ when (λ, αN ) 6= 0.

- Let g = ̂osp(1 + 2nε), g = ̂osp(1 + 2nε)tw. Since in this case g` ' sl(2) or
g` ' osp(1 + 2ε) for any ` ∈ Lf , Vb(νλ) is Lf -integrable iff

2(λ, α)/(α, α) ∈ Z+ for every even root α of b .

b) Assume that Theorem 2 b) holds and that L1 = L1
f , L2 = Θ2 ∩ L2

f . There
exists a chain b = b1, . . . , bk = b′ with g`i ' sl(1+ε) for i = 1, . . . , k−1 (`1, . . . , `k−1

being the corresponding sequence of lines), and such that the basis of b′ contains
all simple roots of b′ ∩ g2

0 which are in Θ2 and all simple roots of b′ ∩ g1
0 except one

or two.
- Suppose that there is a unique simple root α of b′ ∩ g′0 which does not belong

to the basis of b′. Then there exists a chain b′ = b1, . . . , bp = b′′ so that α is a
simple root of b′′ and g`i ' sl(1 + ε) for i = 1, . . . , p − 1, `′1, . . . , `′p−1 being the
corresponding sequence of lines. Vb(νλ) is Lm-integrable iff

2(λb′
b , γ)/(γ, γ) ∈ Z+ for every even root γ of b′,

2(λb′′
b , α)/(α, α) ∈ Z+;

- Suppose that there are two simple roots α and β of b′∩g1
0 which do not belong

to the basis of b′. Let b′′ and b′′′ be Borel subsuperalgebras of g such that there
exist two chains b′ = b1, . . . , bp = b′′ and b′ = b1, . . . , bq = b′′′ (with corresponding
sequences of lines `

′1, . . . , `
′p−1 and `

′′1, . . . , `
′′q−1 respectively), so that α and β

are simple roots respectively of b′′ and b′′′, and g`
′i ' sl(1 + ε) for i = 1, . . . , p− 1

and g`
′′i ' sl(1 + ε) for i = 1, . . . , q − 1. Then Vb(νλ) is Lm-integrable iff

2(λb′
b , γ)/(γ, γ) ∈ Z+ for every even root γ of b′,

2(λb′′
b , α)/(α, α) ∈ Z+,

2(λb′′′
b , β)/(β, β) ∈ Z+.

c) Assume that Theorem 2 c) holds.
In this case for every i, 1 ≤ i ≤ ik there exist bi and chain b = bi,1, . . . , bi,ki = bi

(with corresponding sequence of lines `i,1, . . . , `i,ki−1), so that the basis of bi ∩ gi
0
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contains all simple roots of bi which lie in Θi, and g`i,j' sl(1+ε) for j =1, . . . , ki−1.
Then Vb(νλ) is Lm-integrable iff

2(λbi

b , γ)/(γ, γ) ∈ Z+ for every even root γ of bi
k which belongs to Θi.

Remark. The explicit conditions on λ, computed in [KW], which ensure Lm-
integrability (or simply integrability in the terminology of [KW]) for Lm = L1 ∪
L2∪Lodd, L′ = L′f , L2 = Θ2∩L2

f , Θ2 being spanned by the roots of k2, are nothing
but the conditions that the above algorithm produces for this particular set Lm

and for the fixed Borel subsuperalgebra considered in [KW].

2.2. ggg=Wpol(m+nε). Let T ' Cm+nε be a m + nε-dimensional vector space
with basis x1, . . . , xm, ξ1, . . . , ξn (xi∈T0, ξj∈T1). By definition, Wpol(m+nε) :=
derS·(T ) (der denoting superderivations). In coordinates, any element of Wpol(m+
nε) has the form

∑m
i=1 fi

∂
∂xi

+
∑n

j=1 gj
∂

∂ξj
, where fi, gj ∈ S·(T ). g = Wpol(m+nε)

has an obvious Z-filtration g ⊃ g0 ⊃ g1 ⊃ · · · ⊃ gk ⊃ · · · . Namely,
∑m

i=1 fi
∂

∂xi
+∑n

j=1 gi
∂

∂ξj
∈ gk iff deg fi ≥ k + 1 for every i and deg gj ≥ k + 1 for every j.

The abelian Lie subsuperalgebra 〈x1
∂

∂x1
, . . . , xm

∂
∂xm

, ξ1
∂

∂ξ1
, . . . , ξn

∂
∂ξn

〉 is a Cartan
subsuperalgebra of g. Clearly, as b-module g has a decomposition (1) with finite-
dimensional h-semisimple root spaces g(α), and ∆ = {α =

∑m
k=1 kiεi +

∑n
j=1 ljδj |

α 6= 0, ki = −1, 0, 1, . . . , lj = −1, 0, 1, . . . , and at most one of ki and lj is −1},
where εi and δj are the dual elements respectively of xi

∂
∂xi

and ξj
∂

∂ξj
.

The elements xp
∂

∂xi
, ξq

∂
∂xi

, xp
∂

∂ξj
, ξq

∂
∂ξj

, where 1 ≤ i, p ≤ m, 1 ≤ j, q ≤ n

generate a finite-dimensional Lie superalgebra k of g which is isomorphic to gl(m+
nε); h is a Cartan subalgebra of k too. We introduce a bilinear form on h∗ by setting
(εi, εp) = δip, (δj , δq) = δjq, (εi, δj) = 0. If α =

∑m
i=1 kiεi +

∑n
j=1 ljδj , then g(α)

is the (complex) vector space spanned by {xix
k1
1 · · ·xkn

n ξl1
1 · · · ξlm

m
∂

∂xi
, ξjx

k1
1 · · ·xkn

n ·
·ξl1

1 · · · ξlm
m

∂
∂ξj

| i = 1, . . . ,m, j = 1, . . . , n}.
If E is a g-module, we say (following A. Rudakov, see [R]) that E is of height

p ≥ 0 iff there exists 0 6= v ∈ E, such that gp+1 · v = 0 but gp · v′ 6= 0 for every
v′ 6= 0. If E is not of height p for any p ≥ 0, we say that E is not of finite height.
By Γ (resp. Γ0) we denote the real vector space spanned by ∆ (resp. ε1, . . . , εm).
We call a line l of g essential iff gl ∩ h 6= 0, and inessential otherwise. The only
essential lines of g are Rεi, R(εi − εp), Rδj , R(δj − δq).

Let b be a Borel subsuperalgebra determined by a real flag F = {0 ⊂ F 1 ⊂ · · · ⊂
F 2(m+n) = h∗0}. Denote by ΓF the hyperplane in Γ obtained by intersecting Γ with
F p for a suitable p. Fix a normal vector a to ΓF , a = c1ε1 + · · ·+ cmεm + d1δ1 +
· · · + dnδn, such that ci ≥ 0. We shall consider the following alternatives for the
m-tuple (c1, . . . , cm):

1. ci > 0 for i = 1, . . . , m. In this case it is not hard to check that b is determined
by a regular real hyperplane P in h∗0. Moreover n+ or n− is finite-dimensional and b

has always m+n simple lines. By appropriately choosing the signs of the connected
components of h∗0\P (see 1.2) we can assume that dimn− < ∞. The reader will
verify immediately that for every λ and for every inessential line l of b gl acts
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trivially on the b-highest weight space νλ of Vb(νλ).7) Furthermore we have

Proposition 4. Assume that ci > 0 for i = 1, . . . ,m and let λ ∈ h∗. Then

a) The k-module structure of Vk∩b(νλ) can be uniquely extended to the structure
of a (b + k)-module with b-highest weight space νλ. Therefore U(g)⊗U(b+k)

Vk∩b(νλ) is a b-highest weight g-module and the canonical projection Ṽb(νλ) →
Vb(νλ) factors through U(g) ⊗U(b+k) Vk∩b(νλ), i.e. one has a natural com-
mutative diagram:

Ṽb(νλ) −−−−−→ Vb(νλ)

↘ ↗
U(g)⊗U(b+k) Vk∩b(νλ).

b) Vb(νλ) is of height 1 for every λ.
c) Vb(νλ) is Lf -integrable iff Vb∩k(λδ) is finite-dimensional.

Sketch of proof. There exists a chain b = b1, . . . , bk = b′, such that the
corresponding sequence of lines `1, . . . , `k−1 consists of inessential lines only and b′

can be determined by a flag F ′ for which ∆k ⊂ ΓF ′ . Then Vb(νλ) ' Vb′(νλ) and the
corresponding statements for Vb′(νλ) follow easily from the fact that ΓF ′ contains
all essential finite lines of g. ¤

2. At least one of c1, . . . , cm is non-positive. In this case the subspace ΓF ∩ Γ0

of Γ0 is uniquely determined by b. This implies in particular that the set of all
Borel subsuperalgebras of g is uncountable. The length of the shortest flag which
determines b can vary from 1 to m. Moreover b has less than m + n simple lines
and the height of Vb(νλ) is not finite unless λ = 0. Finally, one can check that for
such a b Lf is never contained in a ≤OC

b -maximal set of lines.
Around 1980 J. Bernstein and D. Leites initiated the study of representations of

the Cartan type Lie superalgebras, [BL]. They relied on the pioneering paper of A.
Rudakov [R]. A novelty of our approach is that we single out the highest weight
modules. Bernstein and Leites did not consider modules whose height is not finite
and it seems now that a study of more general classes of representations of the
Cartan series of Lie superalgebras is desirable.

3. Loop modules

In this section g = kloop, k̂, where k denotes one of the Lie superalgebras sl(m +
nε), m + nε > 1 + ε, osp(m + 2nε), F(4), G(3).

As we pointed out in the introduction there are g-modules in the category C

which are Lf -integrable but which are not highest weight modules. The most
obvious example of such a module is g itself, i.e. the adjoint module. We will now
construct a large class of such g-modules.

If bk is a Borel subsuperalgebra in k, bk = hk ⊕ n+
k , we say that a g-module V

from the category C is bk-bounded, if it is generated by a generalized weight vector

7)For Wpol(m + nε), dimνλ equals 1 or ε since here h = h0.
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v on which n+
k ⊗ C[t, t−1] acts trivially. Cbk

denotes the subcategory of g-modules
which are generated by finitely many bk-bounded g-submodules. Fixing bk, we set

N+ = n+
k ⊗ C[t, t−1], N− = n−k ⊗ C[t, t−1],

H = h + (hk ⊗ C[t, t−1]), T = ⊕
n∈Z\{0}

(hk ⊗ tn).

Define the H⊃+N+-module ν̄ as ν̄ := U(H⊃+N+)⊗U(N+) C · v. Then ν̄ has a unique
irreducible submodule ν(Λ), where Λ : U(T ) → C[t, t−1] is a graded homomorphism
with Λ(1) = 1. Λ is determined by a sequence of linear functions cs ∈ h∗k

8),
s ∈ Z\{0}, via Λ(h⊗ts) = cs(h)ts for every h ∈ hk. Set V̄ (Λ) = U(g)⊗U(H3pN+)ν(Λ).
Obviously V̄ (Λ) is h-semisimple (with infinite-dimensional weight spaces), and an
argument very similar to the one in the case of highest weight modules proves that
V̄ (Λ) has a unique irreducible submodule V (Λ) (see [C]). Every irreducible object
of Cbk

is isomorphic to V (Λ) for some Λ.

Theorem 3. V (Λ) is a Lf -integrable module with finite-dimensional (h-semi-
simple) weight spaces iff there exist finitely many weights λi ∈ h∗k , i = 1, . . . , N ,
such that dim Vbk

(νλi) < ∞ and such that for every h ∈ hk and every s ∈ Z\{0}

(11) Λ(h⊗ ts) =

(
N∑

i=1

λi(h)ξs
i

)
ts,

ξi being certain non-zero complex constants.

We will present the proof of Theorem 3 in a forthcoming publication. Here we
shall restrict ourselves to a few remarks. Theorem 3 is a partial generalization of
the main result of [C]. Condition (11) is the loop module analog of the integrality
condition for highest weight modules and it means roughly that for every fixed h

the sequence cs(h) satisfies a recurrent equation. The main new ingredient needed
to prove Theorem 3 is the study of bounded modules over the Lie superalgebra
gl(1+ ε)loop := gl(1 + ε)⊗C[t, t−1]⊂+CD. There are interesting effects arising here.
One of them is that there are Lf -integrable irreducible gl(1+ ε)loop-modules which
are h-diagonalizable with finite-dimensional weight spaces but are not bounded.
This is related to why the following problem is still open: is it true that any
irreducible Lf -integrable g-module which is h-diagonalizable with finite-dimensional
weight spaces is bounded?

Following V. Chari and A. Pressley, [CP], we introduce a loop module as an
irreducible component of a g-module of the form

Vbk
(νλ1)⊗ · . . . · ⊗Vbk

(νλi)⊗ C[t, t−1],

Vbk
(νλj ) being irreducible bk-highest weight k-modules. Theorem 3 implies

Corollary 2. Every Lf -integrable bk-bounded g-module V which is h-diagonali-
zable with finite-dimensional weight spaces is a loop module. ¤

Another effect worth to be noticed is that Corollary 2 is not true for gl(1+ε)loop.
We conclude this paper by two more Corollaries of Theorem 3.

8)In the cases considered hk = (hk)0.
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Corollary 3. An irreducible bk-bounded g-module V with finite-dimensional
weight spaces is Lf -integrable iff V is b′k-bounded for every Borel subsuperalgebra
b′k of k with b′k ⊃ hk. ¤

Corollary 4. For any bk, Lf is the only maximal set of lines with respect to
≤Cbk . ¤
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