Solutions #7

1. For each of the following polynomials determine whether it is irreducible or not:

 (a) \(X^2 - 3 \) in \(\mathbb{R}[X] \);

 (b) \(X^2 - 3 \) in \(\mathbb{C}[X] \);

 (c) \(X^2 + X - 2 \) in \(\mathbb{Z}_3[X] \);

 (d) \(X^2 + X - 2 \) in \(\mathbb{Z}_7[X] \).

 Solution.

 (a) Since \(X^2 - 3 = (X - \sqrt{3})(X + \sqrt{3}) \), we conclude that \(X^2 - 3 \) is reducible in \(\mathbb{R}[X] \).

 (b) The factorization \(X^2 - 3 = (X - \sqrt{3})(X + \sqrt{3}) \) holds in \(\mathbb{C}[X] \) as well, so \(X^2 - 3 \) is reducible in \(\mathbb{C}[X] \).

 (c) Since \(1 \in \mathbb{Z}_3 \) is a root of \(X^2 + X - 2 \), we conclude that \(X^2 + X - 2 \) is reducible in \(\mathbb{Z}_3[X] \).

 (d) The same argument as above works: \(1 \in \mathbb{Z}_7 \) is a root of \(X^2 + X - 2 \) and thus \(X^2 + X - 2 \) is reducible in \(\mathbb{Z}_7[X] \).

2. Factor into irreducibles:

 (a) \(X^2 - 7 \) in \(\mathbb{R}[X] \);

 (b) \(X^2 - 7 \) in \(\mathbb{Q}[X] \);

 (c) \(2X^3 + X^2 + 2X + 2 \) in \(\mathbb{Z}_5[X] \);

 (d) \(X^4 + X^2 + 1 \) in \(\mathbb{Z}_3[X] \).

 Solution.

 (a) In \(\mathbb{R}[X] \) we have \(X^2 - 7 = (X - \sqrt{7})(X + \sqrt{7}) \).

 (b) \(X^2 - 7 \) is irreducible in \(\mathbb{Q}[X] \). One way to check this is to verify that it has no rational roots by excluding all possible roots \(\frac{r}{s} \). We know that \(r \) must divide 7 and \(s \) must divide 1. Hence the possible roots of \(X^2 - 7 \) are \(\pm 1, \pm 7 \) and a direct verification shows that none of them is a root. Finally, since \(X^2 - 7 \in \mathbb{Q}[X] \) is of degree 2 with no roots, it is irreducible.

 We can also use part (a) above to argue that \(f = X^2 - 7 \) is irreducible in \(\mathbb{Q}[X] \). Indeed, if \(f = gh \) in \(\mathbb{Q}[X] \), then \(f, g, h \in \mathbb{R}[X] \) and, hence, \(f = gh \) in \(\mathbb{R}[X] \). Assuming \(\operatorname{deg} g, \operatorname{deg} h < \operatorname{deg} f = 2 \), we conclude that \(f = gh \) is a decomposition of \(f \) into irreducibles in \(\mathbb{R}[X] \) (Why?). This contradicts (a) and the uniqueness of the factorization of \(f \) into irreducibles.

 (c) A direct verification shows that \(2X^3 + X^2 + 2X + 2 \) has no roots in \(\mathbb{Z}_5 \) which means that \(2X^3 + X^2 + 2X + 2 \) is irreducible in \(\mathbb{Z}_5[X] \).

 (d) \(X^4 + X^2 + 1 = (X + 1)^2(X + 2)^2 \) in \(\mathbb{Z}_3[X] \).
3.

(a) Let \(\varphi : \mathbb{C} \to \mathbb{C} \) be an isomorphism such that, for every \(a \in \mathbb{Q} \), \(\varphi(a) = a \). Let \(z \in \mathbb{C} \) be a root of \(f(X) \in \mathbb{Q}[X] \). Prove that \(\varphi(z) \) is also a root of \(f(X) \).

(b) Let \(\Phi : \mathbb{F}[X] \to \mathbb{F}[X] \) be an isomorphism such that \(\Phi(a) = a \) for every \(a \in \mathbb{F} \). Prove that if \(f \in \mathbb{F}[X] \) is irreducible, then only if \(\Phi(f) \) is also irreducible. Give an example of an isomorphism \(\Phi : \mathbb{F}[X] \to \mathbb{F}[X] \) such that \(\Phi(a) = a \) for every \(a \in \mathbb{F} \) but \(\Phi \) is not the identity.

\textbf{Solution.} (a) Let \(f = a_0X^n + a_1X^{n-1} + \ldots + a_{n-1}X + a_n \), where \(a_i \in \mathbb{Q} \) and let \(z \in \mathbb{C} \) be a root of \(f \). Taking into account that \(\varphi(a_i) = a_i \), since \(a_i \in \mathbb{Q} \), we calculate:

\[
\begin{align*}
\varphi(f(z)) &= \varphi(a_0z^n + a_1z^{n-1} + \ldots + a_{n-1}z + a_n) \\
&= \varphi(a_0z^n) + \varphi(a_1z^{n-1}) + \ldots + \varphi(a_{n-1}z) + \varphi(a_n) \\
&= \varphi(a_0)\varphi(z^n) + \varphi(a_1)\varphi(z^{n-1}) + \ldots + \varphi(a_{n-1})\varphi(z) + \varphi(a_n) \\
&= a_0\varphi(z^n) + a_1\varphi(z)^{n-1} + \ldots + a_{n-1}\varphi(z) + a_n = f(\varphi(z)).
\end{align*}
\]

On the other hand, \(\varphi(f(z)) = \varphi(0) = 0 \), i.e., \(\varphi(z) \) is also a root of \(f(X) \).

(b) It is sufficient to prove that \(f \in \mathbb{F}[X] \) is reducible if and only if \(\Phi(f) \) is irreducible. This will imply that \(f \in \mathbb{F}[X] \) is irreducible if and only if \(\Phi(f) \) is irreducible. Indeed, every polynomial is exactly one of the following three: irreducible, reducible, or a constant. Since \(\Phi \) preserves all constants, proving that \(f \in \mathbb{F}[X] \) is irreducible if and only if \(\Phi(f) \) is reducible is equivalent to proving that \(f \in \mathbb{F}[X] \) is irreducible if and only if \(\Phi(f) \) is irreducible.

Assume that \(f \) is reducible. Then \(f = gh \) with \(0 < \deg g, \deg h < \deg f \). Then we have \(\Phi(f) = \Phi(g)\Phi(h) \) and \(\deg \Phi(g) \), \(\deg \Phi(h) > 0 \) because \(\Phi \) is an isomorphism and \(\Phi \) fixes all constant polynomials. More precisely, the assumption that \(\Phi(g) = c \) is a constant implies that \(\Phi \) is not injective because \(\Phi(c) = \Phi(g) = c \). The factorization \(\Phi(f) = \Phi(g)\Phi(h) \) with \(\deg \Phi(g) \), \(\deg \Phi(h) > 0 \) proves that \(\Phi(f) \) is reducible.

Conversely, assume that \(\Phi(f) \) is reducible. Since \(\Phi \) is a bijection, it has an inverse map \(\Psi \). One checks immediately that \(\Psi \) also is a homomorphism and hence it is an isomorphism (Verify!). Then, if \(\Phi(f) \) is reducible, by the above, \(f = \Psi(\Phi(f)) \) is also reducible.

Set \(\Phi(f(X)) := f(X + 1) \). Then, clearly \(\Phi(a) = a \) for every \(a \in \mathbb{F} \). In particular, \(\Phi(1_{\mathbb{F}[X]}) = \Phi(1_{\mathbb{F}}) = 1_{\mathbb{F}} = 1_{\mathbb{F}[X]} \). Also,

\[
\Phi(f + g) = (f + g)(X + 1) = f(X + 1) + g(X + 1) = \Phi(f) + \Phi(g)
\]

and

\[
\Phi(fg) = (fg)(X + 1) = f(X + 1)g(X + 1) = \Phi(f)\Phi(g).
\]

This proves that \(\Phi \) is a homomorphism. It is a bijection since its inverse map is given by \(\Psi(f(X)) = f(X - 1) \) (Verify!). Clearly, \(\Phi(X) = X + 1 \), i.e., \(\Phi \) is not the identity of \(\mathbb{F}[X] \). \(\Box \)