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Abstract — We investigate the error perfor-
mance of a communication system where a non-
uniform memoryless binary source is transmitted
via M-ary phase-shift keying (PSK) or quadra-
ture amplitude modulation (QAM) over Rayleigh
fading channels and demodulated via maximum a
posteriori (MAP) detection. Using recently de-
rived upper and lower bounds, which are tight
and can be efficiently computed, the system sym-
bol error (P:) and bit error rates (P,) are evalu-
ated over a wide range of the signal-to-noise ratio

(SNR).

I. INTRODUCTION

The performance analysis of digital communication
systems for fading channels has been an area of long-time
interest [3, 5, 12, 13]. Specifically, important efforts have
been devoted to the determination of the error rate for the
transmission of data sources over noisy channels impaired
by Rayleigh fading. In practice, many data sources (e.g.,
practical image and speech signals) are non-uniform; thus
they contain amounts of natural redundancy. Even after
data compression, a certain amount of residual redun-
dancy is still exhibited due to the sub-optimality of the
compression scheme [2, 4]. Characterization of the em-
bedded residual redundancy can be achieved by model-
ing the bit stream as an independent and identically dis-
tributed (i.i.d.) nonuniform (Bernoulli) process or as a
Markov process [1, 2, 4]. For non-uniform signaling, it is
optimal to utilize the MAP decoder at the receiver, which
minimizes the symbol error rate of the communication
system. MAP decoding performs better than the max-
imum likelihood (ML) decoding, as the source becomes
more non-uniform [1, 4].

Non-uniformly distributed signaling over AWGN chan-
nels was investigated in [11]. To the best of our knowl-
edge, no published work has appeared that considers per-
formance analysis of non-uniformly distributed signaling
over fading channels. Thus, we extend the results ob-
tained in [11] by focusing our study on fading environ-
ments, where the complex envelope of the channel re-
sponse is known to approach a zero-mean complex Gaus-
sian process, i.e., the envelope amplitude is Rayleigh and
the phase is uniformly distributed [12].

The objective of this work is to evaluate the error per-
formance when nonuniform M-ary signals are transmit-
ted over a Rayleigh fading channel. If signal s, is trans-
mitted, a symbol error occurs when the decoded symbol
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equals any s;, where s; # s,. Therefore, the symbol error
rate (Ps) under MAP decoding can be written in terms
of a union of events:

P, = (e | su)P(su)

e

1 i#u

N
ZP
uNl
ZP

) Psu), o

u

where P(e | sy) is the conditional probability of error
given that s, was sent, and €,; represents the event that
s; has a higher MAP metric than s,,. The problem arising
with determining the probability of symbol error using
this formula is that the probability of a union of events
is often difficult to compute explicitly, since in general
it requires taking into account all combinations of event
intersections.

The next feasible way is to investigate upper and
lower bounds that are tight enough for estimating the
true value of the error probability. Several tight upper
and lower bounds for the probability of a finite union of

events P(U?’:1 Ai) were developed recently, such as a

lower bound established in [10] (the KAT lower bound),
a practical algorithmic stepwise lower bound [11] origi-
nating from Kounias [8], and a greedy algorithmic imple-
mentation [11] of an upper bound due to Hunter [7]. In
this work, we apply the above bounds, which are only
expressed in terms of the individual event probabilities
P(A;) and the pairwise event probabilities P(A; N A;), to
estimate the performance of non-uniform signaling over
Rayleigh fading channels.

The rest of this paper is organized as follows. The
problem of examining the symbol and bit error proba-
bilities of nonuniform signals transmitted over Rayleigh
fading channels used in conjunction with M-PSK/QAM
modulation and MAP decoding is investigated in Section
II. Numerical results and discussion are provided in Sec-
tion III.

II. NONUNIFORM SIGNALING OVER FLAT
RAYLEIGH FADING CHANNELS

Consider a nonuniform i.i.d. binary source {X;} (with
distribution P{X = 0} = p) which is grouped in blocks
of log, M bits (we assume that M is a power of 2). Each
block is subsequently M-PSK or M-QAM modulated
with Gray mapping. Then, the M-ary modulated sig-
nal sequence is transmitted over a frequency-nonselective
flat Rayleigh fading channel and is decoded via the op-
timal MAP criterion at the receiver. More specifically,
if one of M signals s1,s2, -, snm is sent, then the MAP
decoder declares that s; was sent if, for j = 1,2,---, M



and j # i, the MAP metric of s; is bigger than the metric
of s;; ie.,

P(si|r) 2 P(sj | r), ()

where
r==cSy, +n

is the received complex signal, ¢ and n are complex Gaus-
sian distributed with zero-mean and covariance matrices
a’I> and (Ny/2)I», respectively, where I> is the 2 x 2
identity matrix. We assume that ¢, s, and n are pairwise-
uncorrelated.

Symbol Error Rate (SER) The symbol error rate Ps is
expressed in (1). To apply the bounds on (1), we need to
determine the P(ey; | su) and P(eu;Néy; | su) event prob-
abilities. If the complex-valued Gaussian random variable
¢ can be estimated from the received signal without er-
ror, we can derive the conditional individual and pairwise
error probabilities given the channel fading and that s,
is sent:

Pleui | ¢, 84)
= Pr{P(r | s:,¢)P(s:) > P(r | su,c)P(su)}
= Q(dui(a)), 3)
and
Pleyi Newj | ¢, 5u)
= Pr{P(r|si,0)P(si) > P(r] su,¢)P(su),
P(r | 5;,¢)P(s;) > P(r| 5.,0)P(s.) }
= U (puij, Pui(), puj(a)), (4)
where || - || is the Euclidean norm, (:,-) denotes the usual
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Notice that

P(eui | ¢, 8u) = Plews | @, su)

and
P(eui M €uj | c, Su) = P(eui M €uj | a,su).

Therefore,
P(eui | su) = Ea [P(em- | o, su)]
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Integrating the RHS of (10) by parts, we can show that

P(eyi | su)
5(1- =) e [ (1 ma)],
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where wy; = In P(sy)/P(si), and

7w = [ (022, +2N0) / (o2d2,).
Similarly,
Peyi Newj | Su) = Ea [P(eui Neyj | @, su)}

= Ea[¥ (puijs $ui(@), $ui(@))], (12)
which we determine numerically.

We hence can apply the KAT lower, stepwise lower
and greedy upper bounds [11] on (1) to obtain two lower
bounds and one upper bound on P; in terms of P(eyu; |
Su), P(€ui Neyj | su) and P(sy).

Bit Error Rate (BER) In many cases, the bit error
rate P, is a more useful performance measure. Under the
MAP decoding criterion, P, can be written as

M
Pb = Zpb(’u,)P Su
u=1

where
Py(u) = L E(§ of bit errors |sy)
b - logzM ¢
= d m s u mua
logz Z 1 (W, w |
and
Apjw = P(sm is decoded | sy)
= 1-P(U{PGiIn) > Pisn|n)} ‘ su)
= l_P(U €umi Su)y
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where v =1,---, M, w, and w, are the bit assignments
for signals s, and s,, respectively, du(wm,w,) is the
Hamming distance between w,, and w,, and €,mi repre-
sents the event that symbol s; has a higher metric than
symbol s, .



As in the case for the symbol error rate, P(eumi | ¢, Su)
and P(eumi N €um;j | ¢, Su) can be expressed in terms of
the Q(-) and ¥(-) functions, respectively. More precisely,
we obtain that

P(eumi | ¢, Su)

- Pr{P(r | 51,&)P(s:) > P(r | $m,¢)P(5m) ‘ s}

= Q (umi(a)), (13)
and
P(ﬁumi M €umyj | c, Su)
= Pr{P(r | 5:,0)P(s:) > P(r | $m,¢)P(5m),
P(r | 35,0)P(s;) > P(r | 5m,¢)P(sm) | 5.}
=y (Pmij; ‘/’umi(a); ‘/’umj (a)), (14)
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P(Eumi | Su) = E, [P(Eumz | a, Su)]
= Eu[Q@um(@)].  (6)

Integrating the RHS of (16) by parts, we can show that
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P(€umi N €umj | Su)
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= Ba [ (pmiss $umi(@), dums(@))],  (18)

which we compute numerically.
Applying the bounds to P(U#m €umi ‘ su) yields two

upper bounds and one lower bound on the bit error rate
Py.

III. NUMERICAL RESULTS AND DISCUSSION

We apply the KAT, the stepwise, and the greedy
bounds to estimate the SER P, and the BER P, of
an uncoded communication system used in conjunction
with 8,16-PSK/16-QAM modulations and MAP decod-
ing over a Rayleigh fading channel. We consider p = 0.5
and 0.9 for the probability that an input source bit is zero.
All results are illustrated in terms of signal-to-noise ratio
(SNR) E3/No, where Ej is the energy per information
bit. The SNR ranges considered are all from SNR = 0
dB to SNR = h, with h ranging from 26 dB to 30 dB. To
verify the accuracy of the bounds, we also provide simu-
lation results for p = 0.5 and 0.9, which are obtained by
averaging 1000 trials with 100,000 symbols each.

For the case p = 0.5 with M-PSK and M-QAM mod-
ulation, there exist good approximations for Ps [12] and
P, [14]. However, for 8,16-PSK and 16-QAM modulation
we have found the lower and upper bounds for both P
and P, derived in Section II, based on the stepwise and
greedy bounds, to coincide, and agree with the approx-
imate and simulation results. The stepwise and greedy-
based bounds for symbol errors show excellent accuracy
for p = 0.5 (see Figs. 1-3). Notice that MAP estimation
is equivalent to ML estimation for p = 0.5. However, it
is illustrated that the performance for highly nonuniform
sources is significantly improved by using MAP decoding.

For the case of nonuniform signaling, the exact or ap-
proximate symbol- or bit-error rates are not available to
the best of our knowledge; hence bounds are very help-
ful. We plot the symbol and bit error rates in Figs. 1-3
for p = 0.9. It is shown that the bounds provide an ex-
cellent estimate of the error probabilities over the entire
range of SNR values. The stepwise and the greedy bounds
are particularly impressive as they agree with the simu-
lation results even during very severe channel conditions.
The performance of the KAT lower bound for the SER is
weaker than that of the stepwise lower bound for SER;
but it is more precise for p = 0.9 than for p = 0.5.

For the cases considered in this paper, all bounds were
practical to compute. In all the SER and BER curves, for
a given value of SNR, and including the time to calculate
all the individual and pairwise event probabilities, the
combined computing time ranged from 3s (for the SER
with 8-PSK) to 62s (for the BER with 16-PSK), on a
Sun Ultra-Sparc 60 computer running Unix. To compute
the ¥(-) function, we adopted the algorithm written in
Fortran by Donnelly [6]. Gaussian Quadrature was used
to compute the integration over the fading attenuation
for the pairwise event probabilities.
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Fig. 1: SER P; and BER P, for 8-PSK.
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Fig. 2: SER P; and BER P, for 16-PSK.
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