1. Let \(a \) and \(b \) be positive integers and let \(b = qa + r \), where \(0 \leq r < b \). Prove that

 (a) \(2^b - 1 \equiv 2^r - 1 \pmod{2^a - 1} \);
 (b) \(\text{GCD}(2^a - 1, 2^b - 1) = 2^{\text{GCD}(a,b)} - 1 \).

2. In this problem we want to find the number of solutions of the equation \(x^2 = 1 \) in \(\mathbb{Z}_N \).
 (a) Find the number of solutions of \(x^2 = 1 \) in \(\mathbb{Z}_2, \mathbb{Z}_4 \), and in \(\mathbb{Z}_{2^k} \) for \(k \geq 3 \).

 (b) Find the number of solutions of \(x^2 = 1 \) in \(\mathbb{Z}_{p^k} \), where \(p \) is an odd prime and \(k \geq 1 \).

 (c) Find the number of solutions of \(x^2 = 1 \) in \(\mathbb{Z}_N \), where \(N = 2^k p_1^{k_1} p_2^{k_2} \cdots p_l^{k_l} \). Here \(k \geq 0, k_1, k_2, \ldots, k_l \geq 1 \) and \(p_1, p_2, \ldots, p_l \) are distinct odd primes.

 Hint. Your answer should depend on \(k \) and \(l \) only. How did you use the Chinese Remainder Theorem?

3. Let \(\mathbb{F} \) be a field. Two variations of the ring of polynomial over \(\mathbb{F} \) are the **formal power series** \(\mathbb{F}[[X]] \) and the **formal Laurent series** \(\mathbb{F}((X)) \) defined as follows:

 \[
 \mathbb{F}[[X]] = \{ a_0 + a_1 X + a_2 X^2 + \ldots \mid a_i \in \mathbb{F} \}
 \]

 and

 \[
 \mathbb{F}((X)) = \{ a_{-k} X^{-k} + a_{-k+1} X^{-k+1} + a_{-k+2} X^{-k+2} + \ldots \mid k \in \mathbb{Z}, a_i \in \mathbb{F} \}.
 \]

 Show that both \(\mathbb{F}[[X]] \) and \(\mathbb{F}((X)) \) are integral domains. (Please, do not submit your work on this part!)

 (a) Prove that

 \[
 (\mathbb{F}[[X]])^\times = \{ a_0 + a_1 X + a_2 X^2 + \ldots \in \mathbb{F}[[X]] \mid a_0 \neq 0 \}.
 \]

 (b) Find the inverses of \(1 + X \) and \(1 - X - X^2 \) in \(\mathbb{F}[[X]] \).

 Hint. For \(1 - X - X^2 \) you may need to recall the Fibonacci sequence from Problem 1 in Assignment 1.

 (c) Prove that \(\mathbb{F}((X)) \) is a field.