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Abstract— We study the feedback capacity of a discrete binary- does not increase the capacity of the modulohannel. For
input non-binary output channel with memory recently intro- the NBNDC, as the later property does not hold, our proof
duced in [5] to model soft-decision demodulated time-cordated is based on an intermediate result (see Lemma 1), which

fading channels. The channel, whose output process can be .
explicitly expressed in terms of its binary input process ad states that under feedback, the NBNDC conditional entropy

a non-binary noise process, encompasses modulo-additiveise Of any output symbol given previous outputs is maximized by
binary channels as a special case (realized when hard-deicis  a uniform feedback policy.
demodulation is used on the underlying fading channel). We  |n previous works, Shannon [7] first showed that feedback
show that, even though the channel has memory, feedback doesyoeg not increase the capacity of discrete memoryless chan-
not increase its capacity when the noise process is statiaya s Later. C d Pombra [2 ered additive obis
ergodic. We also note the validity of the result for arbitrary ng S. Later, overan_ om. ra [2] considered additive nn
noise processes. with colored Gaussian noise and proved that feedback can
either increase their capacity by at most half a bit or at most

I. INTRODUCTION double it (the later result is originally due to Pinsker [6ida

We investigate the feedback capacity of a discrete binar'?rbert [3D).
input 27-ary output communication channel, which was re- The remainder of the paper is organized as follows. We
cently proposed in [5] to model soft-decision demodulatéftroduce the NBNDC model in Section Il and review its non-
fading channels with memory. The channel, which we refé@edback capacity in Section lIl. In Section IV, we inveatigy
to by the non-binary noise discrete channel (NBNDC), e channel's feedback capacity and show that it is identica
explicitly described in terms of a non-binary noise proced8 its non-feedback capacity when its non-binary noise is
that is independent of its input. We show that, in spite ¢ stationary ergodic process. We note that the result also
the NBNDC's memory structure, feedback does not helfpplds for arbitrary noise processes. Finally, we conclute i
increase its capacity. Although the result is proved unHer tSection V.
assumption of stationary ergodic non-binary noise, we rema Throughout, random variables will be denoted by upper
(without proof) that it also holds for arbitrary (not necasly case letters.X) and their particular realizations by lower case
stationary ergodic) noise. letters ). Also, we will write then-tuples(X;, Xo, -, X,,)
This result generalizes in some sense the work in [1], whe?8d (21,22, -, ) as X" andz", respectively.
it is _aIso shown that fe_e_dback does not increase capacity Il. CHANNEL MODEL
for discrete moduld: additive channels with arbitrary noise
with memory. Furthermore, whep= 1, the result intersects 1he NBNDC is a discrete binary-inpaf-ary output com-
exactly with the result folc = 2 in [1], since the NBNDC munication channel with memory introduced in [5] with the
reduces to the modulo-2 additive noise channel. objective of capturing both the statistical memory and tfé- s
Let us briefly explain the proof used here for the NBND@ecision_infqrmation of time.—correilated fading channelsdm
in relation to the proof used in [1]. Note that, although botH!ated via binary phase-shift keying (BPSK) and coherently
the NBNDC and the modulé- additive channel of [1] are demodulated with an output quantizer of resolutiprGiven
symmetric in the sense of [4] (this is observed in [5] for thg‘at the_ _channel hqs a _strmghtforwgrd structure and useful
NBNDC) and thus have the property that their non-feedbackvertibility” properties, it can help in the design of cod
capacity is achieved by a memoryless uniformly distributdfg9/decoding schemes for soft-decision demodulated lann
input, the moduldé channel is “strongly” symmetric in the with memory t.hat result in superior performange over cod_lng
sense that a memoryless uniformly distributed input yiel@yStems that ignore the channel’s memory (via interlegving
a memoryless uniformly distributed output; this is not thand/or soft-decision information (via hard demodulatif)
case for the NBNDC (withy > 1). As noted in [1], such Additionally, receivers operating with 1-3 bit quantizatihave

output uniformity property is key to showing that feedbacRotential applications in wireless communications. _
The NBNDC model, which is equivalent to a discrete fading
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fading channel and a-bit soft-quantized coherent demodula{respectively, columns). Thus the channel is symmetricién t
tor [5], is explicitly described by the following equation sense of Gallager [4, p. 94] and its block mutual information
I(X™ Y™) is maximized by a uniformly distributed (equally

_ _ _1\X
Yo = (27 = D)X + (1) Zs @) likely) input X™. Under a uniform input distribution, the value
for k = 1,2,---, where X}, is the input processy;, is the ©Of H(Y™) is also maximized, satisfying
output process and;, is the noise process. Here the input N n
X € X = {0,1} is binary, and both noise and output ;?g%[H(Y )] =n+HWT) “)

symbols,Zk andY},, take values from thg samé-ary alphabet where {I¥,,} is a process defined on the alphabét —
givenbyz =Y =4{0,1,---,27 — 1}. It is also assumed that o ) RN

. . . 0,1,---,297t — 1} with n-fold probability distribution
the noise and input processes are independent from eaah othée

C . n _ (94 _ 1)gn
Note that under hard (_jgmodulatmn, i.e., fpe= 1, equation Pr(W™ = w") = Z pr(gn - E - )x (5)
(1) reduces to the familiar expression = (—1)

Yi =X ® Zx

where 2" = (w" — (2¢ — 1)z")/(—1)*" denotes then-
where @ denotes modulo-2 addition. In other words, whefiple obtained from component-wise operations, i.e.,the
¢ = 1, the NBNDC reduces to the binary (modulo-2) additivéuple (Z1 = (w1 — (29 — 1)z1)/(=1)"*, Z> = (w2 — (27 —

noise channel. Dx2)/(—=1)%2, -+, Zn = (wp — (29 = D)y /(= 1)").
Finally, substituting (4) into (3) yields that
I1l. CAPACITY WITHOUT FEEDBACK 1
. . . O =1+ ~[HW")~ H(Z")] (6)
Consider the NBNDC given by (1), where the noise process n

is stationary ergodic. For this information stable chantted and the channel capacity is thus given by
non-feedback capacity is given by [8], [5]

Cyrp = lim O™
Cyrp = lim C™ 2) T
e = 14 lim —[HW™) —H(Z"™)] ()
where n—oon
1 = 1+HW)-H(Z) (8)
C™ = max —I(X™Y™),
p(z™) N whereH (W) andH (Z) denote the entropy rates ¥, } and

where the maximum is taken with respect to all input distritZ»}, respectively. A more detailed derivation of the above
butionsp(z™) andI(X™; Y™) is the block mutual information non-feedback capacity of the NBNDC is available in [5].
between the channel input tuplé™ and the channel output

tuple Y™. Using (1) and the fact thaf X} and {Z;} are IV. CAPACITY WITH FEEDBACK

independent from each other, the block mutual information | this section, we will show that feedback does not increase

can be rewritten as the capacity of the NBNDC. Without loss of generality, we

I(X™Y") = H(Y™) — HY"|X") = HY™) — H(Z") assume thaj > 2, singe forg = 1, the NBNDC reduces to 'Fh.e
modulo-2 additive noise channel and hence the result lisivia

Therefore holds from [1]. By feedback, we mean that there exists a

n \pan) ®) delayless and has large capacity. Thus at any given time, all
_ ) previously received outputs are unambiguously known by the

We now point out that the NBNDC, as describedYy= transmitter and can be used for encoding the message into the

J(Xk, Zy) where f(-,-) is given in (1), satisfies the following next code symbol.

“invertibility” properties: A feedback code with blocklength and rateR consists of

(a) Forany fixed input € X, f(z,) : £ — Y isinvertible. a sequence of mappings

(b) Every output symbol is the image of exactly two distinct R i
input-noise pairs; i.e., for any € Y, there are exactly Gi 1,2, 2" X YT = X
two pairs(z1,21) and(zz, 22) in & x Z such thatr; #  for ; = 1,2, ...n and an associated decoding function
x2vi1 # 22 indg_nf(xlvzl)_f(xivzﬂ' . - ¢:yn_>{1’27”"2nR}_

Let Q" = [P"(y"|z=")] denote the2™ x 29" transition
probability matrix of the NBNDC, where each row is rep- Thus when the transmitter wants to send a message, say
resented by:" and each column is represented 48y It can V € {1,2,...,2"F} it sends the codeword ™", where X; =
be shown using the channel's above properties@fatan be (V) and X; = ¢;(V,Y1,---,Y;_1), fori = 2,--- n. For
partitioned along its columns int%?—Y" arrays, where each a receivedY” at the channel output, the receiver uses the
array is a2” x 2" matrix and has the property that each of itslecoding function to estimate the transmitted messagé as
rows (respectively, columns) is a permutation of its otlevs ¢(Y™). A decoding error is made whei £ V.

1 channel from the receiver to the transmitter which is neiss|
cm == (max[H(Y”)] - H(Z")) .



We assume that the messdgés uniformly distributed over ~ We next prove that all of the output conditional entropies
{1,2,...,2"R}. Therefore, the probability of error is given byH (Y#|Y*~1) in (9) are maximized by uniform conditional in-
put distributionsP (X;| X*~!, Y1) (feedback policies). With
this result in hand, we can then directly deduce that feddbac
does not increase the capacity of the NBNDC as the right

hand side of (9) will equal’y rp after normalizing by and
The capacity with feedbackl’rp, is the supremum of taking the limit.

all admissible feedback code rates (i.e., all rates for whic ) )

there exists sequences of feedback codes with asympiptical Lémma 1: For a general noise proce$, }, each condi-

vanishing probability of error). tional output entropiedd (V;|Y*~1), 4 =1,---,nin 9) is
From Fano’s inequality, we have maximized by a uniform feedback policy:

2nR

P QnR ZP{¢> Y") A VIV =k} =P{o(Y") #V}.

H(V|Y,) < hy(P.") + P.Wlog, (2" — 1) P(X;=alX" ' =2 Y =y = <

< (n) _ | _ |
s L+ ETnkR for all a € {0,1}, 271 € {0,1}'~! andy'~! € Yi~1.

. . . . (n)
where the f|r§t inequality hOIdS. sindg,(Pe ) < 1, where Proof: Let us first write the output conditional entropy
hy(+) is the binary entropy function. We also know that HYi|Y™) as

nR = H(V)
= H{VIY")+I(V;Y™)
< 14+ PR+ I1(V;Y™)

Ylyz 1 ZP i— 1 Ylyz 1_ i—l) (10)

where

whereR is any admissible rate. Dividing both sides above byy(y;yi-1 — ,i=1) = — Zp(yi|yi—1) log P(y:|y"™). (11)

n and taking the limit yields -7 "

Crp < lim sup — I(V Y™ To show thatH (Y;|Y*~1) in (10) is maximized by a uniform
n—oo feedback policy, it is enough to show that such a uniform
where the supremum is taken over all feedback policipelicy maximizes each of thél (Y;|Y*~! = y~1) terms.
n . o aa—1 i1y, i1
(VY™ = 3 Iviviyi 220 2.0 Pluwws ety
i=1 T, x* Zi ozt - .
n ) ) = Z Zpyz|xuzu , Zilaylil)
= Y (HY™)-HY[V,Y'™))
iil P(CCZ',Z»L',CC ,L 1|y ) (12)
= Y (HOGY™) -HEV,Y"L X, XTY) = Z ZP yzlxl,zz
=1 zi—1
z 1
where the last equality follows from the fact thaf, = P(xwzzvx ly' ™) (13)
Ur(V,Y1,Ys, ..., Y1) for k=1,---,i. We also can write = Z Z P( yz|xz,zz (2,201, 27y
i—1
: -1y yi-1 = ,
H(YAV,Y_ ;[X(l];())(( Z))|V Yl x, X (zz'|:ci, Ty (14)
B v Z ’ ’ o = P(y;|xi, 2;) P zlz
— H(lev’ Yz_l,Xi,Xl_l) Z ZIZI y | | )
= H(Zi|Va.Yf717XiaXiilvziil) (xz|a: L2ty P~ 27y (15)
= H(ZZ|Z17 ) = Z ZPKMUC“% (EZ|.I' ayi_l)
where the second and third equalities follow from chan- @ i1 i1
nel property (a) and the last equality holds singg and (Zi|2 DPE ATy, (16)

(V,X;,Y'"!) are conditionally independent give&'~'. Thus

Therefore, we get that .
P(yily™" Z Zpyzkfuzl (zi2*
I(V; YY) @t , ,
1 (wilw Ly THPET AT Y. (A7)

[H(Y;[Y*™Y) = H(Z|Z7 )] . () Setting P(X; = 0|z*~1,4°~!) = p and applying channel
1 properties (a) and (b) to (17) yields

I(V;Y") =

I
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I
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for a stationary ergodic noise. But by definition of the feaclb
i i capacity, we know tha€'yrp < Crp. Thus we have shown
P(le:.jly 1)+P(Y—z:2q_1_¢7|y 1) the fo”owing_

_ A | i—1 i—1) i—1 _
N Z P(Zi =l ) P2y ) (4 (1= p)) Theorem 1: Feedback does not increase the capacity of the

@l ‘ ‘ S NBNDC with stationary ergodic noise:
+ Z P(Z;=27—1—j]z"" )Pt 27y ™)
pi—1 i1 CFB:CNFBZI-l-HW)—H(Z).
x(p+(1-p) Observation: Remark that, since Lemma 1 holds for arbitrary
= Z [P(Z; = jlZmY) + P(Zi =271 —j|zi‘1)} noise processes, Theorem 1 can be extended for such noise
pin1 i1 sources (i.e., without requiring them to be stationary dicjo
’ ) P21, 2 Yy by using Verdl and Han’s non-feedback capacity formula for

general channels with memory [8].

D P(Zi=j1z" )+ P(Zi =20 —1— |z 1)

zi—1

V. CONCLUSIONS

In this work, we investigated the feedback capacity of a
k; (18) discrete binary-inpu?-ary output communication channel

, with memory which was recently proposed in [5] to model
— -1

for j = 0’.1".'('1’ 2 d_ L. :ct f\ho;'”ddl;e Eote? that eachgpgy_modulated correlated fading channels used in conjunc
kj ;Tl(l?zl's independent of the feedback poligY(X: = o with 29-ary soft-decision demodulation. We showed that
0lz*~%,y""). Using (18), we can write (11) as feedback does not increase the capacity of this channel. The

X P( 1y

1>

20-1_1 result is obtained by first demonstrating that, due to the
HY; Y=l =y = — Z [a;loga; channel invertibility properties, the best feedback polis
=0 a uniform policy, as in the non-feedback case. Future work
+(k; — aj) log(k; — a;)] (19) may include the study of the channel’s capacity-cost famcti
(with and without feedback); i.e., the largest rate foraiely
where _ communicating over the channel when cost constraints are
a; = P(Y; = jly"™") imposed on its binary-valued input. It is plausible thathist
and case_feedback can strictly increase the channel’s capeasty
by —a; = P(Y; =29 — 1 — jlyiY), function.
Applying the log-sum inequality on each summand (within REFERENCES
brackets) in (19) yields that [1] F. Alajaji, “Feedback does not increase the capacity is€réte channels
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HY Y™ =y < - Z k;log(k;/2) (20) [2] T. M. Cover and S. Pombra, “Gaussian feedback capadiFE Trans.

Inform. Theory, vol. 35, pp. 37-43, Jan. 1989.
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J=0

with equality iff a; = k; —a; for j = 0,1, ...
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other words,H (Y;|Y*~! = y*~1) is maximized iff York: Wiley, 1968.
0ol gl [5] C. Pimentel and F. Alajaji, “A discrete channel model foapturing
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that (21) is satisfied when [7] C. E. Shannon, “The zero-error capacity of a noisy chghnBE Trans.
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Hence a uniform feedback policy maximizes the conditional

entropy H (Y;|Yi~1 = yi=1) for eachy’~!; this completes the

proof. ]

Lemma 1 directly implies that a uniform feedback policy
yields a uniformly distributed inpuX™ and maximizes the
channel’s output block entrop/ (Y™), resulting inH (Y™) =
n—+H(W™) as in (4). Substituting the later in (9), normalizing
by n and taking the limit yield that

Crg < 1+H(W)—-H(Z)=Cnrp (23)



