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Abstract. We develop a Bott-Borel-Weil theory for direct limits of algebraic groups. Some of our
results apply to locally reductive ind-groups G in general, i.e., to arbitrary direct limits of connected
reductive linear algebraic groups. Our most explicit results concern root-reductive ind-groups G, the
locally reductive ind-groups whose Lie algebras admit root decomposition. Given a parabolic sub-
group P of G and a rational irreducible P-module, we consider the irreducible G-sheaves OG/P(E)
and their duals OG/P(E∗). These sheaves are locally free, in general of infinite rank. We prove a
general analog of the Bott-Borel-Weil Theorem for OG/P(E∗), namely that Hq(G/P;OG/P(E∗))
is nonzero for at most one index q = q0 and that Hq0 (G/P;OG/P(E∗)) is isomorphic to the dual of
a rational irreducible G-module V . For q0 > 0 we show that (in contrast to the finite dimensional
case) V need not admit an irreducible P-submodule. There, however, one has a larger parabolic
subgroup wP ⊃ P, constructed from P and a Weyl group element w of length q0, such that V is
generated by an irreducible wP-submodule. Consequently certain G-modules V can appear only for
q0 > 0, never for q0 = 0. For OG/P(E) we show that there is no analog of Bott’s vanishing theorem,
more precisely that OG/P(E) can have arbitrarily many nonzero cohomology groups. Finally, we
give an explicit criterion for the projectivity of the ind-variety G/P, showing that G/P is in general
not projective.

0. Introduction. The classical Bott-Borel-Weil Theorem [5] is the corner-
stone of the geometric approach to representation theory. Analogs of this theorem
have been studied in various contexts, including that of homogeneous spaces in
characteristic p [14] and of homogeneous superspaces [23]. In these contexts
the Bott-Borel-Weil Theorem does not carry over as a single theorem, and this
has inspired important areas of investigation. Infinite dimensional group analogs
of the Bott-Borel-Weil Theorem have also been studied. The loop group case
was addressed in the 1980’s; see [18] and [24]. Direct limit Lie groups were
first addressed recently by L. Natarajan, E. Rodrı́guez-Carrington and one of us
[20]. Roughly speaking, the results of [20] extend the finite dimensional analytic
Bott-Borel-Weil Theorem to direct limit Lie groups and direct limit unitary repre-
sentations, in other words to the analytic category with representations on Hilbert
spaces.

In this paper we view the classical Bott-Borel-Weil Theorem as a result in
algebraic geometry, see [6] and [7] (B. Kostant’s purely algebraic version of this
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theorem, [16], is beyond our scope here), and try to find its analog for direct
limits of linear algebraic groups. This turns out to be a very interesting problem
and, as in the characteristic p and the supergeometry contexts, one is led not to
a single theorem but to the development of a new circle of ideas. To start, recall
two forms of the Bott-Borel-Weil Theorem for a connected complex reductive
linear algebraic group G:

(1) Let B be a Borel subgroup of G, L an irreducible (one dimensional) ratio-
nal B-module, L → G/B the associated homogeneous line bundle, and OG/B(L)
be the sheaf of regular local sections of L. Then at most one of the cohomol-
ogy groups Hq(G/B;OG/B(L)) is nonzero, and if Hq0 (G/B;OG/B(L)) �= 0 then
Hq0 (G/B;OG/B(L)) is an irreducible G-module whose highest weight has an ex-
plicit expression in terms of the weight of L.

(2) Let P be a parabolic subgroup of G with B ⊂ P and let π: G/B →
G/P denote the canonical projection. Let E be an irreducible (finite dimensional)
rational P-module, E → G/P be the associated homogeneous vector bundle, and
OG/P(E) be the sheaf of regular local sections of E. Then OG/P(E) is isomorphic
to the direct image sheaf π∗OG/B(L) for some one dimensional B-module L,
and Hq(G/P;OG/P(E)) = Hq(G/B;OG/B(L)) for any q. Therefore at most one
cohomology group Hq0 (G/P;OG/P(E)) is nonzero, and it is an irreducible G-
module whose highest weight can be calculated explicitly.

Statement (1) admits a reasonably straightforward generalization to locally
reductive ind-groups. As follows from Theorem 11.1(ii) below, if G is a locally
reductive ind-group, B is a Borel subgroup, and L is any irreducible rational (and
thus one dimensional) B-module, then the sheaf OG/B(L) has at most one nonzero
cohomology group Hq0 (G/B;OG/B(L)). Furthermore, Hq0 (G/B;OG/B(L)) is iso-
morphic to the dual of an irreducible rational G-module V , and therefore (in
contrast to the classical case and to the analytic category case [20]) is a reducible
G-module except in the very special situation of finite dimensional V . If q0 = 0,
V has a highest weight which is the negative of the weight of L. For q0 > 0 the
explicit description of V in terms of L is an interesting problem, and it is still open
for sufficiently general ind-groups G. However, for a root-reductive ind-group G
(root-reductive ind-groups are the simplest ind-versions of reductive groups, see
Section 4) we prove in Proposition 14.1 that V is a highest weight module whose
highest weight is calculated in terms of L using a Weyl group action which has
many properties in common with that of the classical Bott-Borel-Weil Theorem.

In this paper we develop a Bott-Borel-Weil theory for locally reductive ind-
groups G, which in particular replaces (2). It involves a number of new con-
structions, and goes well beyond straightforward generalization. To indicate why
this is needed, here are two observations on a parabolic subgroup P of G and
an infinite dimensional irreducible rational P-module E. First, E need not be
locally irreducible, i.e., need not be isomorphic to a direct limit of irreducible
Pn-modules, and also E need not be a weight module. In particular, E need not
have an extremal weight with respect to any Borel subgroup B ⊂ P. Second, there



A BOTT-BOREL-WEIL THEORY 957

are two natural G-sheaves to consider: the sheaf OG/P(E) of local sections of the
G-bundle E → G/P associated to E, and the sheaf OG/P(E∗) of local sections of
the dual bundle (of uncountable rank) E

∗ → G/P. It is not difficult to see that
the “push down approach” of (2) applies only to OG/P(E∗) and then only under
the additional condition that E be a highest weight P-module. Thus the “push
down approach” does not lead to a complete description of the cohomology of
OG/P(E) or OG/P(E∗).

Our main results, collected in Theorem 11.1, concern the sheaf OG/P(E∗).
When G is root-reductive, but E need not be locally irreducible, we prove that
OG/P(E∗) has at most one nonzero cohomology group Hq0 (G/P;OG/P(E∗)), and
that this cohomology group is isomorphic to the dual of a rational G-module V .
For q0 = 0, we show that, as in the finite dimensional case, V is parabolically gen-
erated by E itself. When E is a weight module this latter result turns out to imply
that H0(G/P;OG/P(E∗)) �= 0 forces E to be locally irreducible; more precisely,
E has to be a finite P-module (see Theorem 11.1(iv)). For q0 > 0, in contrast
with the finite dimensional case, V need not be generated by an irreducible P-
submodule. We prove that here V is generated by an irreducible submodule of a
larger parabolic subgroup wP ⊃ P that depends on P and a certain element w of
the Weyl group. The result is sharp in the sense that there are examples of irre-
ducible P-modules E for which V does not admit an irreducible submodule for any
parabolic subgroup of G properly contained in wP; see Example 13.1. This new
infinite dimensional phenomenon is quite remarkable, for it provides a geometric
construction of G-modules that are not parabolically generated, in particular of
cuspidal weight modules [8]. According to Theorem 11.1(iv), cuspidal weight G-
modules can only occur in higher cohomology groups. As a consequence, there
is no “Demazure isomorphism” between the unique nonzero higher cohomol-
ogy group of OG/P(E∗) and the zeroth cohomology group of OG/P(E′∗) for any
other E′.

In connection with the above results, we establish an explicit criterion for
the projectivity of the ind-variety G/P. Somewhat surprisingly, it turns out that
G/P is rarely projective, even for G = GL(∞); see §15. Finally, we consider the
sheaf OG/P(E) and show by an example that it can have arbitrarily many nonzero
cohomology groups. The problem of a systematic description of the cohomology
for sheaves of type OG/P(E) remains open.

Acknowledgments. We thank Robin Hartshorne, Ziv Ran, and David Ben-
Zvi for encouraging discussions at the early stages of this work. In particular,
David Ben-Zvi brought [17] to our attention. We thank also Yuri Manin, Vera
Serganova and Gregg Zuckerman for constant support throughout the writing of
the paper.

Notational conventions. The ground field is C, though all results extend
easily to any algebraically closed field of characteristic zero. If V is a vector
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space, V∗ stands for its dual space. Z+ := {0, 1, 2, . . .}, Z− = −Z+, N := Z+\{0},
and C

× is the multiplicative group {a ∈ C | a �= 0}. Expressions such as lim−→Gn

and lim←−Hq(Xn; . . .) denote the direct and inverse limit, respectively of a direct
or inverse system indexed by Z+. The notation Hq(X;F) always stands for the
qth cohomology group of a sheaf F on a topological space X. If π: X → Y
is a morphism of algebraic varieties, π∗ and π∗ denote respectively the inverse
and direct image functors of coherent sheaves. Ind-groups (in particular complex
algebraic groups) are denoted by capital letters (e.g. K), and their Lie algebras
are denoted by the corresponding lower case Gothic letter (e.g. k). Furthermore,
as the ground field is fixed, we will write simply GL(n), SO(n), etc. instead of
GL(n, C), SO(n, C), etc. U(k) denotes the universal enveloping algebra of the Lie
algebra k. The sign ⊂+ stands for semidirect sum of Lie algebras: if k = m⊂+ n,

then m is an ideal in k and n is a complementary subalgebra. The sign
f
× denotes

“finite” or “weak” direct product of groups or of homogeneous spaces. If Gt,
t ∈ T , is an infinite family of groups, we set

f
×t∈T Gt := {×t∈T gt | gt ∈ Gt for all t and gt = 1 for almost all t ∈ T}.

Similarly, if Gt/Ht is a family of homogeneous spaces,
f
×t∈T (Gt/Ht) is the image

of
f
×t∈T Gt in ×t∈T (Gt/Ht). Finally, if k′ ⊂ k as a pair of finite dimensional

Lie algebras, and Ek and Ek′ are respectively a finite dimensional irreducible k-
module and a finite dimensional irreducible k′-module, we write Ek′ ≺ Ek if there
is an injection of k′-modules Ek′ → Ek .

Part I. Ind-varieties and Ind-groups.

1. Ind-varieties. This is a quick summary of the basic definitions on ind-
varieties. See both [25] and [17] for more detailed summaries.

An ind-variety (over C) is a set X with a filtration

X0 ⊂ X1 ⊂ X2 ⊂ · · ·(1.1)

such that X =
⋃

n≥0 Xn, each Xn is a Noetherian algebraic variety, and the inclu-
sions Xn ⊂ Xn+1 are closed immersions of algebraic varieties. In the following
we will often write X = lim−→Xn. An ind-variety X is automatically a topological
space: a subset U ⊂ X is open in X if and only if, for each n, U ∩ Xn is an open
subvariety of Xn. The sheaf of regular functions on X, or the structure sheaf OX

of X, is the inverse limit OX = lim←−OXn of the sheaves of regular functions OXn

on the Xn. An ind-variety X = lim−→Xn is proper if and only if all the varieties
Xn are proper, is affine if and only if all the Xn are affine. A morphism from
an ind-variety X to an ind-variety Y is a map ϕ: X → Y such that, for every
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n ≥ 0, the restriction ϕ|Xn is a morphism of Xn into Ym for some m = m(n). An
isomorphism of ind-varieties is a morphism which admits an inverse morphism.
An ind-subvariety Z of X is a subset Z ⊂ X such that Z∩Xn is a subvariety of Xn

for each n. An ind-variety is connected if it is connected as a topological space.
The (Zariski) tangent space Tx(X), to an ind-variety X = lim−→Xn at a closed

point x ∈ X is, by definition, the direct limit lim−→Tx(Xn) where x ∈ Xn for n
sufficiently large. Any ind-variety morphism ϕ: X → Y induces linear maps
dφx: Tx(X) → Tφ(x)(Y) for all closed points x ∈ X.

Example 1.2.
(1) C

∞ = lim−→C
n = {(a1, a2, a3, . . .) | an ∈ C, only finitely many an �= 0} is

an affine ind-variety.
(2) Every (complex) vector space V of countable dimension has a canoni-

cal structure of an affine ind-variety: any basis {v1, . . . , vn, . . .} identifies V =
lim−→Span{v1, . . . , vn} with C

∞ as sets and thus defines an ind-variety structure
on V . Any other basis of V defines the same ind-variety structure because the
identity map on V is an ind-variety isomorphism.

(3) Let V be a vector space of countable dimension. Fix an integer k ≥ 1.
The set Gr(k, V) of all k-dimensional subspaces of V has a canonical structure
of proper ind-variety: any filtration 0 ⊂ Vk ⊂ Vk+1 ⊂ · · · ⊂ V =

⋃
r≥0 Vk+r,

dim Vk+r = k + r, induces a filtration

Gr(k, Vk) ⊂ Gr(k, Vk+1) ⊂ · · · ⊂ Gr(k, V),

and the associated ind-variety structure on Gr(k, V) is independent of choice of
filtration on V . For k = 1, P(V) := Gr(1, V) is by definition the projective ind-
space associated to V .

2. Projective and locally projective ind-varieties. An ind-variety X is
locally projective if it admits an ind-variety filtration (1.1) such that all the Xn

are projective varieties. An ind-variety X is projective if it can be embedded as
a closed ind-subvariety into the projective ind-space P(C∞). (Tjurin’s notion of
projectivity [26] is stronger, as it requires the existence of a finite codimensional
projective embedding.) Any projective ind-variety is proper and locally projective,
but the converse is not true. Below we introduce twisted projective ind-spaces
which are the simplest examples of locally projective, generically not projective,
ind-varieties.

Let Y be a proper Noetherian algebraic variety. A very ample invertible OY -
module LY (i.e., a locally free sheaf LY of OY -modules of rank 1 which is
generated by its global sections) determines a closed immersion of Y into the
projective space P := P(H0(Y;LY )∗), and LY is identified with the inverse image
under this immersion of the standard sheaf OP(1) on P. See [12, II, §5]. If X
is a proper ind-variety, consider an invertible OX-module LX and an ind-variety
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filtration (1.1) such that all inverse images LXn of LX are very ample and the
restriction maps H0(Xn;LXn) → H0(Xn−1;LXn−1 ) are surjective. Then the system
dual to the inverse system

· · · → H0(Xn;LXn) → H0(Xn−1;LXn−1 ) → · · · → H0(X0;LX0 ) → 0

is a direct system of injections, and LX defines a closed immersion of X into
P( lim−→H0(Xn;LXn)∗).

We define X to be a twisted projective ind-space if it admits a filtration (1.1)
such that Xn is a projective space for all n. To a twisted projective ind-space
we attach its twisting sequence {c1, c2, . . .}, where cn is the natural number that
denotes the first Chern class of the inverse image of OXn+1(1) on Xn. Any sequence
of natural numbers can be obtained as a twisting sequence.

PROPOSITION 2.1. A twisted projective ind-space X is projective if and only if its
twisting sequence stably equals the sequence {1, 1, . . .}, i.e. cn = 1 for n sufficiently
large.

Proof. If cn = 1 for all n > n0, then Xn0 ⊂ Xn0+1 ⊂ · · · is an ind-
variety filtration for X and, for any n ≥ n0, the invertible OXn-module OXn(1)
with Chern class 1 is the inverse image of a well-defined OX-module OX(1).
Then OX(1) establishes an isomorphism between X and the projective ind-space
P( lim−→H0(Xn;OXn(1))∗). Thus X itself is isomorphic to a projective ind-space.
Conversely, let the sequence c1, c2, . . . corresponding to X admit a subsequence
cn1 , cn2 , . . . with cnt ≥ 2 for all t. Assume that X is a closed ind-subvariety of a
projective ind-space P and consider the inverse images OP(1)|Xn of OP(1) on Xn,
where OP(1) := lim←−OPn(1). Denote the Chern class of OP(1)|Xn by Cn. Then, for

any s > k, Ck/Cs = ck+1ck+2 · · · cs. Therefore the positive integer Cn0 is divisible
by all products cn0+1cn0+2 · · · cn for any n > n0, which is an obvious contradiction.

We remark that the ind-grassmannian Gr(k, V) of Example 1.2(3) is pro-
jective, and that the classical Plücker embeddings induce a closed immersion
Plk: Gr(k, V) ↪→ P(

∧k V) where
∧k denotes kth exterior power.

3. Ind-groups and direct limit Lie algebras. An algebraic ind-group, or,
briefly, ind-group, is an ind-variety G with group structure such that the map

G× G → G, (g1, g2) �→ g1g−1
2

is a morphism of ind-varieties. By definition, an ind-group homomorphism is
a group homomorphism κ: G → K that is also an ind-variety morphism. An
ind-subgroup K of G is a subgroup K ⊂ G that is an ind-subvariety.
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We define a locally linear ind-group as an (affine) ind-variety G with an
ind-variety filtration

G0 ⊂ G1 ⊂ G2 ⊂ · · ·(3.1)

such that all the Gn are linear algebraic groups and all the inclusions are closed
immersions that are group morphisms. Clearly, every locally linear ind-group is
an affine ind-group but the converse is not true. An example of an affine ind-
group which is not locally linear is provided by the automorphism group Aut(Am)
of the m-dimensional affine space A

m; see [25]. We will only study connected
locally linear ind-groups, and all ind-groups considered below are assumed to
be connected and locally linear. By a slight abuse of language we refer to them
simply as ind-groups.

Let G be a (connected) ind-group. In this paper we define a parabolic
subgroup of G as an ind-subgroup P of G such that, for a suitable filtration
(3.1), Pn := P ∩ Gn is a parabolic subgroup of Gn for each n, and, in addition,
UPn−1 = UPn ∩ Pn−1, where UPi denotes the unipotent radical of Pi. Similarly,
a Borel subgroup of G is an ind-subgroup B of G such that, for a suitable fil-
tration (3.1), Bn := B ∩ Gn is a Borel subgroup of Gn for each n (the condition
on the unipotent radicals is automatic here), and a Cartan subgroup of G is an
ind-subgroup H of G such that, for a suitable filtration (3.1), Hn := H ∩ Gn is a
Cartan subgroup of Gn for each n. An element u ∈ G is unipotent if for some (or
equivalently, for any) ind-group filtration (3.1) u is unipotent in Gn whenever n
is large enough so that u ∈ Gn. The unipotent radical UG of G is defined to be
the largest closed normal ind-subgroup of G such that every element u is unipo-
tent. Finally, an ind-group G is locally reductive if we can choose the ind-group
filtration (3.1) so that each Gn is a reductive linear algebraic group. Whenever
G = lim−→Gn is locally reductive we will assume that the Gn are also reductive.

Throughout the rest of the paper we will consider ind-groups G with a fixed
filtration (3.1) of connected linear algebraic groups. We will assume without
explicit mention that the parabolic, Borel and Cartan subgroups of G are aligned
with respect to that filtration in the above sense.

PROPOSITION 3.2. Let G = lim−→Gn be a locally reductive ind-group and let
P = lim−→Pn be a parabolic ind-subgroup.

(i) The unipotent radical UP of P is well-defined, and UP = lim−→UPn.

(ii) The Chevalley semidirect product decompositions Pn = UPn×| Pred
n , into the

unipotent radical and a complementary reductive subgroup, can be chosen so that
Pred

n ⊂ Pred
n+1 for all n. Then P = UP×| Pred where Pred := lim−→Pred

n .

Proof. According to the definition, lim−→UPn is a well-defined ind-subgroup of
G, which is closed and normal in P since, for each n, UPn is closed and normal
in Pn. Furthermore, lim−→UPn is the largest closed normal subgroup of P in which
every element is unipotent, because the existence of a larger such subgroup would
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contradict the fact that UPn is the unipotent radical of Pn for every n. Therefore
lim−→UPn is the unipotent radical UP of P.

A theorem of Mostow [19, Theorem 7.1] ensures that the maximal reductive
subgroups of Pn+1 are just the reductive subgroups R such that Pn+1 = UPn+1×| R,
and that any two such groups R are conjugate by an element of UPn+1 . See [13,
VIII, Theorem 4.3] for a systematic development. Therefore, given a maximal
reductive subgroup Pred

n in Pn, we can choose Pred
n+1 to be any maximal reductive

subgroup of Pn+1 that contains it. This implies (ii), and the equality P = UP×| Pred

follows.

The Lie algebra of an ind-group G = lim−→Gn is the direct limit Lie algebra
g = lim−→ gn for the direct system

g0 ⊂ g1 ⊂ g2 ⊂ · · · ,(3.3)

where gn is the Lie algebra of Gn and the inclusions gn ⊂ gn+1 are the differentials
of the group immersions Gn ⊂ Gn+1. This Lie algebra is the tangent space T1G(G)
with its natural Lie algebra structure [17]. An ind-group homomorphism κ: G →
K induces a Lie algebra homomorphism dκ: g → k [17]. We shall consider direct
limit Lie algebras more generally, sometimes without regard to ind-groups. These
will always correspond to direct systems of injections of finite dimensional Lie
algebras.

Let g be a direct limit Lie algebra. In this paper we define a subalgebra p ⊂ g

to be a parabolic subalgebra if, for a suitable direct system {gn}, pn := p∩gn is a
parabolic subalgebra of gn for each n, and, in addition, upn−1 = upn ∩pn−1, where
upi denotes the nilpotent radical of pi. Similarly, a subalgebra b ⊂ g (respectively
h ⊂ g) is a Borel (respectively Cartan) subalgebra of g if, for a suitable direct
system {gn}, each bn := b ∩ gn (respectively hn := h ∩ gn) is a Borel subalgebra
(respectively Cartan subalgebra) of gn. (This definition of parabolic and Borel
subalgebras is more general than that of [8].) In the rest of the paper we will
automatically assume that g is equipped with a fixed filtration (3.3) and that all
parabolic, Borel or Cartan subalgebras we consider are aligned with respect to
that filtration in the above sense.

We define a direct limit Lie algebra g to be locally reductive if we have an
expression g = lim−→ gn where each of the gn is reductive. Whenever we express
a locally reductive Lie algebra g as lim−→ gn, it will be assumed that the gn are
reductive. The following Proposition is the Lie algebra analog of Proposition 3.2.
Part (ii) of this Proposition is an adaptation of a result of Baranov [2, Lemma 4.3].
We leave the proof to the reader.

PROPOSITION 3.4. Let g = lim−→ gn be a locally reductive direct limit Lie algebra
and let p be a parabolic subalgebra.

(i) up := lim−→ upn is a well-defined ideal in p. By definition, up is the nilpotent
radical of p.
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(ii) One can choose semidirect sum decompositions pn = upn⊂+ pred
n , into the

nilpotent radical of pn and a complementary reductive subalgebra, such that each
pred

n ↪→ pred
n+1. Then p = up⊂+ pred where pred := lim−→ pred

n .
(iii) Let g be the Lie algebra of a reductive ind-group G, P is a parabolic ind-

subgroup of G with Lie algebra p, and UP be the unipotent radical of P. Then up is
the Lie algebra of UP. Furthermore, if we choose pred

n to be the Lie algebra of Pred
n

of Proposition 3.2 (ii), then pred is the Lie algebra of Pred.

4. Root-reductive ind-groups and parabolic subgroups. Let g′ and g′′ be
Lie algebras with root decomposition, so g′ = h′⊕ (

⊕
α′∈∆′ (g′)α

′
) and g′′ = h′′⊕

(
⊕

α′′∈∆′′ (g′′)α
′′
). Here h′ and h′′ are respectively Cartan subalgebras, and ∆′ and

∆′′ are the corresponding root systems of g′ and g′′. A Lie algebra homomorphism
ϕ: g′ → g′′ is a root homomorphism, if ϕ(h′) ⊂ h′′ and ϕ maps every root space
(g′)α

′
into a root space (g′′)α

′′
, thus mapping ∆′ into ∆′′. To be precise one should

write ϕ: (g′, h′, ∆′) → (g′′, h′′, ∆′′), but we often leave this to be understood by
the reader. A root subalgebra of g′′ is the image of a root homomorphism. A
locally reductive direct limit Lie algebra g is root-reductive if it can be expressed
as a direct limit g = lim−→ gn where all gn are finite dimensional and reductive,
h = lim−→ hn is a Cartan subalgebra, and each injection gn ⊂ gn+1 carries hn into
hn+1 and is a root homomorphism. Finally, a locally reductive ind-group G is
root-reductive if its Lie algebra g is root-reductive.

Let g = lim−→ gn be a root-reductive direct limit Lie algebra, expressed as a
direct limit of root injections (gn, hn, ∆n) ↪→ (gn+1, hn+1, ∆n+1). Then g admits a
root decomposition with respect to the Cartan subalgebra h =

⋃
n hn. The root

system of (g, h) is ∆ =
⋃

n ∆n, and all root spaces gα are one dimensional. It is
easy to check (see [8]) that the direct limit W = lim−→Wn of the Weyl groups Wn

(considered as the groups generated by root reflections) of gn is well defined. In
this paper W is by definition the Weyl group of g. Let furthermore b ⊂ g be a
Borel subalgebra such that h ⊂ b. It determines a decomposition ∆ = ∆+ � ∆−

such that ∆− = −∆+, the positive roots ∆+ being the roots of b. We say that a
positive root α is b-simple if α cannot be decomposed as the sum of two positive
roots. A Weyl group element w ∈ W is of finite length with respect to b if w is a
(finite) product of simple root reflections, w = σα1 ◦ · · · ◦ σαk for some b-simple
roots α1, . . . ,αk. The length of the shortest such expression is by definition the
length of w with respect to b. We remark also that a subalgebra p of a root-
reductive direct limit Lie algebra g is parabolic if and only if pn is a parabolic
subalgebra of gn for each n, as in this case the condition on the nilpotent radicals
is automatically satisfied.

Root-reductive direct limit Lie algebras were introduced and studied in [8];
also see [20, Section 7]. They are closely related to the classical simple direct
limit Lie algebras a(∞), b(∞), c(∞) and d(∞) defined by letting gn be the
corresponding finite dimensional Lie algebra of rank n and by requiring that all
ϕn be root injections. The isomorphism class of the resulting direct limit Lie
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algebra does not depend on the injections ϕn [8]. Moreover, every simple infinite
dimensional root-reductive Lie algebra is isomorphic to one of the four classical
simple direct limit Lie algebras. (A further interesting fact is that b(∞) and d(∞)
are isomorphic as Lie algebras, see [3] and [22]. However, no such isomorphism
is a root isomorphism.)

We give now an explicit description of the classical simple ind-groups A(∞),
B(∞), C(∞), and D(∞) whose Lie algebras are respectively a(∞), b(∞), c(∞),
and d(∞).

A(∞). Here G = A(∞) = lim−→A(n − 1) where Gn = A(n − 1) = SL(n) and the

inclusion A(n− 1) ⊂ A(n) is given by g �→
(

g 0
0 1

)
. Fixing the Cartan subalgebra

h of all diagonal matrices in g = a(∞), we have ∆ = {εi − εj | i �= j} where
εi ∈ h∗ is given by εi( diag{t1, t2, . . .}) = ti. The Weyl group W consists of all
permutations of {εi} which leave all but finitely many εi fixed.

B(∞). Here G = B(∞) = lim−→B(n), where B(n) = SO(2n + 1) is the complex
special orthogonal group corresponding to the nondegenerate symmetric bilinear
form (u, v) = u1v1 +

∑n
1 (u2iv2i+1 + u2i+1v2i) on C

2n+1, and where the inclusion

B(n) ⊂ B(n + 1) is given by g �→
(

g 0 0
0 1 0
0 0 1

)
. Fixing the Cartan subalgebra h

of all diagonal matrices in g = b(∞), we have ∆ = {±εi,±εi ± εj | i �= j}
where εi ∈ h∗ is given by εi( diag{0, t1,−t1, t2,−t2, . . .}) = ti. The Weyl group
W consists of all signed permutations of {εi} which leave all but finitely many
εi fixed.

C(∞). Here G = C(∞) = lim−→C(n), where C(n) = Sp(2n) is the complex
symplectic group corresponding to the nondegenerate antisymmetric bilinear form
〈u, v〉 =

∑n
1 (u2i−1v2i−u2iv2i−1) on C

2n, and where the inclusion C(n) ⊂ C(n + 1)

is given by g �→
(

g 0 0
0 1 0
0 0 1

)
. Fixing the Cartan subalgebra h of all diagonal

matrices in g = c(∞), we have ∆ = {±2εi,±εi±εj | i �= j} where εi ∈ h∗ is given
by εi( diag{t1,−t1, t2,−t2, . . .}) = ti. The Weyl group W consists of all signed
permutations of {εi} which leave all but finitely many εi fixed.

D(∞). Here G = D(∞) = lim−→D(n), where D(n) = SO(2n) is the complex
special orthogonal group corresponding to the nondegenerate symmetric bilinear
form (u, v) =

∑n
1 (u2i−1v2i + u2iv2i−1) on C

2n, and where the inclusion D(n) ⊂

D(n + 1) is given by g �→
(

g 0 0
0 1 0
0 0 1

)
. Fixing the Cartan subalgebra h of all

diagonal matrices in g = d(∞), we have ∆ = {±εi ± εj | i �= j} where εi ∈ h∗

is given by εi( diag{t1,−t1, t2,−t2, . . .}) = ti. The Weyl group W consists of all
signed permutations of {εi} which leave all but finitely many εi fixed.
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If g is a root-reductive direct limit Lie algebra and k is a root subalgebra, we
set ∆ss

k := ∆k ∩ ( − ∆k) (where ∆k denotes the set of roots of k) and define kss to
be the Lie subalgebra of k generated by

⊕
α∈∆ss

k
kα.

The Lie algebra part of the following Proposition 4.1 reformulates [8, The-
orem 1]. It describes the relationship between an arbitrary root-reductive direct
limit Lie algebra and the classical simple direct limit Lie algebras. The group
level statements follow from the algebra level statements.

PROPOSITION 4.1. Let G be a root-reductive ind-group and g be its Lie algebra.
(i) g = gss⊂+ a for some abelian Lie subalgebra a ⊂ g. Furthermore, h = hss⊕a

where hss := h ∩ gss.
(ii) G has a connected closed normal ind-subgroup Gss with Lie algebra gss and

a connected abelian ind-subgroup A with Lie algebra a, and (g, a) �→ ga defines
a homomorphism of the semidirect product Gss×| A onto G with discrete kernel Z.
Furthermore H ∼= (Hss × A)/Z where Hss := H ∩ Gss has Lie algebra hss.

(iii) gss ∼=
⊕

t∈T gt where the gt are classical simple direct limit algebras

or simple finite dimensional Lie algebras. Gss ∼= (
f
×t∈T Gt)/Z1 where Gt is the

connected ind-group of G with Lie algebra gt and where Z1 is a discrete central
subgroup of Gss.

Example 4.2. Set GL(∞) := lim−→GL(n) where the inclusion GL(n) ↪→ GL(n+1)

is given by g �→
(

g 0
0 1

)
. Denote A := {diag {a, 1, 1, 1, . . .} | a ∈ C

×} ∼= C
×.

Then GL(∞) ∼= SL(∞)×| A under g �→ (gα−1,α) where α := diag {det (g), 1, 1,
1, . . .}.

Throughout this paper, when considering a root-reductive Lie algebra g we fix
a Cartan subalgebra h =

⋃
n hn corresponding to a fixed system of root injections

gn ⊂ gn+1. Without loss of generality we assume that any Borel or parabolic
subalgebras of g are chosen so that they contain h. Parabolic subgroups (including
Borel subgroups) of a root-reductive ind-group G will thus contain the Cartan
subgroup H =

⋃
n Hn with Lie algebra h. When we refer to A(∞), B(∞), C(∞),

D(∞) or GL(∞) (or to their Lie algebras) we will furthermore assume that the
Gn (or gn), as well as the Cartan subgroup H (respectively, the Cartan subalgebra
h) are chosen precisely as in our above explicit description.

We now define the parabolic subgroup wP needed in the statement of The-
orem 11.1 below. If P is a proper parabolic subgroup (containing H) of a root-
reductive ind-group G and p is the Lie algebra of P, then h+pss is a natural choice
for pred. Let w ∈ W be a Weyl group element. We define wp to be the parabolic
subalgebra of g generated by h and the h-root spaces gα for α ∈ ∆p ∪ w(∆pred ).
Then wP is the parabolic subgroup of G with Lie algebra wp. The subgroup wP
is not necessarily proper, as shown by the following example.
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Example 4.3. Let G = GL(∞), let p ⊂ gl(∞) be the (maximal) parabolic
subalgebra with roots {ε1 − εi | 2 ≤ i} ∪ {εi − εj | 2 ≤ i �= j}, and let P ⊂ G be
the corresponding parabolic subgroup. If w = σα for α = ε1 − ε2, then wP = G.

Next we describe the parabolic and Borel subalgebras of root-reductive direct
limit Lie algebras g. In view of Proposition 4.1 it suffices to describe parabolic
and Borel subalgebras for classical simple g. This gives also a description of
the parabolic and Borel subgroups of root-reductive ind-groups G, for if P is a
parabolic subgroup of G with Lie algebra p, then P = {g ∈ G | Ad(g)p = p}. The
following statement, which of course is standard in the finite dimensional case,
is a variation of Proposition 5 from [8].

PROPOSITION 4.4. Suppose either that g is a classical simple direct limit Lie
algebra or that g ∼= gl(∞). Let p ⊂ g be a parabolic subalgebra. Then, for some
index set Sp, there is an isomorphism of Lie algebras

p
red ∼=

⊕
s∈Sp

l
s,(4.5)

where each ls is a subalgebra of pred isomorphic to gl(n), to gl(∞), to a finite
dimensional simple Lie algebra, or to a classical simple direct limit Lie algebra.
Furthermore, if g is classical simple Sp can be chosen so that ls is isomorphic to
gl(n) or gl(∞) for any s ∈ Sp except for at most one index s0 ∈ Sp for which ls0 is
isomorphic to:

a(n) or a(∞) for g = a(∞); a(n), a(∞), b(n) or b(∞) for g = b(∞);

a(n), a(∞), c(n) or c(∞) for g = c(∞); a(n), a(∞), d(n) or d(∞) for g = d(∞).

For a classical simple g, there is a natural choice for the set Sp, and moreover
Sp is linearly ordered. Indeed, fix a Borel subalgebra b of p. For every n the
parabolic subalgebra pn = gn ∩ p determines “marked” nodes in the Dynkin
diagram of gn which correspond to simple roots α such that both α and −α
are roots of pn. Let Spn be the set whose elements are all the unmarked nodes
together with all connected components of marked nodes. We fix an order on the
nodes of the Dynkin diagram of gn which is increasing from left to right. For
g �= d(∞) this order is unique. For g = d(∞), if the two rightmost nodes are
both marked or both unmarked, we set the upper one to precede the lower one,
otherwise, we set the marked one to precede the unmarked one. This order on the
Dynkin diagram induces an order on Spn , and it is straightforward to check that
the orders on Spn are compatible for different n. Hence they determine a linear
order on the union

⋃
n Spn . In what follows, Sp will be fixed as the union

⋃
n Spn .

Note that the order on Sp depends only on p and not on b. Furthermore, if s0 ∈ Sp
and ls0 is not isomorphic to gl(∞), gl(n), a(∞) or a(n), then s0 is necessarily the
unique maximal element of Sp.
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5. Diagonal ind-groups and beyond. The class of root-reductive ind-
groups is part of the more general class of diagonal ind-groups. The correspond-
ing class of Lie algebras has been studied quite extensively; see [2], [4], [1] and
[20]. An essential difference between root-reductive direct limit Lie algebras and
general diagonal direct limit Lie algebras is that the latter need not admit Cartan
subalgebras that yield a root decomposition compatible with the direct limit. In
this paper we do not develop a complete Bott-Borel-Weil theory for diagonal
ind-groups.

Here is a diagonal ind-group that is not root-reductive. Consider the sequence
of closed immersions

GL(2n) ↪→ GL(2n+1), g �→
(

g 0
0 g

)
,

and let GL(2∞) denote the corresponding ind-group. Its Lie algebra gl(2∞) is a
diagonal direct limit Lie algebra [1]. If H = lim−→Hn where Hn denotes the diagonal
matrices in GL(2n), then H is a Cartan subgroup of GL(2∞) and gl(2∞) has no
root decomposition with respect to h.

Let ∆n = {εi,n − εj,n | 1 ≤ i, j ≤ 2n} be the root system of gl(2n). The
Borel subalgebras of gl(2∞) containing h are in bijective correspondence with
the systems of triangular decompositions ∆n = ∆+

n � ∆−
n satisfying the following

compatibility condition: if εi,n−εj,n ∈ ∆+
n , then εi,n+1−εj,n+1 ∈ ∆+

n+1 and ε2n+i,n+1−
ε2n+j,n+1 ∈ ∆+

n+1. One can give a similar description of all parabolic subalgebras
containing h in terms of compatible systems of partitions ∆n = ∆+

n � ∆0
n � ∆−

n .
Here is another interesting ind-group. Its Lie algebra was introduced in [1].

Fix k ∈ N, k > 1. Let the κn: PGL(k2n
) ↪→ PGL(k2n+1

) be the unique closed
immersions of algebraic groups for which the diagrams

GL(k2n
) Ad−→ GL(k2n+1

)
prn ↓ ↓ prn+1

PGL(k2n
)

κn
↪→ PGL(k2n+1

)

are commutative, where prn and prn+1 are the natural projections. We define the
reductive ind-group PGLAd(k2∞) := lim−→PGL(k2n

). If Hn ⊂ PGL(k2n
) denotes the

subgroup of diagonal matrices, then κn(Hn) ⊂ Hn+1 and H := lim−→Hn is a Cartan

subgroup of PGLAd(k2∞).
A Borel subgroup B ⊂ PGLAd(k2∞) is determined by the Bn := B∩PGL(k2n

).
Given Bn, we describe the Borel subgroups of PGL(k2n+1

) that contain Hn+1 and
κn(Bn), providing recursive descriptions of all Borel subgroups of PGLAd(k2∞)
that contain H. Note first that specification of Bn+1 is the same as specifica-
tion of a pr−1

n+1(Hn+1)-invariant maximal flag in the natural representation space
of GL(k2n+1

), and that natural representation space is the adjoint representation
space for GL(k2n

). Hence, a pr−1
n+1(Hn+1)-invariant maximal flag in the natural



968 I. DIMITROV, I. PENKOV, AND J. WOLF

representation of GL(k2n+1
) is determined by a linear order on root basis of gl(k2n

),
i.e. a basis

{xα}α∈∆n ∪ {hi}1≤i≤k2n(5.1)

consisting of root vectors xα and of a basis {hi}1≤i≤k2n of hn, where ∆n denotes the

root system of gl(k2n
). The Borel subgroup Bn determines a partition ∆n = ∆+

n�∆−
n

and thus also the following partial order > on ∆n: for α,β ∈ ∆+
n , α > β whenever

the bn-height of α is greater then the bn-height of β; α > β for any α ∈ ∆+
n

and any β ∈ ∆−
n ; and finally, for α,β ∈ ∆−

n , α > β whenever −β > −α.
Now, since ∆n is naturally identified with the set {xα}α∈∆n , we can consider all
extensions of this partial order on ∆n to a linear order > on the root basis (5.1)
such that xα > hi > xβ for all i whenever α ∈ ∆+

n and β ∈ ∆−
n . Any such

extension determines a unique pr−1
n+1(Hn+1)-invariant maximal flag in the natural

representation and thus a unique Borel subgroup of PGL(k2n+1
). One can check

that the Borel subgroups obtained in this way are precisely the Borel subgroups
of PGL(k2n+1

) that contain Hn+1 and κn(Bn).

Part II. Representations.

6. Rational and pro-rational G-modules. Let G = lim−→Gn be an ind-group.
We define a G-module to be a vector space V endowed with Gn-module structures
ϕn: Gn × V → V (C-linear in V) such that ϕn+1|Gn×V = ϕn for all n. The maps
ϕn define the structure map ϕ: G × V → V of the G-module V . We say that V
is a rational G-module if in addition the dimension of V is countable and ϕ is
a morphism of ind-varieties, where V has the canonical ind-variety structure of
Example 1.2. An equivalent definition of a rational G-module: V is isomorphic
to the limit of a direct system of injections of rational finite dimensional Gn-
modules ϕn: Gn × Vn → Vn. Every rational G-module is locally finite, in other
words, ϕ(Gn×Cv) generates a finite dimensional submodule for every v ∈ V and
every n.

Any rational module over a reductive algebraic group is completely reducible.
Thus, if G is locally reductive and V = lim−→Vn is a rational G-module, then V is
a completely reducible Gn-module for every n.

The category of rational G-modules is too restrictive for our purposes. For
example the dual of a rational G-module is no longer rational (as dim V∗ is in
general uncountable). We define a G-module U to be pro-rational if it is the dual
of a rational G-module. This is equivalent to saying that U is isomorphic to the
inverse (or projective) limit lim←−Un of a system

· · · ψn+1−→ Un
ψn−→ Un−1

ψn−1−→ · · · ψ1−→ U0 −→ 0
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of finite dimensional rational Gn-modules Un, where ψn is a rational Gn−1-module
surjection for each n. The G-module structure on lim←−Un: if u = ( . . . , uk, uk−1, . . . ,
u0) ∈ lim←−Un, so each un ∈ Un and ψn(un) = un−1 for n ≥ 1, and if gm ∈ Gm,
then

gm ·u := ( . . . , gm ·uk, gm ·uk−1, . . . , gm ·um,ψm(gm ·um), . . . ,ψ1 ◦ · · ·◦ψm(gm ·um))

where k > m.

7. g-modules. If G is an ind-group and V is a rational G-module with
structure map ϕ: G × V → V , then V is a module for the Lie algebra g of G
with structure map dϕ: g × V → V . We say that a g-module V is rationally
G-integrable (or, briefly, G-integrable) if it is obtained by this construction from
a rational G-module structure on V . As G is assumed to be connected, that G-
module structure is unique. Furthermore, a G-integrable g-module V necessarily
is locally finite. By definition this means that V is locally finite as gn-module for
every n, in other words, dimU(gn) · v < ∞ for every v ∈ V and every n. (In
some works on Lie algebra representations, in particular in [15] and [8], the term
“integrable” is a synonym for various versions of local finiteness. This is not
acceptable in the present paper because such representations need not integrate
from the Lie algebra to the ind-group.) It is straightforward to verify that a
countable-dimensional g-module V is locally finite if and only if V is isomorphic
to a direct limit lim−→Vn of finite dimensional gn-modules Vn. Unless the contrary is
stated explicitly, in what follows we will assume automatically that an expression
of a locally finite g-module as lim−→Vn corresponds to a direct system of injections
Vn ↪→ Vn+1.

In the rest of this section, G is a locally reductive ind-group, g is its Lie
algebra, and p is a parabolic subalgebra of g. We study irreducible locally finite
p-modules and parabolically generated irreducible g-modules.

PROPOSITION 7.1. Let p be a parabolic subalgebra of g. Let E be an irreducible
locally finite p-module and let up denote the nilpotent radical of p. Then up ·E = 0.

Proof. Suppose that ξ · e �= 0 for some ξ ∈ up and e ∈ E. As E is irreducible
there exists u ∈ U(p) such that u · ξ · e = e. Let n be sufficiently large so that
ξ, u ∈ U(pn). Then E′

n := upn ·En is a proper pn-submodule of En := U(pn) ·e such
that e /∈ E′

n. But as ξ · e ∈ E′
n, the equality u · ξ · e = e is contradictory. Therefore

ξ · e cannot be nonzero.

COROLLARY 7.2. If P is a parabolic subgroup of G and E is an irreducible
rational P-module, then the unipotent radical UP of P acts trivially on E.

Let E be an irreducible p-module as above. We introduce the induced g-
module

Ṽ(E) := U(g)⊗U (p) E.
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If p is a Borel subalgebra then dim E = 1, i.e., E = Cµ for some µ ∈ h∗, and
Ṽ(Cµ) is called a Verma module. In general, dim E = ∞, but nevertheless the
following proposition holds. It is very similar to Theorem 2.1 in [1] and therefore
we omit the proof.

PROPOSITION 7.3. Let E be an irreducible locally finite p-module. Then Ṽ(E)
has a unique maximal proper g-submodule IE.

An important corollary of Proposition 7.3 is that Ṽ(E) has a unique irreducible
quotient module V(E) := Ṽ(E)/IE. We call V(E) the irreducible g-module parabol-
ically generated by E. Any g-module V which is generated by a p-submodule iso-
morphic to E has the g-module V(E) as a quotient. Indeed, V admits an obvious
surjection σ̃: Ṽ(E) → V whose kernel is necessarily a g-submodule of IE. Thus
σ̃ induces a g-surjection s: V = (Ṽ(E)/ ker σ̃) → V(E) = Ṽ(E)/IE.

In general, V(E) is not locally finite, and therefore is not rationally G-
integrable. The problem of characterizing, for a fixed p, all irreducible locally
finite p-modules E for which V(E) is G-integrable, is a generalization of the prob-
lem of computing all dominant integral weights for a finite dimensional reductive
group. The following Proposition reduces this problem in an explicit way to the
structure of E. The case when p is a Borel subalgebra of a classical simple linear
Lie algebra was studied in [1] and [21].

PROPOSITION 7.4. Let E be an irreducible locally finite p-module. Then V(E) is
G-integrable if and only if E is P-integrable and, for any expression E = lim−→En,
V(En) is a finite dimensional gn-module for each n. When these conditions hold, each
V(En) is a well-defined Gn-module and we have a canonical G-module isomorphism
V(E) ∼= lim−→V(En).

Proof. First, if E is P-integrable and V(En) is finite dimensional for each n, the
standard theory of connected algebraic groups applied to Gn implies that V(En)
is Gn-integrable for any n. Furthermore, lim−→V(En) is a rational G-module which
admits a P-module injection i: E ↪→ lim−→V(En) such that i(E) generates lim−→V(En)
as a G-module. This is sufficient to conclude that lim−→V(En) = V(E). Indeed, one
need only check that the g-surjection s: lim−→V(En) → V(E) induced by i is an
isomorphism. Assuming that ker s �= 0 we find an n such that ker s ∩ V(En) �= 0.
Then, as V(En) is an irreducible gn-module, V(En) ⊂ ker s. Therefore ker s∩ i(En)
�= 0, which contradicts the injectivity of i.

Conversely, if V(E) is G-integrable, E must be P-integrable. Indeed, if E =
lim−→En, then for each n En is a pn-submodule of the finite dimensional Gn-
submodule of V(E) generated by En. Therefore, again the theory of connected
algebraic groups implies that En is necessarily Pn-integrable. Thus lim−→En is
a P-integrable p-module. To complete the proof we need to show also that
V(En) is finite dimensional for each n (and is thus a Gn-module) whenever V(E)
is G-integrable. This follows from a standard geometric version of Frobenius
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Reciprocity and we present this argument in Section 12 in the proof of Theo-
rem 11.1(i).

In the following, we say that an irreducible rational P-module E is dominant
if V(E) is a locally finite g-module, and thus is a well-defined irreducible rational
G-module. An integral weight λ ∈ h∗ is B-dominant for a Borel subgroup B ⊂ G
if the one dimensional B-module Cλ of weight λ is dominant.

We conclude this Section by recalling some basic definitions for weight mod-
ules. Let g be root-reductive. A g-module V is a weight module if it has an
h-module decomposition

V =
⊕

µ∈h∗
Vµ,(7.5)

where h is the fixed Cartan subalgebra of g and Vµ := {v ∈ V | h · v = µ(h)v for
any µ ∈ h∗}. The support supp V of a weight module V is {µ ∈ h∗ | Vµ �= 0}.
A weight g-module V is finite if the support of V is finite in the direction of
every root of g, i.e., if for every µ ∈ supp V and every α ∈ ∆, the intersection
{µ+kα | k ∈ Z+}∩ supp V is finite. See [8]. A finite g-module is locally finite. In
the following we will consider finite g- and p-modules, the latter being defined
as p-modules which are weight modules (i.e., which satisfy (7.5)) and which are
finite as pred-modules. Also, we define a rational G- or P-module to be finite if
it is finite respectively as a weight g- or p-module.

8. Irreducible rational G-modules. Let G be a reductive ind-group. An
irreducible rational G- (or P-) module V is called locally irreducible if V = lim−→Vn

for some direct system of irreducible rational (finite dimensional) Gn- (or Pn-)
modules Vn. Our starting point in this section is that an irreducible rational G-
module V is not necessarily locally irreducible. Here are some examples.

Example 8.1. For every n fix a pair of nonisomorphic irreducible finite di-
mensional Gn-modules Un, Wn such that Un, Wn ≺ Un+1, and Un, Wn ≺ Wn+1,
where here the sign ≺ indicates the existence of a Gn-module injection. Extend
the diagonal injection Un ↪→ Un ⊕ Un to a Gn-module injection ηU

n : Un ↪→
Un+1 ⊕ Wn+1. Similarly, fix a Gn-module injection ηW

n : Wn ↪→ Un+1 ⊕ Wn+1.
Define ηn: Un ⊕ Wn ↪→ Un+1 ⊕ Wn+1 by ηn := ηU

n ⊕ ηW
n . Let Vn := Un ⊕ Wn.

Then the G-module V = lim−→Vn is an irreducible rational G-module that is not
locally irreducible. It is irreducible as a consequence of Proposition 8.3 below;
see Example 8.4(1). It is not locally irreducible because, for every nonzero v ∈ V
and for sufficiently large n, the Gn-submodule of V generated by v is isomorphic
to Un ⊕Wn, and thus is reducible.

Here is an explicit choice of the Gn-modules Un and Wn. Let G = GL(∞).
Let Un and Wn be the respective irreducible GL(n)-modules with highest weights
λn := ε1 − (n− 1)εn and µn := ε1 − nεn. The standard branching rule [9] ensures
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that Un, Wn ≺ Un+1, and Un, Wn ≺ Wn+1. For this particular choice of Un and
Wn the resulting module V is not a weight module. Other choices of Un and
Wn yield irreducible weight GL(∞)-modules that are irreducible but not locally
irreducible.

Now we introduce an essential invariant of any locally finite g-module V .
Represent V as the limit of a direct system of finite dimensional semisimple
gn-modules,

0 −→ V1
ϕ1−→ · · · ϕn−1−→ Vn

ϕn−→ Vn+1
ϕn+1−→ · · · ,(8.2)

where the ϕi need not be injective. Each Vn decomposes canonically as a direct
sum of its isotypic components, Vn =

⊕
i Vi

n, and we fix decompositions Vi
n =⊕

k Vi,k
n into simple gn-modules. To each Vi,k

n we assign an abstract vector v i,k
n

and define a vector space V i
n :=

⊕
k Cv i,k

n . When the composition of ϕn|Vi
n

with

the projection Vn+1 → Vj
n+1 is nonzero, we define a linear map

αi,j: Vi
n → Vj

n+1 by αi,j(v
i,k
n ) :=

∑
k′

v j,k′

n+1,

where k′ runs over the simple components of Vj
n+1 onto which ϕ(Vi,k

n ) projects
nontrivially. The collection {V i

n,αi,j} is, by definition, a multiplicity diagram DV

of V . DV is a commutative diagram of finite dimensional vector spaces.
A subdiagram of a multiplicity diagram DV = {V i

n,αi,j} is a collection D′ =
{(V i

n)′,α′
i,j} of subspaces (V i

n)′ ⊂ V i
n and linear maps α′

i,j: (V i
n)′ → (V j

n+1)′, where
α′

i,j is simply the restriction of αi,j to (V i
n)′. A subdiagram D′ of DV is stably

proper if there is no index n0 such that (Vi
n)′ = Vi

n for all n ≥ n0 and all i.
Finally, we call a multiplicity diagram DV minimal (and call the direct system
(8.2) minimal) if no stably proper subdiagram D′ of DV is a multiplicity diagram
of V .

The following is a straightforward but important proposition.

PROPOSITION 8.3. Let V be a locally finite g-module.
(i) If V is finitely generated (in particular, if V is irreducible), V admits a

minimal multiplicity diagram DV.
(ii) If V admits a multiplicity diagram which has no nonzero stably proper

subdiagrams, then V is irreducible.
(iii) If V is irreducible and DV is a minimal multiplicity diagram of V, then DV

has no nonzero stably proper subdiagrams.

Proof. (i) Fix a finite dimensional subspace V̄ ⊂ V which generates V as a g-
module and set Vn to be the gn-module generated by V̄ . Then V = lim−→Vn is a min-
imal direct system of injections, and DV is a minimal multiplicity diagram of V .

(ii) If DV admits no nonzero stably proper subdiagram, V is necessarily
generated by each “isotypic vector”, i.e., by each v ∈ V such that v is in the
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image of some v ′ ∈ Vi
n. This is sufficient to conclude that V is irreducible as any

nonzero g-submodule of V intersects nontrivially with some nonzero gn-isotypic
component of V .

(iii) A nonzero stably proper subdiagram D′ of DV is immediately checked
to give rise to a nonzero g-submodule V ′ ⊂ V such that D′ = DV′ . As DV is
minimal, V ′ is necessarily a proper submodule. Contradiction.

Example 8.4.
(1) If V = lim−→Vn, Vn = Un ⊕ Wn as in the beginning of this section (in

particular as in Example 8.1), then DV has the form

V1
1 → V1

2 → · · · → V1
n → · · ·

↗↘ ↗↘ ↗↘ ↗↘
V2

1 → V2
2 → · · · → V2

n → · · · ,

all spaces V i
n being one dimensional and all maps being isomorphisms. Clearly,

DV is a minimal multiplicity diagram which has no nonzero stably proper subdi-
agrams. Therefore V is irreducible.

(2) Let Vn := gl(n), V1
n
∼= a(n − 1), V2

n
∼= C, and let Vn ↪→ Vn+1 be the Lie

algebra injection induced by the inclusion GL(n) ↪→ GL(n + 1) of Example 4.2.
Then V ∼= gl(∞) and DV has the form

V1
1 → V1

2 → · · · → V1
n → · · ·

↗ ↗ ↗ ↗
V2

1 → V2
2 → · · · → V2

n → · · · ,

where all spaces V i
n are one dimensional and all maps are isomorphisms. DV is a

minimal multiplicity diagram of V . Its upper row is a stably proper subdiagram
which gives rise to the gl(∞)-submodule a(∞) ⊂ gl(∞).

Next we establish an important fact about the structure of parabolically gen-
erated irreducible locally finite g-modules which are weight modules.

PROPOSITION 8.5. Let E be an irreducible dominant p-module which is a weight
module. Assume furthermore that p contains no entire simple component gt of gss

(see Proposition 4.1). Then:
(i) E is a finite p-module and V(E) is a finite g-module;
(ii) both E and V(E) are locally irreducible.

Proof. Proposition 6 in [8] implies that, for any t′ ∈ T , V(E) is a finite h+gt′-
module if and only if supp V(E) is finite in the direction of some root α ∈ ∆t′ .
As V(E) is immediately seen to be finite in the direction of any root α ∈ ∆
with gα ⊂ up, and as p does not contain an entire simple component gt, V(E)
is necessarily a finite g-module. In particular, supp E is finite in the direction of
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every root of pred, i.e., E is a finite p-module. Statement (i) is proved. Statement
(ii) is a direct corollary of (i) and of Theorem 6(i) in [8]; the latter says that a
finite module is locally irreducible.

The following example shows that local irreducibility in Proposition 8.5 really
requires that E be a weight module.

Example 8.6. Let G = GL(∞), let P be as in Example 4.3, and let V be the
G-module from Example 8.1. Set E := {v ∈ V | g · v = v for all g ∈ UP}. Then
a direct verification shows that E is an irreducible, but not locally irreducible,
P-module and V = V(E).

Concluding this section, we note that a locally irreducible rational G-module
does not have to be a weight G-module. Here are some examples.

Example 8.7. Assume that G is root-reductive and fix an irreducible finite
dimensional Gn-module Vn for every n, such that Vn+1, considered as a Gn-
module, contains at least two irreducible components V ′

n and V ′′
n isomorphic to

Vn whose supports are disjoint as subsets of supp Vn+1. Define the Gn-injection
Vn ↪→ Vn+1 to be the composition of the diagonal injection of Vn into V ′

n ⊕ V ′′
n

and the injection of V ′
n ⊕ V ′′

n into Vn+1. Then V := lim−→Vn is a locally irreducible
rational G-module which is not a weight module.

For an explicit example, let G = A(∞) and let Vn be the irreducible Gn-
module with highest weight λn := −ε1 − 2ε2 − · · · − nεn. Set λ′n+1 := λn+1 and
λ′′n+1 := −2ε1 − 3ε2 − · · · − (n + 1)εn − εn+1. Both λ′n+1 and λ′′n+1 are extremal

weights of Vn+1. The Gn-submodules of Vn+1 generated by V
λ′n+1
n+1 and V

λ′′n+1
n+1 are

isomorphic to Vn and can be chosen as V ′
n and V ′′

n .

9. Combinatorics of locally irreducible locally finite p-modules. Here we
introduce and study certain combinatorial invariants of locally irreducible locally
finite p-modules. Those invariants appear naturally in the geometric study of these
modules. Fix a finite dimensional reductive Lie algebra k, a Cartan subalgebra
hk and a parabolic subalgebra pk with hk ⊂ pk ⊂ k. Denote the roots of k by
∆k . Given a Borel subalgebra hk ⊂ bk ⊂ pk , we have a partition ∆k = ∆+

k � ∆−
k

.
As usual, ρbk denotes the half-sum of the elements of ∆+

k , and rk k stands for
the semisimple rank of k. If Ek is an irreducible finite dimensional pk-module,
we call Ek regular if λ + ρbk is a regular weight of k, where λ is the bk-highest
weight of Ek . To any Ek we assign an integer �(Ek), its length, as follows. If Ek
is regular then �(Ek) is the length of the unique Weyl group element w for which
w(λ + ρbk ) is bk-dominant. If Ek is not regular, we define �(Ek) inductively. If
rk k = 0, �(Ek) := 0. For rk k > 0, we set �(Ek) := max{�(Ek′) | Ek′ ≺ Ek}, where
the maximum is taken over all modules Ek′ ≺ Ek of all proper root subalgebras
k′ of k.
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LEMMA 9.1. Let k ∼= a(k−1) and suppose that s ∼= a(s−1) is a root subalgebra
of k, or let k ∼= gl(k) and suppose that s ∼= gl(s) is a root subalgebra of k. Set ps :=
pk ∩ s, and fix an irreducible finite dimensional pk-module Ek and an irreducible
ps-module Es ≺ Ek. Then:

(i) �(Es) ≤ �(Ek);
(ii) if �(Es) = �(Ek) and both Es and Ek are regular, there exists a chain of

proper root subalgebras s ⊂ ks ⊂ · · · ⊂ km ⊂ · · · ⊂ kk = k together with a chain
of regular irreducible pk ∩ km-modules Em,

Es ≺ · · · ≺ Em ≺ · · · ≺ Ek.

Proof. (i) It suffices to prove that �(Es) ≤ �(Ek) when both Ek and Es are
regular. If Ek is not regular, the inequality follows from the definition of �(Ek). If
Ek is regular but Es is not regular, then �(Es) = �(Es′) for some regular Es′ ≺ Es,
and the inequality �(Es′) ≤ �(Ek) gives �(Es) ≤ �(Ek).

Assume ∆k = {εi − εj | 1 ≤ i �= j ≤ k} and ∆pk = ({εi − εj | 1 ≤ i <
j ≤ k}) ∪ (

⋃
1≤q≤a{−(εi − εj) | pq−1 + 1 ≤ i < j ≤ pq}) for 1 ≤ p1 < p2 <

· · · < pa = k with p0 = 0. Then ∆s = {εi − εj | i �= j ∈ Is} for some subset
Is = {r1, . . . , rs} of Ik := {1, . . . , k} where r1 < · · · < rs. Fix a Borel subalgebra
bk ⊂ pk such that ∆+

k = {εi−εj | 1 ≤ i < j ≤ k} and [pq−1 +1, pq]∩{r1, . . . , rs} =
{pq−1 +1, . . . , pq−1 +bq} where bq is the cardinality of [pq−1 +1, pq]∩{r1, . . . , rs}.
Define the chain of sets Is ⊂ · · · ⊂ Im ⊂ · · · ⊂ Ik by Im+1 := Im ∪ {im} where im
is the smallest element of Ik\Im for s ≤ m < k. This determines a chain of root
subalgebras s = ks ⊂ · · · ⊂ km ⊂ · · · ⊂ kk = k, km

∼= a(m − 1) (resp. km
∼= gl(m))

with ∆km = {εi − εj | i �= j ∈ Im}. Set ∆m := ∆km and ρm := 1
2

∑
γ∈∆+

k
∩∆m γ.

We define now a chain of irreducible p ∩ km-modules Em,

Es ≺ · · · ≺ Em ≺ · · · ≺ Ek,

by means of their bk ∩ km-highest weights λm. Es and Ek are given. Expand λk

and λs as λk = λ1
kε1 + · · · + λk

kεk and λs = λr1
s εr1 + · · · + λrs

s εrs . Determine the
integers s = i0 < · · · < iq < · · · < ia = k by the property that {1, 2, . . . , pq} ⊂ Iiq
but {1, 2, . . . , pq} �⊂ Iiq−1, and set

λiq := λ1
kε1 + · · · + λ

pq
k εpq + λ

rq
s εrq + · · · + λrs

s εrs ,(9.2)

where rq is the smallest integer in Is such that rq > pq. Let iq−1 < m < iq.

Then λiq−1 = λ1
kε1 + · · · + λ

pq−1

k εpq−1 + λ
pq−1+1
s εpq−1+1 + · · · + λ

pq−1+bq
s εpq−1+bq +

λ
rq
s εrq + · · · + λrs

s εrs and λiq = λ1
kε1 + · · · + λ

pq−1

k εpq−1 + λ
pq−1+1
k εpq−1+1 + · · · +

λ
pq−1+(pq−pq−1)
k εpq−1+(pq−pq−1) + λ

rq
s εrq + · · · + λrs

s εrs . The standard branching rule
gives

λ
pq−1+j
k ≥ λ

pq−1+j
s ≥ λ

pq−1+j+((pq−pq−1)−bq)
k(9.3)
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for 1 ≤ j ≤ bq. For 1 ≤ j ≤ bq + (m− iq−1), set

λ
pq−1+j
m :=

 λ
pq−1+j
k if j ≤ m− iq−1,

min{λpq−1+j
k ,λ

pq−1+j−(m−iq−1)
s } if j > m− iq−1.

(9.4)

Put λm := λ1
kε1 + · · · + λ

pq−1

k εpq−1 + λ
pq−1+1
m εpq−1+1 + · · · + λ

pq−1+bq+(m−iq−1)
m

εpq−1+bq+(m−iq−1) + λ
rq
s εrq + · · · + λrs

s εrs , and define Em as the finite dimensional
irreducible pk ∩ km-module with bk ∩ km-highest weight λm. Using (9.3) and (9.4),
one verifies that Em ≺ Em+1 for iq−1 ≤ m < iq.

Note that the weights λm satisfy

if α,β ∈ ∆+
k ∩ ∆m and (λm + ρm,α) = (λm + ρm,β) = 0, then α + β �∈ ∆m.(9.5)

Indeed, if m = iq for some 1 ≤ q ≤ a, then (9.5) is immediate because (λm +
ρm,α) = 0 with α ∈ ∆+

k ∩ ∆m implies α = εx − εy for some 1 ≤ x ≤ pq and
pq < y ≤ k. Assume now iq−1 < m < iq. If α,β ∈ ∆+

k ∩ ∆m and (λm + ρm,α) =
(λm+ρm,β) = 0, one verifies (possibly after interchanging α and β) that α = εx−εy

and β = εy − εz, where 1 ≤ x ≤ pq−1, pq−1 < y ≤ pq and pq < z ≤ k. Then,
using the definition of λm (i.e., formula (9.4)) one checks that, λy

m = λy
k gives

(λm + ρm,α) = (λk + ρk ,α) = 0, i.e., a contradiction with the regularity of Ek.
Similarly, λy

m = λ
y−(m−iq−1)
k gives (λm +ρm,β) = (λs +ρs,β) = 0, which contradicts

regularity of Es. This establishes (9.5).
To complete the proof of (i), for each m we will construct an injection

ιm: Rm → Rm+1, where Rm := {α ∈ ∆+
k ∩ ∆m | (λm + ρm,α) < 0}. Then

ι := ιk−1◦· · ·◦ιs: Rs → Rk will be an injection. Hence �(Es) = |Rs| ≤ |Rk| = �(Ek)
where | · | denotes cardinality.

Let Im+1 = {c1, . . . , cm+1} where c1 < · · · < cm+1, and Im = {c1, . . . , ci′−1,
ci′+1, . . . , cm+1} where pq0−1 + 1 ≤ ci′ ≤ pq0 . In view of the choice of Borel
subalgebra bk we have bj = j for 1 ≤ j ≤ i′, and bi′ = i′ is the largest element
of Im+1 ∩ [pq0−1 + 1, pq0 ]. Set λm+1 + ρm+1 =: u′1εc1 + · · · + u′m+1εcm+1 , λm + ρm =:
v1εc1 + · · · + vi′−1εci′−1

+ vi′+1εi′+1 + · · · + vm+1εcm+1 , and ui := u′i − 1
2 . Then, from

(9.2), (9.3) and (9.4),

ui = vi for 1 ≤ i ≤ pq−1,

upq−1+1 ≥ vpq−1+1 > · · · > ui′−1 ≥ vi′−1 > ui′ ,

ui = vi − 1 for i′ < i ≤ m + 1.

(9.6)

Furthermore, the definition of Im and the regularity of Es and Ek, imply that
v1, . . . , vpq−1 are distinct and so are vi′+1, . . . , vm+1.

Let α ∈ Rm. If α ∈ Rm+1, we set ιm(α) := α. Assume that α = εcx−εcy �∈ Rm+1.
Then vx−vy < 0 and ux−uy ≥ 0. Now (9.6) implies x < i′ and i′ < y. If pq−1 < x,
we have ui′ < vx < vy = uy + 1, and hence (λm+1 + ρm+1, εci′ − εcy) = ui′ − uy < 0.
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In this case we set ιm(α) := εci′ − εcy . If x ≤ pq−1, then vx = ux = uy = vy − 1.
If there exists pq−1 + 1 ≤ z < i′ with vz ≤ uy ≤ uz, we have (λm+1 + ρm+1, εcx −
εcz) = ux − uz ≤ 0. Notice that (9.5) rules out the equality uy = uz, and hence
(λm+1+ρm+1, εcx−εcz) = ux−uz < 0. Furthermore, (λm+ρm, εcx−εcz) = vx−vz ≥ 0,
and thus εcx − εcz �∈ Rm. In that case we set ιm(α) := εcx − εcz . Finally, if there
is no z as above, (λm+1 + ρm+1, εcx − εci′ ) + (λm+1 + ρm+1, εci′ − εcy) = ux − uy = 0,
and therefore at least one of the terms in the sum is nonpositive. On the other
hand, (9.5) again rules out the vanishing of either term, and thus one of them is
positive and the other one negative. In this last case we set ιm(α) to be the root
(εcx − εci′ or εci′ − εcy) corresponding to the negative term. The construction of
ιm ensures that it is an injection, and the proof of (i) is complete.

(ii) We claim that when �(Es) = �(Ek) and both Es and Ek are regular, each
Em (as constructed in the proof of (i)) is also regular. Indeed, let R′

m := {α ∈
∆+
k ∩ ∆m | (λm + ρm,α) ≤ 0}. Then there is an injection ι′m: R′

m → R′
m+1 whose

construction is almost identical to the one above. Notice that Rm ⊂ R′
m, and

Rs = R′
s, Rk = R′

k. The assumption �(Es) = �(Ek) implies now that both ι: Rs → Rk

and ι′ := ι′k−1 ◦· · ·◦ι′s: R′
s → R′

k are bijections. Hence |R′
m| = �(Es) = �(Ek) = |Rm|

for every s ≤ m ≤ k, and thus Rm = R′
m. This means that Em is regular.

The following proposition is crucial in the proof of Theorem 11.1. Note the
connection with the notions of cohomological finiteness in [20, Section 4].

PROPOSITION 9.7. Let g = lim−→ gn be root-reductive, p = lim−→ pn be a parabolic
subalgebra of g, and E = lim−→En be a locally irreducible locally finite p-module.

(i) Either lim �(En) = ∞, or there exist q0 and m such that �(En) = q0 for every
n ≥ m.

(ii) Assume that �(En) = q0 for n ≥ m and that En is regular for infinitely
many n. Then there exist a Borel subalgebra b ⊂ p, an integer m′ ≥ m, and an
element w ∈ W of length q0 with respect to b, such that µn := w(λn + ρn) − ρn is
a bn-dominant weight for n ≥ m′, where bn := b ∩ gn and ρn := ρbn . Furthermore,
En is regular for every n ≥ m′.

Proof. A direct verification shows that it is enough to prove the proposition
under the assumption that g is simple. More precisely, if gt for t ∈ T are as in
Proposition 4.1(iii), then En =

⊗
t∈T Et

n, Et
n being irreducible finite dimensional

pt
n := p ∩ gt-modules. Using the observation that �(En) =

∑
t∈T �(E

t
n), one notes

that the claims of the proposition follow directly from the same claims for all
pt-modules Et = lim−→Et

n. If gt is finite dimensional there is nothing to prove, so
in the rest of the proof we will assume that g = a(∞), b(∞), c(∞), or d(∞).

We start by introducing notation. Recall decomposition (4.5) and the fact
that Sp is an ordered set. Consider the ordered set S̄p := Sp ∪ {−∞,∞}, where
−∞ < s < ∞ for every s ∈ Sp. Note that as an ordered set S̄p is isomorphic
to a subset of R ∪ {−∞,∞}. In the following, s0 denotes the unique element
of Sp for which ls0 �∼= gl(p) or gl(∞); if such an element does not exist, we set
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s0 := ∞ ∈ S̄p and ls0 := 0. For s1 ≤ s2 ∈ S̄p, let ∆[s1,s2]
n denote the subset of ∆n

consisting of all integral linear combinations of simple roots of bn whose nodes
in the Dynkin diagram of gn correspond to elements s ∈ Spn with s1 ≤ s ≤ s2. Put
∆[s1,s2] :=

⋃
n ∆[s1,s2]

n . Let (g[s1,s2])′ be the Lie subalgebra of g generated by all root
spaces gα for α ∈ ∆[s1,s2] (see §4) and let g[s1,s2] := (g[s1,s2])′+(

⊕
s1≤s≤s2

ls). When
s1 = s2 = s we often write simply gs instead of g[s1,s2]. Set also p[s1,s2] := p∩g[s1,s2].
Next, define the locally irreducible locally finite p[s1,s2]-module E[s1,s2] as follows.
Fix a Borel subalgebra b′ of p, and let λn be the b′n-highest weight of En. Let
E[s1,s2]

n be the irreducible p[s1,s2]
n -module with b′n ∩ p[s1,s2]

n -highest weight λn|h[s1,s2]
n

,

where h[s1,s2]
n := h ∩ g[s1,s2]

n . The modules E[s1,s2]
n form a direct system and we

put E[s1,s2] := lim−→E[s1,s2]
n . We define similarly the Lie algebras g(s1,s2), g(s1,s2] and

g[s1,s2), their respective parabolic subalgebras p(s1,s2), p(s1,s2] and p[s1,s2), and the
corresponding modules E(s1,s2), E(s1,s2], and E[s1,s2). Throughout the proof, an upper
index [s1,s2], (s1,s2), [s1,s2) or (s1,s2] always refers to a corresponding algebra, module
or Weyl group. For example, h(s1,s2)

n = h ∩ g(s1,s2)
n , W [s1,s2] is the Weyl group of

g[s1,s2], Ws is the Weyl group of gs = g[s,s], etc. Finally, we set Rn := {α ∈ ∆+
n |

(λn + ρn,α) < 0}.
Here is the idea of the proof. Assume lim−→ �(En) �= ∞. For g = a(∞), (i)

follows from Lemma 9.1(i). Applying Lemma 9.1(ii) to the p[s′,s′′]
n -module E[s′,s′′]

n
for various s′ ≤ s′′, we are able locate the roots α ∈ Rn for n large enough.
Namely, we show that there exist finitely many pairs s′i ≤ s′′i such that g

(s′i ,s
′′
i )

is finite dimensional and every α ∈ Rn belongs to some ∆[s′i ,s
′′
i ]. Therefore we

can find finitely many finite dimensional subalgebras gi ∼= a(pi) (or gl(pi)) of g

with gi ⊃ g
(s′i ,s

′′
i ) so that Rn ⊂

⋃
∆gi . Now we fix a Borel subalgebra b̄ of

⊕
gi

and choose b so that every simple root of b̄ is a simple root of b. The desired
element w exists and is of the claimed length because

⊕
gi is finite dimensional.

The regularity of all En now follows easily from Lemma 9.1(ii). For g �= a(∞),
we consider two cases depending on whether gs0 is finite or infinite dimensional.
If gs0 is infinite dimensional, we first apply the proposition to g(−∞,s0) ∼= gl(∞),
gl(p), a(∞), or a(p) to obtain w1 ∈ W . We then show that no sign changes are
involved in the Weyl group elements that make λn + ρn dominant, and find an
element w2 ∈ W which involves only reflections along roots of g which are not
roots of g(−∞,s0) or gs0 . The desired element w then equals w2 ◦ w1. If gs0 is
finite dimensional, we first apply the proposition to a natural subalgebra ḡ ⊂ g,
ḡ ∼= a(∞) to obtain w1 ∈ W which does not involve sign changes. The element
w1 maps the weights λn + ρn into weights νn + ρn, where νn are represented in
coordinates by decreasing sequences of (not necessarily positive) integers or half-
integers. We then find an element w2 which maps νn + ρn into dominant weights.
The element w := w2 ◦ w1 ∈ W then satisfies the proposition. The details are
presented separately for g = a(∞) and g �= a(∞).

The case g = a(∞). Statement (i) follows immediately from Lemma 9.1(i).
We now prove (ii). Recall that ∆ = {εi − εj | 1 ≤ i �= j} and ∆n = {εi − εj |
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1 ≤ i �= j ≤ n}. The parabolic subalgebra p fixes a partition N = �s∈SpIs such
that ∆[s1,s2] = {±(εi − εj) | i ∈ Is′1 , j ∈ Is′2 , where s1 ≤ s′1 ≤ s′2 ≤ s2}. The Borel
subalgebra b′ fixes a linear order <b′ on N: i <b′ j if εi−εj ∈ ∆+. Notice also that
each of the Lie algebras g[s1,s2], g(s1,s2], g[s1,s2) and g(s1,s2) is isomorphic to gl(∞),
gl(p), a(∞), or a(p) for some p. Fix an infinite sequence n1 < n2 < · · ·, ni ∈ N,
such that Enk is a regular module of length q0 for every k. Lemma 9.1(ii) implies
the existence of root subalgebras g′n

∼= a(n − 1) of g and regular g′n-modules
E′

n such that g′nk
= gnk and E′

nk
= Enk for n, nk ≥ m′′ := n1. Denote by λ′n the

b′n-highest weight of E′
n and set λ′n := (λ′n)1ε1 + · · · + (λ′n)nεn.

First we show that rank g(s′,s′′) < q0 whenever (λ′m′′ +ρm′′ ,α) < 0 for α = εi−
εj ∈ ∆+

m′′ with i ∈ Is′ , j ∈ Is′′ . For n ≥ m′′, let in be the <b′-maximal element of
Is′∩{1, . . . , n} and jn be the <b′-minimal element of Is′′∩{1, . . . , n}. We prove by
induction on n that (λ′n +ρn,αn) < 0 for αn := εin −εjn . When n = m′′, (ρm′′ ,α) ≥
(ρm′′ ,αm′′) and (λ′m′′ ,α) ≥ (λ′m′′ ,αm′′), thus (λ′m′′+ρm′′ ,αm′′) ≤ (λ′m′′+ρm′′ ,α) < 0.
Assume (λ′n + ρn,αn) < 0. If n + 1 �∈ Is for any s′ < s < s′′, then (ρn+1,αn+1) =
(ρn,αn), and by the branching rule (λ′n+1)in+1 ≤ (λ′n)in , (λ′n+1)jn+1 ≥ (λ′n)jn . Hence
(λ′n+1,αn+1) ≤ (λ′n,αn), which implies (λ′n+1 + ρn+1,αn+1) ≤ (λ′n + ρn,αn) < 0. If
n + 1 ∈ Is for some s′ < s < s′′, then (ρn+1,αn+1) = (ρn,αn) + 1. Furthermore,
(λ′n+1)in+1 = (λ′n)in , (λ′n+1)jn+1 = (λ′n)jn , and (λ′n+1,αn+1) = (λ′n,αn). Thus (λ′n+1 +
ρn+1,αn+1) = (λ′n + ρn,αn) + 1 ≤ 0. But since E′

n is regular, (λ′n+1 + ρn+1,αn+1) �= 0
and then (λ′n+1 + ρn+1,αn+1) < 0. The inequality (λ′n + ρn,αn) < 0 implies now
rank g(s′,s′′) < q0 as the height of αn equals rank (g′n)(s′,s′′) + 1.

We show next by induction on q0, that there exists a sequence s′1 ≤ s′′1 ≤ s′2 ≤
s′′2 ≤ · · · ≤ s′r ≤ s′′r ∈ S̄p such that, when n ≥ m′′, �((E′

n)[s′1,s′′1 ])+· · ·+�((E′
n)[s′r ,s′′r ]) =

q0 and rk (g′n)(s′i ,s
′′
i ) ≤ q0 for every 1 ≤ i ≤ r. If q0 = 0 we set r := 0. Assume

q0 > 0. Let, as above, (λ′m′′ +ρm′′ ,α) < 0 for α = εi−εj ∈ ∆+
m′′ with i ∈ Is′ , j ∈ Is′′

and s′ < s′′. Then �((E′
n)(−∞,s′]) + �((E′

n)[s′,s′′]) + �((E′
n)[s′′,∞)) ≤ q0 for every

n ≥ m′′. If �((E′
n)(−∞,s′]) + �((E′

n)[s′,s′′]) + �((E′
n)[s′′,∞)) = q0, we apply the in-

duction assumption to the p(−∞,s′]-module E(−∞,s′] to get s′1, s′′1 , . . . , s′r′−1, s′′r′−1,
and to the p[s′′,∞)-module E[s′′,∞) to get s′r′+1, s′′r′+1, . . . , s′r, s′′r . By setting s′r :=
s′, s′′r := s′′, we obtain a sequence with the desired properties. If �((E′

n)(−∞,s′]) +
�((E′

n)[s′,s′′]) + �((E′
n)[s′′,∞)) < q0, there exists β = εi′ − εj′ ∈ ∆+

m′′ where i′ ∈
Is̄′ , j′ ∈ Is̄′′ with (λ′m′′ + ρm′′ ,β) < 0 and �((E′

n)[s̄′,s̄′′]) > �((E′
n)[s′,s′′]). Then

�((E′
n)(−∞,s̄′]) + �((E′

n)[s̄′,s̄′′]) + �((E′
n)[s̄′′,∞)) ≤ q0 and we again consider two

cases. For �((E′
n)(−∞,s̄′]) + �((E′

n)[s̄′,s̄′′]) + �((E′
n)[s̄′′,∞)) = q0, the desired sequence

is constructed as above by replacing s′ and s′′ by s̄′ and s̄′′ respectively. If
�((E′

n)(−∞,s̄′])+�((E′
n)[s̄′,s̄′′])+�((E′

n)[s̄′′,∞)) < q0, we replace in a similar manner s̄′

and s̄′′ by ¯̄s′ and ¯̄s′′ respectively. The process is finite because q0 ≥ �((E′
n)[¯̄s′,¯̄s′′]) >

l((E′
n)[s̄′,s̄′′]) > �((E′

n)[s′,s′′]).
Fix a sequence s′1 ≤ s′′1 ≤ s′2 ≤ s′′2 ≤ · · · ≤ s′r ≤ s′′r ∈ S̄p as above. Let

m′ = nk0 ≥ m be such that g
(s′i ,s

′′
i )

m′ = g
(s′i ,s

′′
i ) for 1 ≤ i ≤ r, rk g

s′i
m′ = min{rk g

s′i , 2q0}
and rk g

s′′i
m′ = min{rk g

s′′i , 2q0}. Choose a Borel subalgebra b ⊂ p with the property
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that whenever rk g
s′i > 2q0 (respectively, rk g

s′′i > 2q0), there are q0 elements
xq0

s′i
>b · · · >b x1

s′i
∈ Is′i (resp. y1

s′′i
<b · · · <b yq0

s′i
∈ Is′′i ) such that x >b xq0

s′i
(resp.

yq0
s′′i
<b y) for any other x ∈ Is′i (resp. y ∈ Is′′i ). Let λn = λ1

nε1 + · · · + λn
nεn be the

bn-highest weight of En.
Fix n ≥ m′. If α ∈ Rm′ , then α = εx−εy for x ∈ Isx , y ∈ Isy . The construction

of the sequence s′1, s′′1 , . . . , s′r, s′′r and the definition of b implies s′i ≤ sx < sy ≤ s′′i
for some i, 1 ≤ i ≤ r. If sx = s′i , there are at most q0 elements of Is′i <b-
greater than x, and if sy = s′′i , there are at most q0 elements of Is′′i <b-smaller
than y. Furthermore, the choice of b gives (ρn,α) = (ρm′ ,α) and the branching
rule implies λx

n ≤ λx
m′ and λy

n ≥ λy
m′ . Hence (λn,α) = λx

n − λy
n ≤ λx

m′ − λy
m′ =

(λm′ ,α) < 0, and thus α ∈ Rn. This establishes the inclusion Rm′ ⊂ Rn. In
particular Rm′ = Rnk whenever nk ≥ m′. If, on the other hand, β ∈ ∆+

n\Rn, fix
k so that nk ≥ n. If β = εx − εy, with x ∈ Isx , y ∈ Isy , assume that x is the jxth

largest element (with respect to <b) of Isx ∩ {1, . . . , n}, and y is the jyth smallest
element (with respect to <b) of Isy ∩{1, . . . , n}. Let x′ be the jxth largest element
of Isx ∩ {1, . . . , nk}, and let y′ be the jyth smallest element of Isy ∩ {1, . . . , nk}.
Set β′ := εx′ − εy′ . The assumption β′ ∈ Rnk would give β = β′, and hence
β ∈ Rn, which contradicts the choice of β. Therefore (λnk + ρnk ,β′) > 0. Notice

that (ρn,β) = (ρnk ,β′), and, by the branching rule, λx
n ≥ λx′

nk
, λy

n ≤ λy′
nk . Thus

(λn,β) = λx
n − λy

n ≥ λx′
nk
− λy′

nk = (λnk ,β′). Now it is clear that (λn + ρn,β) ≥
(λnk + ρnk ,β′) > 0. This proves that En is regular. Hence |Rn| = |Rm′ | which
yields Rn = Rm′ . The latter combined with the observation that every α ∈ Rm′

has the same height in ∆n for any n ≥ m′ implies also the existence of w ∈ W
as required in (ii).

The case g �= a(∞). The cases g = b(∞), c(∞) and d(∞) are treated in an
almost identical way. We present the details for g = b(∞) only.

In the rest of the proof g = b(∞). We establish (i) and (ii) simultaneously.
If there are only finitely many regular modules among En, (i) follows from the
definition of �(En) (as En ≺ En+1 and hence �(En) ≤ �(En+1) whenever En+1

is not regular) and (ii) is an empty statement. Assume that infinitely many En

are regular and lim �(En) �= ∞. Then there exists q0 and an infinite sequence
n1 < n2 < · · ·, nk ∈ N, such that Enk is a regular module of length q0 for every k.
Indeed, lim �(En) �= ∞ implies the existence of q′0 and a sequence {n′k} for which
�(En′k

) = q′0. If there are infinitely many regular modules among En′k
, set q0 := q′0

and take {nk} to be the subsequence of {n′k} corresponding to regular modules
Enk . If there are only finitely many regular modules among En′k

, then �(En) ≤ q′0
for every n, as there is n′k > n with En′k

not regular, and hence �(En) ≤ �(En′k
) = q′0

by the definition of �(En′k
). In particular, �(En) ≤ q′0 for every regular En, and

thus, for some q0 ≤ q′0, �(En) = q0 for infinitely many regular En. Fix q0 and a
sequence n1 < n2 < · · · so that Enk is a regular module of length q0 for every k.
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Recall that ∆ = {±εi,±εi ± εj | 1 ≤ i �= j} and ∆n = {±εi,±εi ± εj | 1 ≤ i �=
j ≤ n}. The Borel subalgebra b′ determines the sign function

sgn: N → {±1}, sgn (i) = 1 if and only if εi ∈ ∆+

and a linear order <b′ on N: i <b′ j if sgn (i)εi − sgn ( j)εj ∈ ∆+. The parabolic
subalgebra p determines a partition N = �s∈SpIs such that ∆[s1,s2] = {±( sgn (i)εi−
sgn ( j)εj) | i ∈ Is′1 , j ∈ Is′2 , where s1 ≤ s′1 ≤ s′2 ≤ s2} and ∆s0 = {±εi,±εi ± εj |
i �= j ∈ Is0}.

Assume first that gs0 is infinite dimensional and let rk gs0
m0

> q0 for some
m0. Then (λnk + ρnk , sgn (i)εi) > 0 for 1 ≤ i ≤ nk and nk ≥ m0. Indeed,
if i ∈ Is0 , (λnk , sgn (i)εi) ≥ 0 because λnk |hs0

nk
is a b′s0

nk
-dominant weight, and

(ρnk , sgn (i)εi) > 0. If, on the other hand, i �∈ Is0 , then sgn (i)εi ∈ ∆nk is of height
greater than q0, and (λnk + ρnk , sgn (i)εi) < 0 would imply �(Enk ) > q0. Notice
that �(E(−∞,s0)

n ) ≤ �(En), and hence the proposition applied to p(−∞,s0) ⊂ g(−∞,s0)

and the p(−∞,s0)-module E(−∞,s0) yields integers m′
1 ≥ m0 and q1, an element

w1 ∈ W (−∞,s0), and a Borel subalgebra b̃′ of p(−∞,s0). Let b′′ be a Borel subalge-
bra of p for which b′′∩p(−∞,s0) = b̃′ and b′′∩ps0 = b′∩ps0 . Since W (−∞,s0) ⊂ W ,
w1 has length q1 respect to b′′. Set νn := w(λn + ρn) − ρn and let w1En be the
irreducible w1pn-module with b′′n -highest weight νn. We claim that there exists a
w1p-module of the form w1E := lim−→n≥m′

1

w1En. Indeed, the existence of w1E follows

from Theorem 11.1(iii) below for G = A(∞) and E(∞,s0), see the discussion after
that Theorem. (As the proof of Theorem 11.1 for G = A(∞) does not depend on
the case G = B(∞), C(∞) or D(∞), there is no contradiction in applying Theorem
11.1(iii) here.) Clearly w1Enk is regular of length q0 − q1 for every nk ≥ m′

1.
Notice that b′ may be fixed from the very beginning so that there are at least

q0 − q1 <b′∩ps0 -smallest elements in Is0 . Since b′′ ∩ ps0 = b′ ∩ ps0 , b′′ has the
same property. Let y1 <b′′ · · · <b′′ yq0−q1 be the q0 − q1 <b′′-smallest elements
of Is0 . Observe that, for nk ≥ m′

1, (νnk + ρb′′nk
,α) < 0 with α ∈ ∆b′′ implies

that α = sgn (x)εx − sgn (yi)εyi for some x �∈ Is0 and 1 ≤ i ≤ q0. Denote by lk,i

the number of indices x for which (νnk + ρb′′nk
, sgn (x)εx − sgn (yi)εyi) < 0. The

definition of the length of w1Enk implies
∑

1≤i≤q0−q1
lk,i = q0−q1, and dominance

of νnk |hs0
nk

gives lk,1 ≥ lk,2 ≥ · · · ≥ lk,q0−q1 . On the other hand, the branching rule

implies lk′,i ≥ lk,i for k′ ≥ k. Combining these facts about lki , we obtain the
existence of l1, . . . , lq0−q1 with lk,i = li whenever nk ≥ m′

1. It is now easy to see
that there is a Borel subalgebra b of w1p for which there are l1 <b-largest elements
of N\Is0 and b ∩ gs0 = b′′ ∩ gs0 . Fix such a b and denote by x1 >b · · · >b xl1 the
l1 <b-largest elements of N\Is0 . Let m′ = nk0 ≥ m′

1 be larger than x1, . . . , xl1 . For
nk ≥ m′ the element wnk ∈ Wnk which makes νnk + ρbnk

dominant permutes only
x1, . . . , xl1 , y1, . . . , yq0−q1 . Furthermore, the equality lk,i = li implies that wnk does
not depend on k. Set w2 := wnk . Finally, one observes that each En is regular,
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as otherwise (νn + ρbn ,α) = 0 would imply (νnk + ρbnk
,α) < 0 for nk < n and

(νnk + ρbnk
,α) > 0 for nk > n, i.e., �(w1Enk ) > �(w1Enk0

) for nk > n0. Hence
µn = w(λn + ρn) − ρn is a regular bn-dominant weight for w := w2 ◦ w1. This
completes the proof when gs0 is infinite dimensional.

Assume that gs0 is finite dimensional. Since the details in this case are similar
to the details in the previous case, we will only outline the argument. Fix m0 with
gs0

m0
= gs0 . Set ∆̄ := {sgn (i)εi− sgn ( j)εj | i �= j}. Let ḡ denote the root subalgebra

of g generated by the root spaces gα for α ∈ ∆̄. Note that ḡ ∼= a(∞). If p̄ := p∩ ḡ

and b̄′ := b′ ∩ ḡ, then p̄ ⊂ ḡ is a parabolic subalgebra and b̄′ ⊂ p̄ is a Borel
subalgebra. Let Ēn be the irreducible p̄n-module with b̄′n-highest weight λn. For
n ≥ m0, λn|hs0

n
= λm0 |hs0

m0
and thus Ē := lim−→ Ēn is a well-defined p̄-module where

the injections Ēn ↪→ Ēn+1 are the restrictions of the injections En ↪→ En+1. Since
�(Ēnk ) ≤ �(Enk ), the proposition applied to the p̄-module Ē yields integers m1

and q1, an element w1 ∈ W̄ ⊂ W , and a Borel subalgebra b̄′′ of p̄. Let b′′ be
the Borel subalgebra of p with roots ∆b̄′′ ∪ {sgn (i)εi, sgn (i)εi + sgn ( j)εj | i �= j}.
Exactly as in the case when gs0 is infinite dimensional, there exists a well-defined
w1 p̄-module w1Ē := lim−→

w1Ēn. Set νn := w1(λn + ρn) − ρn. The weights νn are b̄′′-

dominant but not necessarily b′′-dominant: for nk ≥ m1, at most q0 − q1 of the
integers (νn + ρn, sgn (i)εi) are negative. On the other hand, the branching rule
for the modules w1Ēn implies that if ln is the number of integers i for which
(νn + ρn, sgn (i)εi) < 0, then {ln}n≥m1 is a nondecreasing bounded sequence. Fix
m2 ≥ m1 such that ln = lm2 for n ≥ m2.

As in the case when gs0 is infinite dimensional, there exists a Borel subalgebra
b of p such that the order <b̄ admits q′ largest elements x1 >b̄ · · · >b̄ xq′ . Let
m′ := nk0 ≥ m2 be larger than x1, . . . , xq′ . If gq′ is the Lie algebra generated by
gα for α ∈ {±εxi ,±εxi ± εxj | 1 ≤ i �= j ≤ q′}, then, for nk ≥ m′, the element wnk

that makes νnk + ρnk dominant belongs to Wq′ . We then notice that wnk does not
depend on k, and set w2 := wnk . Furthermore, by comparing En with both Enk′

and Enk′′ for m′ ≤ nk′ ≤ n ≤ nk′′ , we conclude that En is regular for n ≥ m′.
Finally, µn = w(λn + ρn) − ρn is a regular bn-dominant weight for w := w2 ◦ w1.
The proof is complete.

Part III. Cohomology.

10. Homogeneous spaces and G-sheaves. Let P be a parabolic subgroup
of a locally reductive ind-group G. For each n the map ψn: Xn = Gn/Pn ↪→
Gn+1/Pn+1 = Xn+1 is a closed immersion of smooth proper varieties, and the
union is the proper ind-variety

X = G/P :=
⋃
n

Gn/Pn =
⋃
n

Xn.
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The translation action τ : G×X → X is an ind-variety morphism. In other words,
it endows X with the structure of a G-ind-variety.

Example 10.1.
(1) Let V be a vector space of countably infinite dimension and let k ∈ N.

Choose an ordered basis in V and use it to identify V with the natural repre-
sentation of G = A(∞). Let P be the stabilizer in G of the span of the first k
vectors in the basis of V . Then P is a maximal parabolic subgroup of G and
the G-ind-variety G/P is identified with the Grassmannian Gr(k, V) introduced
in Example 1.2.

(2) Let G = GL(2∞) and P = lim−→Pn, where Pn is the parabolic subgroup
of GL(2n) containing the diagonal matrices and such that the roots of its Lie
subalgebra pn are

{εi − εj | 1 ≤ i < j ≤ 2n} ∪ {ε2s+1 − ε2s | 1 ≤ s ≤ 2n−2}.

Then Gn/Pn is the flag space Fl(1, 3, . . . , 2n − 1, C2n
) of maximal flags of odd

dimensional subspaces in C
2n

. The ind-variety G/P is the union
⋃

n Gn/Pn where
the closed immersions σn: Gn/Pn ↪→ Gn+1/Pn+1 are described as follows. Ac-
cording to the construction of G, the natural representation C

2n+1
of Gn+1 has a

canonical Gn-module decomposition as C
2n ⊕ C

2n
. The map

σn: Fl(1, 3, . . . , 2n − 1, C2n
) ↪→ Fl(1, 3, . . . , 2n+1 − 1, C2n ⊕ C

2n
)

sends a flag F1 ⊂ F3 ⊂ · · · ⊂ F2n−1 in C
2n

to the flag F1 ⊕ {0} ⊂ F3 ⊕ {0} ⊂
· · · ⊂ F2n−1 ⊕ {0} ⊂ C

2n ⊕ F1 ⊂ C
2n ⊕ F3 ⊂ · · · ⊂ C

2n ⊕ F2n−1 in C
2n ⊕ C

2n
.

(3) Let G = PGLAd(k2∞) and B be any Borel ind-subgroup as described
in Section 5. Then G/B =

⋃
n Gn/Bn, where for each n Gn/Bn is the space

Fl(1, 2, . . . , k2n − 1, Ck2n
) of maximal flags in C

k2n
. The Gn-equivariant closed

immersion

θn: Fl(1, 2, . . . , k2n − 1, Ck2n

) ↪→ Fl(1, 2, . . . , k2n+1 − 1, Ck2n+1

)

is characterized by the property that the maximal flag in C
k2n

stabilized by the
pre-image of Bn in GL(k2n

) is sent to the pr−1
n (Hn+1)-invariant maximal flag in

C
k2n+1

whose stabilizer in GL(k2n+1
) is pr−1

n+1(Bn+1), see Section 5.

The structure sheaf OX of X is the inverse limit sheaf lim←−OXn of the structure
sheaves OXn of Xn. If F is a sheaf of OX-modules, or an OX-module for short,
we define F to be a G-homogeneous OX-module (= G-linearized OX-module),
or simply a G-sheaf, if for every g ∈ G an OX-module isomorphism ϕg is
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given, ϕg: g̃∗(F) → F , so that ϕg′ ◦ ϕg′′ = ϕg′◦g′′ for all g′, g′′ ∈ G. Here

g̃: X → X stands for the composition X ' g × X
τ|g×X−→ X. If F is G-sheaf, then

its total cohomology H·(X;F) :=
⊕

n≥0 Hn(X;F) is a graded G-module, i.e.,
for each n Hn(X,F) is endowed with a G-module structure. The structure map
G×Hn(X;F) → Hn(X;F) is the map (g, f ) �→ ϕHn

g ( f ), where ϕHn
g : Hn(X;F) →

Hn(X;F) is the linear automorphism of Hn(X;F) induced by ϕg.
If E = lim−→En is a rational P-module, there are certain natural G-sheaves on

X associated with E. Note first that, for each n, we have a closed Gn-equivariant
immersion

En := (Gn ×Pn En) ↪→ (Gn+1 ×Pn+1 En+1) =: En+1

of the homogeneous vector bundles of finite rank associated respectively with
En and En+1. These immersions determine a G-ind-variety E := lim−→En, the G-
homogeneous vector bundle over X associated to E. We define OX(E) to be the
sheaf of local sections of E → X. It is a locally free G-sheaf of OX-modules,
and rank OX(E) = dim E. In particular, dim E can be infinite and, when P/UP

has no noncommutative finite dimensional factors, we have either dim E = 1 or
dim E = ∞.

Another natural G-sheaf associated with E is OX(E∗). As noted earlier, E∗ is
a pro-rational P-module, and there is a well-defined inverse system

· · · → OXn+1(E∗
n+1) → OXn(E∗

n) → · · · → 0,

OXn(E∗
n) being the sheaf of local sections of En. The sheaf OX(E∗) is defined

now as the inverse limit lim←−OXn(E∗
n) with the OXn(E∗

n) viewed as sheaves of OX-
modules supported on Xn. OX(E∗) is a locally free G-sheaf of OX-modules, and
rank OX(E∗) = dim E∗. Note that dim E∗ is uncountable whenever dim E = ∞.

The following Proposition is a key tool for calculating the cohomology groups
of OX(E∗) and OX(E). In order to formulate it we need a definition. Let

· · · νn+1−→ Mn
νn−→ Mn−1

νn−1−→ · · · ν2−→ M1 −→ 0(10.2)

be an inverse system of vector spaces. If m > n, νn,m denotes the map νn+1◦· · ·◦νm

from Mm to Mn. For each n let M̂n := lim←−m>n
Mn/νn,m(Mm), the completion of Mn

with respect to its filtration by the subspaces νn,m(Mm), m > n. Then the value
of the first right derived functor of lim←− on the system (10.2) is the vector space

lim←−
(1) Mn :=

∏
n (M̂n/Mn).

PROPOSITION 10.3. Let · · · ζn+1−→ Fn
ζn−→ Fn−1

ζn−1−→ · · · ζ2−→ F1 → 0 be an
inverse system of sheaves of locally free OX-modules.
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(i) For every q ≥ 0 there is a canonical exact sequence

0 → lim←−
(1)Hq−1(X;Fn) → Hq(X; lim←−Fn) → lim←−Hq(X;Fn) → 0,(10.4)

where (for q = 0) lim←−
(1) H−1(X;Fn) := 0.

(ii) If for some q > 0 the inverse system of vector spaces

· · ·
ζ

q
n+1−→ Hq(X;Fn)

ζ
q
n−→ Hq(X;Fn−1)

ζ
q
n−1−→ · · · −→ 0

satisfies the Mittag-Leffler condition, i.e., if for every n the filtration on Hq(X;Fn)
by the subspaces ζq

n+1,m(Hq(X;Fm)) is eventually constant, then there is a canonical
isomorphism

Hq(X; lim←−Fn) ∼= lim←−Hq(X;Fn).(10.5)

(iii) If the Fn’s are Gn-sheaves and ζn are morphisms of Gn−1-sheaves, then
(10.4) is an exact sequence of G-modules. In particular, if the Mittag-Leffler con-
dition is satisfied, (10.5) is a G-module isomorphism.

Proof. The statements (i) and (ii) are adaptations of [11, Theorem 4.5] to our
situation, and we will not reproduce the proofs here. See also [10, OIII , 13.3.1],
which is the original source for Theorem 4.5 in [11].

To prove (iii), note that the canonical surjection

Hq(X; lim←−Fn) → lim←−Hq(X;Fn)(10.6)

is induced (by universality of lim←−Hq(X;Fn)) by the maps Hq(X; lim←−Fn) −→
Hq(X;Fn), which in turn are induced by the canonical maps lim←−Fn −→ Fn. As
the latter are morphisms of Gn-sheaves, the former is a compatible system of maps
of Gn-modules, and this implies (iii). (In this way the space lim←−

(1) Hq−1(X;Fn) is
equipped with the G-module structure defined by the surjection (10.6) by means
of the exact sequence (10.4).)

If E is a rational P-module then Proposition 10.3 applies to both sheaves
OX(E∗) and OX(E). Consider OX(E∗) first. We have OX(E∗) = lim←−OXn(E∗

n),
and here the Mittag-Leffler condition is automatic because dim Hq(X;OXn(E∗

n)) =
dim Hq(Xn;OXn(E∗

n)) <∞ for all q and all n. To apply Proposition 10.3 to OX(E)
note that OX(E) = lim←−OXn(E), where OXn(E) is the sheaf of local sections of the
Gn-homogeneous vector bundle Gn ×Pn E → Xn associated to E. In this case the
cohomology groups Hq(Xn;OXn(E)) are in general infinite dimensional, and there-
fore the Mittag-Leffler condition is not automatic. In fact we will see in Section
16 below that the Mittag-Leffler condition fails for some quite straightforward
irreducible P-modules E.



986 I. DIMITROV, I. PENKOV, AND J. WOLF

11. Statement of main results on cohomology of OX(E∗). In this and
the following sections, G is a fixed locally reductive ind-group, P is a fixed
parabolic subgroup of G, X = G/P, and E is an irreducible rational P-module.
We assume further that E is expressed as lim−→En for a minimal direct system of Pn-
module injections En ↪→ En+1. This is possible by Proposition 8.3(i). Throughout
Sections 11 through 15 we write ζn for the canonical restriction map OXn(E∗

n) →
OXn−1 (E∗

n−1).
These are our main results on the cohomology of the sheaf OX(E∗).

THEOREM 11.1. (i) For the group G and the P-module E specified above,
(a) Hq(X;OX(E∗)) is a pro-rational G-module, and more precisely, for ev-

ery integer q ≥ 0, there is a canonical G-module isomorphism Hq(X;OX(E∗)) =
lim←−Hq(Xn;OXn(E∗

n));

(b) H0(X;OX(E∗)) �= 0 if and only if E is dominant. In this case there is a
canonical G-module isomorphism H0(X;OX(E∗)) = V(E)∗.

(ii) Under the additional assumption that E is locally irreducible, Hq0 (X;OX

(E∗)) �= 0 for at most one integer q0 ≥ 0. If q0 is such an integer then Hq0 (X;OX(E∗))
= V∗ for some locally irreducible rational G-module V.

(iii) Suppose that G is root-reductive and that E is irreducible but not nec-
essarily locally irreducible. Then Hq0 (X;OX(E∗)) �= 0 for at most one q0, and
Hq0 (X;OX(E∗)) �= 0 if and only if Hq0 (Xn;OXn(E∗

n)) �= 0 for large enough n. Fur-
thermore, whenever Hq0 (X;OX(E∗)) �= 0, there is a Borel subgroup B of P and an
element w ofW of length q0 with respect to b such that Hq0 (X;OX(E∗)) ∼= V(wE)∗,
where wE is an irreducible wP-module unique up to isomorphism.

12. Proof and discussion of (i) and (ii).
Proof of (i). Statement (a) is a direct corollary of Proposition 10.3(ii) and

(iii). To prove (b) note first that, precisely as in the classical case, Frobenius
Reciprocity holds for H0(X;OX(E∗)): we have a canonical isomorphism

HomG (W, H0(X;OX(E∗))) = HomP (W, E∗)(12.1)

for any G-module W. Indeed, (12.1) follows immediately from (10.5) for F =
OX(E∗) and q = 0, from the universality property of the inverse limit, and from
Frobenius Reciprocity for H0(Xn;OXn(E∗

n)) for all n. Now since the right-hand
side of (12.1) is nonzero for W = V(E)∗, H0(X;OX(E∗)) is nonzero whenever E
is dominant. Therefore, by (10.5), H0(Xn;OXn(E∗

n)) �= 0 for large enough n, and
by the classical Borel-Weil Theorem we have H0(Xn;OXn(E∗

n))∗ = V(En). Thus,
for a dominant E, lim−→H0(Xn;OXn(E∗

n))∗ = lim−→V(En). But then, as in the first part
of the proof of Proposition 7.4, there is a G-isomorphism V(E) ∼= lim−→V(En), and

consequently H0(X;OX(E∗)) = V(E)∗.
Conversely, let H0(X;OX(E∗)) = lim←−H0(Xn;OXn(E∗

n)) �= 0. Then lim−→H0(Xn;
OXn(E∗

n))∗ is a well-defined G-module which admits a P-module injection E ↪→
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lim−→H0(Xn;OXn(E∗
n))∗ (whose dual corresponds via (12.1) to the identity map

H0(X;OX(E∗)) → H0(X;OX(E∗))) and is moreover generated over G by the im-
age of E. Again, as in the proof of Proposition 7.4 this implies that lim−→H0(Xn;OXn

(E∗
n))∗ is canonically isomorphic to V(E) as a G-module. In this way, whenever

H0(X;OX(E∗)) �= 0, E is dominant and H0(X;OX(E∗)) = V(E)∗.

The above argument shows in particular that V(En) is finite dimensional for
each n whenever E is dominant. Therefore the proof Proposition 7.4 is now com-
plete. Furthermore, Theorem 11.1(i)(b) and Proposition 8.5 have the following
essential corollary.

COROLLARY 12.2. Let G, P and E be as in Theorem 11.1(i). Suppose that E
is a weight P-module. If H0(X;OX(E∗)) �= 0 then E is a finite (and thus locally
irreducible) P-module, and H0(X;OX(E∗)) is isomorphic to the dual of the rational
locally irreducible finite G-module V(E).

Of course, the requirement that E be a weight module is crucial in Corol-
lary 12.2. For if G, P, E and V are as in Example 8.6, then H0(X;OX(E∗)) = V∗,
and V is an irreducible but not locally irreducible G-module which is not a weight
module.

Proof of (ii). Since OXn(E∗
n) is an irreducible Gn-homogeneous OXn-module,

by the classical Bott-Borel-Weil Theorem Hq0 (Xn;OXn(E∗
n)) �= 0 for at most one

integer q0. Therefore lim←−Hq0 (Xn;OXn(E∗
n)) �= 0 for at most one q0, and this,

combined with (i)(a), implies that Hq0 (X;OX(E∗)) �= 0 for at most one q0. If now
Hq0 (X;OX(E∗)) �= 0, V is defined simply as the limit of the direct system of
irreducible finite dimensional Gn-modules

0 → Hq0 (X0;OX0 (E∗
0))∗ → · · · → Hq0 (Xn;OXn(E∗

n))∗ → · · · ,(12.3)

and is therefore a locally irreducible rational G-module.

The problem left open by (ii) is that of an explicit description of the G-
module V in terms of the P-module E. In the setting where G is root-reductive,
(iii) is an essential step toward solving that problem. For general ind-groups the
problem is open even in the case when P = B is a Borel group and E is a one
dimensional B-module E; see Example 14.5 below.

13. Proof and discussion of (iii).

Proof of (iii) for locally irreducible E. The fact that Hq0 (X;OX(E∗)) �= 0
for at most one q0 was established in the proof of (ii). Assume, more generally,
that Hq0 (Xn;OXn(E∗

n)) �= 0 for some q0 and for large enough n. (If no such q0

exists, there is nothing to prove.) Then, for large enough n, all En are regular
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and �(En) = q0. Furthermore, Proposition 9.7 yields a Borel subalgebra b of
p and an element w ∈ W of length q0 with respect to b. Let λn is the bn-
highest weight of En and µn := w(λn + ρn) − ρn. The Bott-Borel-Weil Theorem
gives Hq0 (Xn;OXn(E∗

n)) ∼= V(Cµn)∗, where Cµn denotes the one dimensional bn-
module of weight µn. As in the proof of (ii), we define V as the limit of the
direct system dual to the system of projections ζq0

n+1: Hq0 (Xn+1;OXn+1(E∗
n+1)) →

Hq0 (Xn;OXn(E∗
n)).

We claim that V �= 0, i.e., that ζq0
n+1 �= 0 for large enough n. We will prove

this by induction on q0. If q0 = 0, E is dominant by Proposition 7.4, and thus
the statement follows from (i)(b). Let q0 > 0 and let w = σα1 ◦ · · · ◦ σαq0

be a

minimal decomposition of w as a product of bn+1-simple reflections. Define P
αq0
n+1

as the minimal proper parabolic subgroup of Gn+1 such that Bn+1 ⊂ P
αq0
n+1 and

±αq0 ∈ ∆
p
αq0
n+1

. Then P
αq0
n := P

αq0
n+1 ∩ Gn is a parabolic subgroup of Gn, and there

is a commutative diagram

Gn/Bn ↪→ Gn+1/Bn+1

p
αq0
n ↓ ↓ p

αq0
n+1

Gn/P
αq0
n ↪→ Gn+1/P

αq0
n+1.

Notice first that OXn+1(E∗
n+1) = (πn+1)∗OGn+1/Bn+1

(C−λn+1) and OXn(E∗
n) = (πn)∗

OGn/Bn(C−λn), where πn+1: Gn+1/Bn+1 → Xn+1 and πn: Gn/Bn → Xn are the
canonical projections. Demazure’s proof [6] of the Bott-Borel-Weil Theorem im-
plies

Hq0 (Xn+1;OXn+1(E∗
n+1)) = Hq0 (Gn+1/Bn+1;π∗n+1OXn+1(E∗

n+1))

= Hq0−1(Gn+1/P
αq0
n+1; R1(p

αq0
n+1)∗(π∗n+1OXn+1(E∗

n+1)))

and

Hq0 (Xn;OXn(E∗
n)) = Hq0 (Gn/Bn;π∗nOXn(E∗

n))

= Hq0−1(Gn/P
αq0
n ; R1(p

αq0
n )∗(π∗nOXn(E∗

n))).

Thus, for the induction step it suffices to check that ζn+1: OXn+1(E∗
n+1) → OXn(E∗

n)
induces a nonzero Gn-morphism

ζ̃1
n+1: R1(p

αq0
n+1)∗(π∗n+1OXn+1(E∗

n+1)) → R1(p
αq0
n )∗(π∗nOXn(E∗

n)).

Indeed, the observation that ζq0
n+1 = (ζ̃1

n+1)q0−1 will then allow us to conclude that
ζq0

n+1 �= 0 as (ζ̃1
n+1)q0−1 is nonzero by the induction assumption. But the fact that
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ζ̃1
n+1 �= 0 follows immediately from the long exact sequence

0 → (p
αq0
n+1)∗ ker ζn+1 → (p

αq0
n+1)∗OXn+1(E∗

n+1) → (p
αq0
n )∗OXn(E∗

n)

→ R1(p
αq0
n+1)∗ ker ζn+1 → R1(p

αq0
n+1)∗OXn+1(E∗

n+1) → R1(p
αq0
n )∗OXn(E∗

n) → 0.

Therefore finally ζq0
n+1 �= 0, and thus also V �= 0.

It remains to show that V admits an irreducible wp-submodule wE. Then
V ∼= V(wE) by the remark after Proposition 7.3, and the uniqueness of wE follows
from the fact that wE is the subspace of uwp-invariants in V(wE). To define wE
set wE := lim−→U(wpn) · V(Cµn)µn . As V(Cµn)µn is the bn-highest weight space of
V(Cµn), U(wpn) · V(Cµn)µn is an irreducible wpn-submodule of V(Cµn). To show
that wE is well defined, we need to check only that (ζq0

n+1)∗(U(wpn) ·V(Cµn)µn) ⊂
U(wpn+1) ·V(Cµn+1)µn+1 , i.e., that (ζq0

n+1)∗(V(Cµn)µn) ⊂ U(wpn+1) ·V(Cµn+1)µn+1 . Fix
a large enough n and let κ1, . . . ,κs be all weights of V(Cµn+1)µn+1 onto which
(ζq0

n+1)∗(V(Cµn)µn) projects nontrivially. (As V is not necessarily a weight module,
s may be greater than one.) Then κi|hn = w(λn + ρn) − ρn for all i. But since
µn+1 = w(λn+1 + ρn+1) − ρn+1, an immediate verification shows that all κi are of
the form

µn+1 + (Z+-linear combination of bn+1-negative roots of w
pn+1).

Therefore, indeed (ζq0
n+1)∗(V(Cµn)µn) ⊂ U(wpn+1) · V(Cµn+1)µn+1 , and the proof is

complete.

Note that (iii) has the following combinatorial consequence. The wpn-modules
wEn satisfy wEn ≺ wEm for large enough m > n. This fact can be checked directly
in the spirit of Proposition 9.7, but the construction of the wP-module wE gives
it as a trivial corollary. Furthermore, the modules wEn are defined simply by the
sequence of modules {En}, however in general the injections wEn → wEn+1 (and
hence the module wE) depend on the p-module E as a whole. In the special case
when every infinite dimensional ls in the decomposition (4.4) of every simple
gt, cf. Proposition 4.1, is isomorphic to gl(∞), both E and wE are determined
by the sequence {En} only, and are automatically weight modules. The reason
is that the branching of an irreducible finite dimensional gl(n + 1)-module into
irreducible gl(n)-modules is multiplicity-free.

The next example shows that wE may not admit an irreducible submodule
of any parabolic subgroup which is properly contained in wP, in particular, of
P. Furthermore, if wP = G then wE = V . As a consequence, even when E is a
finite weight P-module, V need not be a finite G-module as Proposition 8.5 no
longer applies. See Example 13.1(2) for a nonfinite weight G-module V such that
V∗ ∼= H2(X;OX(E∗)). Note also that in general E and wE are not determined by
the weight sequence {λn}.
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Example 13.1.
(1) Let G = GL(∞), let P be as in Example 4.3, and let B ⊂ P be the

Borel subgroup of all upper triangular matrices in G. So {εi − εj | 1 ≤ i < j}
is the set of roots of b. Define the P-module E as the direct limit of irreducible
Pn-modules with Bn-highest weights λn := −ε1 + nε2. The branching rule ensures
that E is well defined as the respective inclusions are unique (up to a multi-
plicative constant). Then H1(X;OX(E∗)) ∼= V∗, where V is the direct limit of the
irreducible Gn-modules with Bn-highest weights µn = (n− 1)ε1. The assertion of
Theorem 11.1(iii) is satisfied with w = σα for α = ε1 − ε2. Here wP = G; see
Example 4.3 above. It is not difficult to check that V is a finite weight G-module
that has no P′-submodule that is irreducible for any proper parabolic subgroup
P′ ⊂ G.

(2) Now let p ⊂ gl(∞) be the parabolic subalgebra with roots

{εi − εj | 3 ≤ i, 3 ≤ j, i �= j} ∪ {ε1 − εi, εi − ε2 | 3 ≤ i} ∪ {ε1 − ε2},

let b ⊂ p be the Borel subalgebra with roots

{εi − εj | 5 ≤ i, 5 ≤ j, i < j} ∪ {ε1 − εi, ε3 − εi, εi − ε2, εi − ε4 | 5 ≤ i}
∪ {ε1 − ε2, ε1 − ε3, ε1 − ε4, ε3 − ε2,

ε3 − ε4, ε4 − ε2},

and let P and B be the corresponding parabolic and Borel subgroups of G =
GL(∞). Define the P-module E as the direct limit of the irreducible Pn-modules
with Bn-highest weights λn := −ε1 + ε2 + nε3 − nε4. Then H2(X;OX(E∗)) ∼= V∗,
where V is the direct limit of the irreducible Gn-modules with Bn-highest weights
µn = (n − 1)ε1 + (1 − n)ε2. Here the assertion of Theorem 11.1(iii) is satisfied
with w = σα ◦ σβ for α = ε1 − ε3 and β = ε2 − ε4, and again wP = G. A direct
verification shows that neither is E a finite P-module nor is V a finite G-module.
Therefore V∗ cannot appear as the zeroth cohomology of OX(E′∗) for any rational
P-module E′.

Proof of (iii) for general E. Note first that, as up · E = 0 (Proposition 7.1),
E is an irreducible pred-module and is in particular completely reducible as pred

n -
module for all n. Let En =

⊕in
i=1 Ei

n be the decomposition of En into isotypic pred
n -

components. Fix furthermore a decomposition of each Ei
n as

⊕
k Ei,k

n , Ei,k
n being

simple. For any sequence of simple pred
n -components Ein,kn

n , let fm,n: Ein,kn
n →

Eim,km
m denote the composition of the injection Ein,kn

n ↪→ Em followed by the
projection Em → Eim,km

m determined by the fixed decomposition of Eim
m .

For any q, Hq(Xn;OXn(E∗
n)) =

⊕
i Hq(Xn;OXn((Ei

n)∗)) =
⊕

i,k Hq(Xn; OXn

((Ei,k
n )∗)). If for no q Hq(Xn;OXn((En)∗)) �= 0 for all large enough n, Hq(X;OX

((E)∗)) = 0 for all q, and there is nothing to prove. Assume therefore that there is
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q0 with Hq0 (Xn;OXn((En)∗)) �= 0 for all large enough n. By the Bott-Borel-Weil
Theorem this is the same as assuming that for large enough n some isotypic
component Ei0

n is regular and �(Ei0
n ) = q0.

We claim that then, for large enough n, every isotypic component Ei
n is regular

and �(Ei
n) = q0. Assume not. We will construct a locally irreducible locally finite

p-module E′ whose existence contradicts Proposition 9.7(ii). Let Ei1,k1
n1

be regular
of length q0. Find Ei2,k2

n2
with n2 > n1 which is either not regular or not of

length q0 and such that the corresponding fn2,n1 is nonzero. Ei2,k2
n2

exists because
of our assumption and the minimality of the system of injections En ↪→ En+1.
Furthermore, let Ei3,k3

n3
be regular of length q0 with n3 > n2 and fn3,n2 �= 0.

Ei3,k3
n3

exists also due to the minimality of the system of injections En ↪→ En+1.

Continuing in this way, we construct E′ := lim−→j
E

ij,kj
nj �= 0, where E

ij,kj
nj is regular of

length q0 for odd j and is not such for even j. The existence of E′ is contradicts
Proposition 9.7(ii), therefore, for large enough n, each isotypic component Ei

n
is regular and �(Ei

n) = q0. In particular, Hq(X;OX(E∗)) = 0 for q �= q0, i.e.,
Hq0 (X;OX(E∗)) is the only possibly nonvanishing cohomology group of O(E∗).

In a similar way we construct a Borel subgroup B ⊂ P and an element w ∈ W
of length q0 with respect to b. Indeed, for a sequence of simple components Ein,kn

n
such that lim−→Ein,kn

n �= 0, Proposition 9.7(ii) yields a Borel subgroup B of P and
an element w ∈ W of length q0 with respect to b. We claim that any sequence
of simple components Eim,km

m with lim−→Eim,km
m �= 0 yields the same Borel subgroup

and the same element w ∈ W , as otherwise, a construction similar to the above
would give a module whose existence is contradictory.

We are ready to complete the argument. As in the proof of (ii), define the ra-
tional G-module V as the limit of the direct system (12.3). Note that, as all isotypic
components Ei

n are regular for large enough n, and, as the length of w with respect
to b is q0, the decomposition Hq0 (Xn;OXn(E∗

n))∗ =
⊕

i Hq0 (Xn;OXn((Ei
n)∗))∗ is a

decomposition into gn-isotypic components. Furthermore, Hq0 (Xn;OXn((Ei,k
n )∗))∗

are the simple gn-components of Hq0 (Xn;OXn((Ei
n)∗))∗. The crucial observation is

that our argument for (iii) in the locally irreducible case implies that the multiplic-
ity diagram DV of V , defined by the decompositions

⊕
i Hq0 (Xn;OXn((Ei

n)∗))∗ =⊕
i,k Hq0 (Xn;OXn((Ei,k

n )∗))∗, is identical to the multiplicity diagram of E consid-
ered as a pred-module. Therefore V �= 0. Moreover, by Proposition 8.3(iii), DV

admits no nonzero stably proper subdiagram. Consequently, V is irreducible by
Proposition 8.3(ii). It remains to show that V = V(wE) for a unique irreducible
wP-submodule wE of V . If w ∈ Wn0 for some n0, the irreducible WPn-module wEi

n
is well defined for any Ei

n with n > n0. Furthermore, as we showed when proving
(iii) in the locally irreducible case, an injection Ei

n → Ej
n+1 induces an injection

wEi
n → wEj

n+1. Hence, for n ≥ n0, there is a well-defined Gn-module injection of
wEn :=

⊕
i

w(Ei
n) into wEn+1 :=

⊕
i

w(Ei
n+1), i.e. wE := lim−→

wEn is a well-defined
wP-submodule of V . The irreducibility of V yields the irreducibility of wE, the
uniqueness of wE, and the existence of a canonical isomorphism V(wE) = V .
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14. The situation when E has a highest weight. The case when the P-
module E has a highest weight with respect to some Borel subgroup B ⊂ P is
a close analog of the classical Bott-Borel-Weil Theorem. We show below that,
when E has a highest weight, statement (iii) of Theorem 11.1 can be reformulated
in very familiar terms without reference to the parabolic subgroup wP. Of course
this applies to the case when E is finite dimensional, in particular to the case
when P = B and dim E = 1.

PROPOSITION 14.1. Suppose that G is root-reductive and E has highest weight
λ with respect to a Borel subgroup B ⊂ P. Let ∆+ denote the roots of b. Then
Hq0 (X;OX(E∗)) �= 0 if and only if there exists w ∈ W of length q0 with respect to b,
such that µ := w(λ) − (

∑
α∈∆+,w(α)�∈∆+ α) is a B-dominant integral weight. In this

case

Hq0 (X;OX(E∗)) = V(Cµ)∗, Hq(X;OX(E∗)) = 0 for q �= q0,(14.2)

where Cµ is the one dimensional B-module of weight µ.

Proof. Under the hypotheses of the proposition, there is a canonical G-
isomorphism

H·(X;OX(E∗)) ∼= H·(G/B;OG/B(C−λ)).(14.3)

Indeed, the classical Bott-Borel-Weil Theorem yields a compatible family of Gn-
isomorphisms

H·(Xn;OXn(E∗
n)) ∼= H·(Gn/Bn;OGn/Bn(C−λn)),(14.4)

where λn := λ|hn , and (14.3) follows from Theorem 11.1(i)(a) via (14.4).
Suppose that there exists w ∈ W of length q0 as above. Then µn := µ|hn is

a Bn-dominant weight for each n. The Bott-Borel-Weil Theorem, together with
Proposition 7.4 and Theorem 11.1, gives

Hq0 (G/B;OG/B(C−λ)) = lim←−Hq0 (Gn/Bn;OGn/Bn(C−λn))

= lim←−V(Cµn)∗ = V(Cµ)∗,

and

Hq(G/B;OG/B(C−λ)) = 0 for q �= q0.

This combines with (14.3) to give (14.2).
Conversely, suppose Hq0 (G/B;OG/B(C−λ)) = lim←−Hq0 (Gn/Bn;OGn/Bn(C−λn))

�= 0. Then, by the Bott-Borel-Weil Theorem, the bn-module Cλn has length q0 for
n sufficiently large. Apply Proposition 9.7 to E = Cλ with p = b for the existence
of w ∈ W as required. Now (14.2) holds by the same argument as above.
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The following examples illustrate the problem of describing the G-module
structure on the only nonvanishing cohomology Hq0 (X;OX(E∗)) for more general
ind-groups G in the special case when P = B and E is one dimensional.

Example 14.5.
(1) This example is similar to an example in [20]. Let G = GL(2∞) and

let P = B be the Borel subgroup of upper triangular matrices. Given an integer
q0 ≥ 0, it is an interesting combinatorial problem to describe all systems of
integral weights {λn} (λn being a weight of gn = gl(2n)) such that λn projects
onto λn−1, and Hq0 (Xn;OXn(C−λn)) �= 0 for large enough n. Another natural
question is whether, given such a weight system, it always yields a nonzero
cohomology Hq0 (X;OX(E∗)) for E := lim−→Cλn , and whether Hq0 (X;OX(E∗)) is
always the dual of a b-highest weight module. Here is a straightforward way to
produce weight systems {λn} as above for any q0 ≥ 0. Fix n0 ≥ 1 and an integral
weight λn0 =:

∑
1≤i≤2n0 λ

iεi,n0 such that Hq0 (Xn0 ;OXn0
(C−λn0

)) �= 0. Let c be a

nonpositive integer, less or equal to min{λ1, . . . ,λ2n0}. For n > n0, define the
weight λn recursively by

λn := λn−1 − c
∑

1≤i≤2n−1

εi,n + c
∑

2n−1+1≤j≤2n

εj,n.

A trivial verification shows that {λn} is a system of integral weights as desired.
Set E := lim−→Cλn . An easy computation based on the Bott-Borel-Weil Theorem
implies that Hq(X; OX(E∗)) = 0 for q �= q0, and

Hq0 (X;OX(E∗)) = V(Ẽ)∗,

where the B-module Ẽ equals lim−→n≥n0
Cw(λn+ρn)−ρn (and w ∈ S2n0 permutes only

the first 2n0 coordinates of λn + ρn).
(2) Here is another interesting situation in which there are no nonzero higher

cohomology groups. Let G = PGLAd(k2∞), let P = B be any Borel subgroup as
described in Section 5, and let L be an invertible OX-module. We claim that in
this situation all cohomology groups of L equal zero unless L ∼= OX .

The inverse images of L on Xn determine a sequence of integral gl(k2n
)-

weights λn, and L ∼= OX if and only if λn = 0 for all n. Assuming that the λn

are not all zero, and assuming that Hq0 (X;L) �= 0 for some q0 ≥ 0, we show
(following an idea of [1]) that, for n sufficiently large, λn(αn) > λn+1(αn+1), where
αn denotes the highest root of Bn. This computation is based on the explicit form
of the immersions θn: Xn ↪→ Xn+1; see Example 10.1(2) above. The details are
left to the reader. In this way we obtain an infinite strictly decreasing sequence
of positive integers, i.e., a contradiction. Therefore λn = 0 for all n, so L ∼= OX ,
H0(X;L) = C, and Hq(X;L) = 0 for q > 0.
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There are uncountably many nonisomorphic G-homogeneous invertible
sheaves of the form OX(E∗). For any such sheaf, the above result implies Hq(X;
OX(E∗)) = 0 for all q > 0, and that H0(X;OX(E∗)) �= 0 only when E is the trivial
B-module. This latter fact is closely related to the discovery of Yu. Bahturin and
G. Benkart, [1], that g = pglAd(k2∞) does not admit locally finite highest weight
modules except the trivial one. Indeed, if H0(X;OX(E∗)) were nonzero for some
nontrivial one dimensional B-module E, we would have had H0(X;OX(E∗)) = V∗

for some highest weight module V , V �∼= C. Therefore the result of Bahturin and
Benkart implies the part of our result concerning H0(X;OX(E∗)).

15. Projectivity of G/P. We are now ready to address the question of
whether the ind-variety X = G/P is projective. In general, X is not projective
as one can see from Example 14.5(2). Moreover, for G = PGLAd(k2∞) and for
any proper parabolic subgroup P that contains a Borel subgroup as in Section 5,
X is never projective. For the existence of a very ample invertible sheaf LX on
X would imply the existence of an invertible sheaf L �∼= OG/B on G/B with
H0(G/B;L) �= 0.

On the other hand, the ind-variety X = G/P from Example 10.1(2) (here
G = GL(2∞)) is projective. A straightforward verification shows that, in this
case, for any fixed n, every very ample invertible OXn-module admits an ex-
tension to an invertible OX-module whose restrictions to Xm are very ample for
all m > n.

For a root-reductive ind-group G we will give now an explicit projectivity

criterion for X = G/P. Assuming that G is root-reductive, we have X ∼=
f
×t∈T

Gt/Pt, and the reader can check that X is projective if and only if Gt/Pt is
projective for each t. Therefore it suffices to give a projectivity criterion for X
under the assumption that G is classical simple.

PROPOSITION 15.1. Let G be classical simple. Then X = G/P is projective if
and only if as an ordered set Sp (see Section 4) is isomorphic to a subset of Z for
G = A(∞), and to a subset of Z− otherwise.

Proof. Fix a Borel subgroup B ⊂ P. If Sp is isomorphic to a subset of Z for
G = A(∞), or to a subset of Z− for G = B(∞), C(∞), D(∞), there exists a strictly
decreasing function ϕ: Sp → Z such that, if G �= A(∞), ϕ(s) ≥ 0 and ϕ(s0) = 0
whenever s0 ∈ Sp. Using ϕ, we will now determine a B-dominant integral weight
λ as follows. First note that, just by the construction of Spn , each simple root of
Bn has a well-defined image in Spn . Given α ∈ ∆+, let α = c1

nα
1
n + · · · + ckn

n α
kn
n ,

cj
n �= 0, be its decomposition into a linear combination of simple roots of Bn.

(Here the images s1
n, . . . , skn

n ∈ Spn of α1
n, . . . ,αkn

n are in decreasing order.) To
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define λ, we set

λ(α) :=


ϕ(s1

n)− ϕ(skn
n ) if cj

n = 1 for i = j, . . . , kn,

ϕ(s1
n) + ϕ(spn

n ) if cj
n = 1 for j = 1, . . . , kp − 1, c

kp
n = 2,

2ϕ(s1
n) if c1 = 2.

A direct verification shows that λ(α) does not depend on n for large enough n.
Therefore λ is a well-defined integral weight. Furthermore, the definition of λ
implies that Cλ is a well-defined dominant one dimensional P-module. Using the
fact that Sp is isomorphic to a subset of Z, for G = A(∞), and to a subset of Z−
otherwise, the reader will check that the restriction of the sheaf OX(C−λ) to Xn

is very ample for every n. Thus the sheaf OX(Cλ) provides a closed immersion
of X into P(V(Cλ)).

Conversely, let X be projective. Fix a closed immersion i: X ↪→ P(C∞).
The restriction OP(C∞)(1)|Xn is a very ample invertible OXn-module. By choosing
a Gn-linearization of OX(1)|Xn for each n (and by changing the signs of the
corresponding weights) we obtain a system of integral weights {λn} of gn. This
system is not canonical, but the integers λn(α) for α ∈ ∆n are canonical, i.e.,
depend only on the choice of the closed immersion i. The crucial observation
now is that, if Sp is not isomorphic to a subset of Z for G = A(∞), or to a subset
of Z− for G = B(∞), C(∞), D(∞), there always exists α ∈ ∆\∆P such that for
every r there are α1,α2, . . . ,αr ∈ ∆\∆P with α = α1 + · · · +αr. Fix n0 for which
α ∈ ∆n0 . Set r := λn0 (α) + 1 and let n ≥ n0 be such that α1, . . . ,αr ∈ ∆n. Then
λn0 (α) = λn(α) =

∑r
i=1 λn(αi) ≥ r = λn0 (α) + 1. This contradiction completes the

proof.

16. The sheaf OX(E) for infinite dimensional E. If E is finite dimensional,
then so is E∗, and OX(E) = OX((E∗)∗). Therefore in this case the consideration
of OX(E) does not lead to anything new. The situation is very different for an
infinite dimensional E. Here the Mittag-Leffler condition can fail, and OX(E) has
in general arbitrarily many nonvanishing cohomology groups. It is an interesting
problem to study the structure of these G-modules.

In the following example lim←−
(1) H0(Xn;OXn(En)) �= 0, and lim←−Hi(Xn;OXn(En))

�= 0 for all i in a prescribed finite interval. The interested reader can construct
a similar example in which lim←−

(1) Hi(Xn;OXn(En)) �= 0 for any i, and therefore

Hj(X;OX(E)) �= 0 for all j > 0.

Example 16.1.
(1) Let B ⊂ P ⊂ G be as in Example 13.1(1). We define the irreducible

rational P-module E as follows. Let 1 < k ∈ Z+ and let E′ be the irreducible
rational P-module with B-highest weight 2kε2 + (2k−1)ε3 + · · ·+(k +1)εk+1. Then
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E′ := lim−→n>k
E′

n where E′
n is the irreducible Pn-module with Bn-highest weight

2kε2 + (2k − 1)ε3 + · · · + (k + 1)εk+1. For n > k, (E′
n)∗ is a dominant Pn-module.

Furthermore, there is a canonical Pn-module surjection E′
n+1 → E′

n, and thus a Pn-
module injection (E′

n)∗ ↪→ (E′
n+1)∗. Set En := (E′

n)∗ and E := lim−→n>k
En. Consider

OX(E) := lim←−OXn(E), ζn: OXn(E) → OXn−1 (E) being the restriction maps. We

claim that lim←−
(1) H0(Xn;OXn(E)) �= 0, and furthermore that Hq(X;OX(E)) �= 0 for

1 ≤ q ≤ k. In particular, for Fn = OXn(E), the exact sequence (10.4) has three
nonzero terms when q = 1.

Consider lim←−
(1) H0(Xn;OXn(E)). When n > k, H0(Xn;OXn(E)) is the space

EPn of Pn-invariants on E. Here dim EPn = ∞, for as a Pn-module E is isomorphic
to a direct sum of finitely many nontrivial irreducible Pn-modules and infinitely
many copies of the trivial one dimensional Pn-module. Furthermore, the natural
injection EPn+1 ⊂ EPn is immediately seen to be a strict inclusion. In the coho-
mology picture this injection is the restriction map ζ0

n+1: H0(Xn+1;OXn+1(E)) →
H0(Xn;OXn(E)). Therefore lim←−

(1) H0(Xn;OXn(E)) �= 0, the action of G on lim←−
(1)

H0(Xn;OXn(E)) being trivial. Note also that H0(X;OX(E)) = lim←−H0(Xn;OXn(E)) =⋂
n EPn = 0.

Now consider lim←−Hk(Xn;OXn(E)). The Pn-module E decomposes as (E′
n)∗ ⊕

Ẽn where Ẽn is a direct sum of irreducible Pn-modules not isomorphic to (E′
n)∗.

Therefore we have a canonical Gn-module injection

Hk(Xn;OXn((E′
n)∗)) = V(E′

n)∗ ↪→ Hk(Xn;OXn(E)).

Furthermore, the map

ζk
n+1: Hk(Xn+1;OXn+1(E)) → Hk(Xn;OXn(E))

induces a surjection

Hk(Xn+1;OXn+1((E′
n+1)∗)) → Hk(Xn;OXn((E′

n)∗)).

Thus there is a canonical G-module injection

V(E′)∗ = lim←−
n>k

V(E′
n)∗ ↪→ lim←−Hk(Xn;OXn(E)),

and, in particular, Hk(X;OX(E)) �= 0.
A similar argument shows that lim←−Hi(Xn;OXn(E)) �= 0 for 1 ≤ i < k. In

effect, for any such fixed i the Pn-module E decomposes as (Ei
n)∗⊕ Ẽi

n, where Ei
n

is the irreducible Pn-module with Bn-highest weight 2kε2 + (2k− 1)ε3 + · · · + (i +
1)ε2k−i+1 and where Ẽi

n is a direct sum of irreducible Pn-modules not isomorphic



A BOTT-BOREL-WEIL THEORY 997

to (Ei
n)∗. Then, as above, one verifies that there is a G-module injection

V( lim−→
n>2k−i+1

En)∗ ↪→ lim←−Hi(Xn;OXn(E)).

Consequently Hi(X;OX(E)) �= 0 for 1 ≤ i ≤ k.
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