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Abstract—The lossy source coding problem with feed-forward
link was recently introduced in [1] and the corresponding rate-
distortion function was derived in [2] and [3] for stationary
and ergodic sources and for arbitrary sources with memory,
respectively. The achievability schemes of [2] and [3] are mainly
based on codetrees. In this work, we give an alternative proof of
achievability for binary asymmetric Markov sources via a simple
coding scheme that utilizes optimal lossy coding for Bernoulli
sources. We then generalize this coding scheme for m-ary Markov
sources and show its optimality for the distortion region where
the Shannon lower bound is tight.

I. INTRODUCTION

The emerging applications of sensor networks have given
special significance to the problem of source coding with
side information (SI) at the decoder. In this scenario, the
main goal of each sensor is to convey what it measures
to the receiver. Each sensor encodes the observed source
Xn = (X1, X2, . . . , Xn) into a message M of nR bits and
transmits it to the receiver where R is the communication rate.
The receiver has access to a processed version Y n of Xn.
Hence, when decoding Xn the decoder has available not only
the message M received directly from the sensor, but also SI
Y n. The goal is then to minimize the reconstruction distortion
at a fixed transmission rate or equivalently, to minimize the rate
for a given distortion. The rate-distortion function is known
and given by Wyner and Ziv in [4] when {(Xn, Y n)}∞n=1 is
an independent and identically distributed (i.i.d.) process. In
the Wyner-Ziv model the decoder is assumed to have a non-
causal SI which is crucial for its binning encoding scheme.
The Wyner-Ziv problem with causal SI was considered in
[5]. Another structural restriction that has been studied in the
source coding literature is the delay in the SI. In this problem,
there is a delay of d time instants between the time when the
ith source symbol is fed into the encoder and the time when
the corresponding SI, Yi, is observed at the decoder. Clearly
for memoryless sources the Wyner-Ziv setting with strictly
delayed SI, i.e., with d > 0, reduces to the original source
coding problem without any SI. However, this conclusion does
not generally hold if the source has memory. In this context,
a growing number of works have focused on the scenario in
which Xi = Yi for i = 1, 2, . . . , n. This setting is typically
referred to as source coding with noiseless feed-forward as
introduced in [1]. In this setting, the encoder maps Xn to
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Fig. 1: Feed-forward source coding with rate R and delay 1.

M ∈ {1, 2, . . . , 2nR} and sends it to the decoder. The decoder
then receives M together with SI with delay d > 0, so that
Yi = Xi−d for i = 1, 2, . . . , n. It is clear that this model is
valid only if the delay is at least n + 1. For simplicity, we
write d = 1 when delay is actually d = n + 1. Although
this setup may look too idealized for applications, it can be
used to model a number of scenarios in sensor networks and
economics; see e.g., [3] and the references therein. The model
for this setting is depicted in Figure 1.

The rate-distortion function for this problem was derived
in [3] in terms of multi-letter spectral mutual information
rates for arbitrary (not necessarily stationary and ergodic)
sources with memory. This function was shown to be easily
analytically evaluated for some special classes of sources in
[6] and its numerical calculation for stationary and ergodic
sources was addressed in [2]. A simpler formula for stationary
and ergodic sources was obtained in [2] using the notion of nth
order feed-forward rate-distortion function. In [7], Weissman
and El Gamal gave a simple, yet inspiring, scheme to achieve
the rate-distortion function when both decoder and encoder
know the SI (causally or non-causally) based on an appropriate
partitioning of the source sequence Xn before encoding.
The achievability schemes proposed in [2], [3] are based on
codetrees.

In this work, we adopt the idea given in [7] and developed
in [10] and propose a constructive coding scheme for m-
ary Markov sources which achieves the feed-forward rate
distortion function and is conceptually simpler than the one
given in [2], [3].

This paper is organized as follows. In Section II, we review
some basic known results about the rate-distortion function
with feed-forward. We then present a constructive feed-
forward achievability scheme for binary asymmetric Markov
sources (BAMS) in Section III. In Section IV, we generalize
this achievability scheme for m-ary Markov sources and show
that the scheme is still optimal for a particular distortion
region. In Section V, we conclude the paper.



II. REVIEW OF THE FEED-FORWARD RATE-DISTORTION
FUNCTION

Consider a stationary and ergodic source {Xi} with finite
alphabet X , finite reconstruction alphabet X̂ and a distortion
function on pairs of sequences dn : Xn × X̂n → R+.
We assume that dn is the average per-letter distortion, i.e,
dn(x

n, x̂n) = 1
n

∑n
i=1 d(xi, x̂i) where d : X×X̂ → R+. Note

that if the joint random process {(Xn, X̂n)} is stationary, then
E[dn(X

n, X̂n)] = E[d(X, X̂)].
The concept of feed-forward was introduced in [1] in the

context of competitive prediction and studied further in [3],
[6]. In the following, we study the feed-forward rate-distortion
function for binary asymmetric Markov sources in which case
competitive prediction can no longer be used. We instead
use the general formula for the feed-forward rate-distortion
function.

Definition 1. An (n, 2nR) source code with feed-forward of
rate R and blocklength n, consists of encoder function ψ and
a set of decoder functions ξi at time instants i = 1, 2 . . . , n,
where

ψ : Xn → {1, 2, . . . , 2nR},
ξi : {1, 2, . . . , 2nR} × X i−1 → X̂ .

In this scenario the decoder has causal access to the side
information which consists of the previous source symbols;
that is, while estimating xi, the decoder knows all previous
source symbols xi−1.

Definition 2. R is an achievable rate at expected distortion
D if for any ε > 0, for all sufficiently large n, there exists an
(n, 2nR) code such that

E
[
dn(X

n, X̂n)
]
≤ D + ε.

Definition 3. The feed-forward rate-distortion function,
Rff (D), is the infimum of all achievable rates for a given
distortion D.

The feed-forward rate-distortion function for a stationary
and ergodic source is derived in [3] in terms of the directed
information, I(X̂n → Xn) defined as

I(X̂n → Xn) := H(Xn)−H(Xn||X̂n) (1)

=

n∑
i=1

I(X̂i;Xi|Xi−1) (2)

and is given by the following theorem which combines The-
orems 1 and 2 in [3].

Theorem 1 (Venkataramanan et al. [3]). For a stationary and
ergodic source {Xi} with finite alphabet X , the feed-forward
rate distortion function, Rff (D), at expected distortion D is
given by

Rff (D) = inf
PX̂|X :E[d(X,X̂)]≤D

lim
n→∞

1

n
I(X̂n → Xn),

where the infimum is taken over all conditional distributions
PX̂|X for which the joint process {(X̂n, Xn)} is stationary
and ergodic process.

For stationary and ergodic sources, [2] showed that Rff (D)
can be obtained using a simpler formula. Let Rn,ff (D) be the
nth order feed-forward rate distortion function defined by

Rn,ff (D) := min
PX̂n|Xn :E[dn(Xn,X̂n)]≤D

1

n
I(X̂n → Xn). (3)

The following theorem then gives the feed-forward rate-
distortion function.

Theorem 2 (Naiss et al. [2]). For the stationary and er-
godic source described in Theorem 1, the feed-forward rate-
distortion function is given by

Rff (D) = lim
n→∞

Rn,ff (D).

Theorem 2 states that the infimum and limit can be inter-
changed in Theorem 1. This brings a great deal of simplifi-
cation in terms of calculation; for example, a modification of
the Arimoto-Blahut algorithm is used in [2] to numerically
estimate Rff (D).

As an immediate consequence of the results in [1], one can
conclude that if {Xi} is an i.i.d. process, then the presence
of the feed-forward link does not improve the rate-distortion
function. The result of [1] can also be used to show that for
binary symmetric Markov sources with transition probability
q, BSMS(q), Rff (D) = Hb(q)−Hb(D) where Hb denotes the
binary entropy function. This expression is equal to the lower
bound on the rate-distortion function without feed-forward
obtained by Berger [9] and Gray [8] for a particular distortion
region; thus the feed-forward link helps improve the rate-
distortion function for BSMS.

III. BINARY ASYMMETRIC MARKOV SOURCES

Let B(p) denote the Bernoulli distribution with transition
probability p, that is, W ∼ B(p) if and only if P (W = 1) = p
and P (W = 0) = 1 − p. It is easy to show that any binary
asymmetric Markov source {Xi} with transition probabilities
p and q, (0 < p, q < 1), BAMS(p, q), can be represented by
two Bernoulli sources as follows:

Xi = Xi−1W
1
i + (1−Xi−1)W

2
i , (4)

where {W 1
i } and {W 2

i } are two independent processes and
W 1

i ∼ B(1 − q), W 2
i ∼ B(p) and Xi−1, W 1

i and W 2
i are

independent for every i. Let π = (π1, π2) denote the invari-
ant distribution for BAMS(p, q) and consider the Hamming
distortion measure.

As shown in [2], the feed-forward rate-distortion function
for the BAMS(p, q) represented by (4) is given by

Rff (D) = π1Hb(p) + π2Hb(q)−Hb(D). (5)

Setting p = q, BAMS(p, q) reduces to BSMS(q) and (5)
gives Rff (D) = Hb(q) − Hb(D) as proved in [1]. In the
following we present an achievability scheme based on the
scheme proposed in [7] and later developed in [10]. We will
see later that the argument given in [10] needs refinement in
our case.

We first partition the given source sequence {Xn}∞n=1 into
two sub-sequences, the Xi’s following a 0 and the Xi’s
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Fig. 2: The block diagram of the encoder.

following a 1 and then encode separately these two sub-
sequences. We describe in detail the encoding process for one
sub-sequence as the other one is similar. Given the source
sequence {Xn}∞n=1, let Ni be the time index of the ith zero
in the sequence and Yi := XNi+1. It is easy to show that {Yn}
is an i.i.d. process generated by B(p). To see this, consider the
following

P (Y i = yi) =

i∏
j=1

P (Yj = yj |Y j−1 = yj−1)

=

i∏
j=1

∞∑
n=1

P (Yj = yj |Y j−1 = yj−1, Nj = n)

× P (Nj = n|Y j−1 = yj−1)

(a)
=

i∏
j=1

∞∑
n=1

P (Xn+1 = yj |Xn = 0)

× P (Nj = n|Y j−1 = yj−1)

(b)
=

i∏
j=1

pyj (1− p)1−yj ,

where (a) is due to the Markovity of the source and the fact
that event {Nj = n} implies {Xn = 0} and (b) holds because
from (4), P (Xn+1 = yj |Xn = 0) = pyj (1− p)1−yj .

The key idea of the encoding scheme is to use an optimal
rate-distortion code of a Bernoulli B(p) source to encode the
sequence Y i. By the strong law of large numbers for Markov
chains, we know that the number of zeros in a sufficiently large
source sequence Xn is approximately nπ1, in other words, as
n→∞, with probability one,

1

n

n∑
i=1

1{Xi=0} → π1.

Let kpn = dn(π1 − δ)e and En be a binary random variable
defined as follows

En =

{
0 if Nkp

n
≤ n,

1 if Nkp
n
> n.

(6)

When En = 0 we encode (Y1, Y2, . . . , Ykp
n
) using an optimal

rate-distortion code for the source B(p) at rate R and if En = 1
we do not encode and simply send a particular vector. The
analysis given in [10] is not applicable in our case since Y kp

n

is not i.i.d. when conditioned on En = 0 and thus we need a
more involved conditioning argument.
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Fig. 3: The block diagram of the decoder at the ith time instant.

Let (Ŷ1, Ŷ2, . . . , Ŷkp
n
) be the reproduction sequence and as-

sume that the Hamming distortion between the two sequences
is normalized, that is,

d(yk
p
n , ŷk

p
n) =

1

kpn

kp
n∑

i=1

d(yi, ŷi).

Let Dn denote the distortion in encoding Y kp
n using a rate-

distortion code of rate R that is optimal for B(p). Then

Dn := E
[
d(Y kp

n , Ŷ kp
n)
]

= E
[
d(Y kp

n , Ŷ kp
n)|En = 0

]
P (En = 0)

+ E
[
d(Y kp

n , Ŷ kp
n)|En = 1

]
P (En = 1). (7)

Since the sequence Y1, Y2, . . . is i.i.d. with distribution B(p),
then obviously

lim
n→∞

Dn = Dp(R), (8)

where Dp(R) is the distortion-rate function of a Bernoulli
source B(p) at rate R. Note that since all terms in (7) are
nonnegative, we have

Dp(R) = lim
n→∞

Dn (9)

≥ lim sup
n→∞

E
[
d(Y kp

n , Ŷ kp
n)|En = 0

]
P (En = 0).

On the other hand, since d(x, y) ≤ 1 for x, y ∈ {0, 1}, the
distortion is deterministically upper bounded by 1 when En =
1. Thus, if Dp

n denotes the expected distortion of our scheme,
we have

Dp
n ≤ E

[
d(Y kp

n , Ŷ kp
n)|En = 0

]
P (En = 0) + P (En = 1).

(10)
Hence together with the fact that P (En = 1)→ 0 as n→∞,
we obtain

lim sup
n→∞

Dp
n ≤ lim sup

n→∞
E
[
d(Y kp

n , Ŷ kp
n)|En = 0

]
P (En = 0)

≤ Dp(R). (11)

The encoding scheme for the other sub-sequence is similar
to the one described above. Let Mi be the time index of ith
one in the source sequence Xn and Zi := XMi+1. We can
again show that sequence {Zi} is i.i.d. with distribution B(q).
Letting kqn be equal to dn(π2 − δ)e, we can use the same
coding scheme as before for the sequence Zkq

n . Similarly, let
Dq

n define the distortion of the encoding scheme in this case.



The encoder structure is depicted in Figure 2, where m1 and
m2 are the messages corresponding to Y kp

n and Zkq
n and are

produced by two Bernoulli rate-distortion encoders.
At the receiver side, we receive the codewords for Y kp

n

and Zkq
n and hence are able to reconstruct Ŷ kp

n and Ẑkq
n .

We then need the causal information, i.e., Xi−1 at time
i to reconstruct the source sequence. In other words, at
time i, causal information Xi−1 helps the decoder pick the
appropriate letter between Ŷi and Ẑi depending on whether
Xi−1 = 0 or Xi−1 = 1. The decoder structure is depicted in
Figure 3. The total distortion for encoding the source sequence
Xn using our parallel encoding scheme is the sum of the
distortion of each sub-sequence and therefore can be obtained
in terms of kpn, D

p
n, k

q
n and Dq

n. Note that by the definition of
kpn and kqn, there are at most 2nδ many source letters which
are not encoded and hence contribute to the total normalized
distortion by at most 2δ. For the total normalized distortion,
we can write

Dtot ≤
1

n

(
kpnD

p
n + kqnD

q
n + 2nδ

)
, (12)

where 2nδ is the contribution of uncoded bits. Letting n→∞,
we can write:

Dtot ≤ (π1 − δ)DP (R) + (π2 − δ)Dq(R) + 2δ

≤ π1Dp(R) + π2Dq(R)

+ δ(1−Dp(R)︸ ︷︷ ︸
≥0

) + δ(1−Dq(R)︸ ︷︷ ︸
≥0

)

= π1Dp(R) + π2Dq(R) + ε. (13)

The entire encoding function can be described via the follow-
ing mapping

{0, 1}k
p
n+kq

n → {1, 2, . . . , 2k
p
nR, 2k

p
nR + 1} ×

{1, 2, . . . , 2k
q
nR, 2k

q
nR + 1},

which emphasizes that for the sequence Y kp
n we need an index

chosen from {1, 2, . . . , 2kp
nR} and also one extra index for the

case of En = 1 and similarly for Zkq
n . Clearly the rate of this

coding scheme is

Rtot =
1

n
log
[
(2k

p
nR + 1)(2k

q
nR + 1)

]
≤ 1

n
(kpnR+ kqnR+ 2)

≤ R+ ε, (14)

where we use the obvious inequality log(1 + x) ≤ 1 + log x
for x ≥ 1. Combining (13) and (14) with the fact that
Rp(D) = Hb(p)−Hb(D) and Rq(D) = Hb(q)−Hb(D), we
can conclude that Rff (D) = π1Hb(p)+π2Hb(q)−Hb(D) is
achievable.

IV. NON-BINARY MARKOV SOURCES

Consider a stationary m-ary Markov source {Xi} with
transition matrix

P =


p11 p12 . . . p1m
p21 p22 . . . p2m

...
...

...
pm1 pm2 . . . pmm



with 0 < pij < 1, 1 ≤ i, j ≤ m and invariant distribu-
tion P (X1 = i) = πi for i = 1, 2, . . . ,m. Then clearly
H(Xn|Xn−1) =

∑m
i=1 πiH(Pi) where Pj denotes the jth

row of P. The following theorem gives the feed-forward rate-
distortion function, Rff (D) for {Xi} when D is under a
certain threshold.

Theorem 3. For an m-ary stationary Markov source
with transition matrix P and invariant distribution π =
(π1, π2, . . . , πm),

Rff (D) =

m∑
i=1

πiH(Pi)−H(D)−D log(m− 1)

for 0 ≤ D ≤ (m− 1)pmin where

pmin = min
0≤i,j≤m

{pi,j}.

Proof. The converse part is an easy application of Fano’s
inequality as follows

I(X̂n → Xn) =

n∑
i=1

I(X̂i;Xi|Xi−1),

=

n∑
i=1

H(Xi|Xi−1)−H(Xi|Xi−1, X̂i)

≥ H(π) + (n− 1)

m∑
k=1

πkH(Pi)

−
n∑

i=1

H(Xi|X̂i), (15)

where the inequality is due to the fact that conditioning reduces
entropy. Applying Fano’s inequality to (15), normalizing by n
and then taking the limit as n→∞, we can write

Rff (D) ≥
m∑

k=1

πkH(Pi)−H(D)−D log(m− 1).

The achievability scheme is similar to the one proposed
for BAMS except that here we have m i.i.d subsequences
{Yi,j} for i = 1, 2, . . . ,m and j = 1, 2, . . . with probability
mass functions Pi, i = 1, . . . ,m. We encode each of these
subsequences using an optimal rate-distortion code with rate
Ri(D) for which we know the following [11, Page 61]

Ri(D) = H(Pi)−Hb(D)−D log(m− 1),

for 0 ≤ D ≤ (m− 1)pimin where pimin = min{pi1, . . . , pim}.
Therefore using the argument given in Section III, the coding
rate for the entire scheme is

R =

m∑
i=1

πiRi(D)

=

m∑
k=1

πkH(Pi)−H(D)−D log(m− 1),

for 0 ≤ D ≤ (m− 1)pmin while the total distortion is

Dtot ≤ D + ε,

which completes the proof.



V. CONCLUSION

In this paper we considered the rate-distortion function,
Rff (D), for Markov sources when a noiseless feed-forward
link is causally available from the encoder to the decoder.
Here we propose a constructive coding scheme to achieve
Rff (D) for binary asymmetric Markov sources which uses
the idea of partitioning the source sequence prior to encoding.
Using this scheme, we show that achieving Rff (D) for
binary (symmetric and asymmetric) Markov sources reduces
to the optimal rate-distortion coding of Bernoulli sources. This
scheme is also generalized for m-ary Markov sources and is
shown to be optimal when the distortion D belongs to the
region where the Shannon lower bound is met with equality.
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