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Abstract— We study the feedback capacity of a discrete binary-
input non-binary output channel with memory recently intro -
duced in [5] to model soft-decision demodulated time-correlated
fading channels. The channel, whose output process can be
explicitly expressed in terms of its binary input process and
a non-binary noise process, encompasses modulo-additive noise
binary channels as a special case (realized when hard-decision
demodulation is used on the underlying fading channel). We
show that, even though the channel has memory, feedback does
not increase its capacity when the noise process is stationary
ergodic. We also note the validity of the result for arbitrary
noise processes.

I. INTRODUCTION

We investigate the feedback capacity of a discrete binary-
input 2q-ary output communication channel, which was re-
cently proposed in [5] to model soft-decision demodulated
fading channels with memory. The channel, which we refer
to by the non-binary noise discrete channel (NBNDC), is
explicitly described in terms of a non-binary noise process
that is independent of its input. We show that, in spite of
the NBNDC’s memory structure, feedback does not help
increase its capacity. Although the result is proved under the
assumption of stationary ergodic non-binary noise, we remark
(without proof) that it also holds for arbitrary (not necessarily
stationary ergodic) noise.

This result generalizes in some sense the work in [1], where
it is also shown that feedback does not increase capacity
for discrete modulo-k additive channels with arbitrary noise
with memory. Furthermore, whenq = 1, the result intersects
exactly with the result fork = 2 in [1], since the NBNDC
reduces to the modulo-2 additive noise channel.

Let us briefly explain the proof used here for the NBNDC
in relation to the proof used in [1]. Note that, although both
the NBNDC and the modulo-k additive channel of [1] are
symmetric in the sense of [4] (this is observed in [5] for the
NBNDC) and thus have the property that their non-feedback
capacity is achieved by a memoryless uniformly distributed
input, the modulo-k channel is “strongly” symmetric in the
sense that a memoryless uniformly distributed input yields
a memoryless uniformly distributed output; this is not the
case for the NBNDC (withq > 1). As noted in [1], such
output uniformity property is key to showing that feedback
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does not increase the capacity of the modulo-k channel. For
the NBNDC, as the later property does not hold, our proof
is based on an intermediate result (see Lemma 1), which
states that under feedback, the NBNDC conditional entropy
of any output symbol given previous outputs is maximized by
a uniform feedback policy.

In previous works, Shannon [7] first showed that feedback
does not increase the capacity of discrete memoryless chan-
nels. Later, Cover and Pombra [2] considered additive channels
with colored Gaussian noise and proved that feedback can
either increase their capacity by at most half a bit or at most
double it (the later result is originally due to Pinsker [6] and
Ebert [3]).

The remainder of the paper is organized as follows. We
introduce the NBNDC model in Section II and review its non-
feedback capacity in Section III. In Section IV, we investigate
the channel’s feedback capacity and show that it is identical
to its non-feedback capacity when its non-binary noise is
a stationary ergodic process. We note that the result also
holds for arbitrary noise processes. Finally, we conclude in
Section V.

Throughout, random variables will be denoted by upper
case letters (X) and their particular realizations by lower case
letters (x). Also, we will write then-tuples(X1, X2, · · · , Xn)
and (x1, x2, · · · , xn) asXn andxn, respectively.

II. CHANNEL MODEL

The NBNDC is a discrete binary-input2q-ary output com-
munication channel with memory introduced in [5] with the
objective of capturing both the statistical memory and the soft-
decision information of time-correlated fading channels mod-
ulated via binary phase-shift keying (BPSK) and coherently
demodulated with an output quantizer of resolutionq. Given
that the channel has a straightforward structure and useful
“invertibility” properties, it can help in the design of cod-
ing/decoding schemes for soft-decision demodulated channels
with memory that result in superior performance over coding
systems that ignore the channel’s memory (via interleaving)
and/or soft-decision information (via hard demodulation)[5].
Additionally, receivers operating with 1-3 bit quantization have
potential applications in wireless communications.

The NBNDC model, which is equivalent to a discrete fading
channel composed of a BPSK modulator, a time-correlated flat



fading channel and aq-bit soft-quantized coherent demodula-
tor [5], is explicitly described by the following equation

Yk = (2q − 1)Xk + (−1)XkZk (1)

for k = 1, 2, · · ·, whereXk is the input process,Yk is the
output process andZk is the noise process. Here the input
Xk ∈ X = {0, 1} is binary, and both noise and output
symbols,Zk andYk, take values from the same2q-ary alphabet
given byZ = Y = {0, 1, · · · , 2q − 1}. It is also assumed that
the noise and input processes are independent from each other.
Note that under hard demodulation, i.e., forq = 1, equation
(1) reduces to the familiar expression

Yk = Xk ⊕ Zk

where⊕ denotes modulo-2 addition. In other words, when
q = 1, the NBNDC reduces to the binary (modulo-2) additive
noise channel.

III. CAPACITY WITHOUT FEEDBACK

Consider the NBNDC given by (1), where the noise process
is stationary ergodic. For this information stable channel, the
non-feedback capacity is given by [8], [5]

CNFB = lim
n→∞

C(n) (2)

where

C(n) = max
p(xn)

1

n
I(Xn;Y n),

where the maximum is taken with respect to all input distri-
butionsp(xn) andI(Xn;Y n) is the block mutual information
between the channel input tupleXn and the channel output
tuple Y n. Using (1) and the fact that{Xk} and {Zk} are
independent from each other, the block mutual information
can be rewritten as

I(Xn;Y n) = H(Y n) −H(Y n|Xn) = H(Y n) −H(Zn)

Therefore

C(n) =
1

n

(

max
p(xn)

[H(Y n)] −H(Zn)

)

. (3)

We now point out that the NBNDC, as described byYk =
f(Xk, Zk) wheref(·, ·) is given in (1), satisfies the following
“invertibility” properties:

(a) For any fixed inputx ∈ X , f(x, ·) : Z → Y is invertible.
(b) Every output symbol is the image of exactly two distinct

input-noise pairs; i.e., for anyy ∈ Y, there are exactly
two pairs(x1, z1) and(x2, z2) in X ×Z such thatx1 6=
x2, z1 6= z2 andy = f(x1, z1) = f(x2, z2).

Let Qn = [Pn(yn|xn)] denote the2n × 2qn transition
probability matrix of the NBNDC, where each row is rep-
resented byxn and each column is represented byyn. It can
be shown using the channel’s above properties thatQn can be
partitioned along its columns into2(q−1)n arrays, where each
array is a2n × 2n matrix and has the property that each of its
rows (respectively, columns) is a permutation of its other rows

(respectively, columns). Thus the channel is symmetric in the
sense of Gallager [4, p. 94] and its block mutual information
I(Xn;Y n) is maximized by a uniformly distributed (equally
likely) inputXn. Under a uniform input distribution, the value
of H(Y n) is also maximized, satisfying

max
p(xn)

[H(Y n)] = n+H(Wn) (4)

where {Wk} is a process defined on the alphabetW =
{0, 1, · · · , 2q−1 − 1} with n-fold probability distribution

Pr(Wn = wn) =
∑

xn∈Xn

Pr

(

Zn =
wn − (2q − 1)xn

(−1)xn

)

(5)

where Zn = (wn − (2q − 1)xn)/(−1)xn

denotes then-
tuple obtained from component-wise operations, i.e., then-
tuple (Z1 = (w1 − (2q − 1)x1)/(−1)x1 , Z2 = (w2 − (2q −
1)x2)/(−1)x2 , · · · , Zn = (wn − (2q − 1)xn)/(−1)xn).

Finally, substituting (4) into (3) yields that

C(n) = 1 +
1

n
[H(Wn) −H(Zn)] (6)

and the channel capacity is thus given by

CNFB = lim
n→∞

C(n)

= 1 + lim
n→∞

1

n
[H(Wn) −H(Zn)] (7)

= 1 +H(W) −H(Z) (8)

whereH(W) andH(Z) denote the entropy rates of{Wn} and
{Zn}, respectively. A more detailed derivation of the above
non-feedback capacity of the NBNDC is available in [5].

IV. CAPACITY WITH FEEDBACK

In this section, we will show that feedback does not increase
the capacity of the NBNDC. Without loss of generality, we
assume thatq ≥ 2, since forq = 1, the NBNDC reduces to the
modulo-2 additive noise channel and hence the result trivially
holds from [1]. By feedback, we mean that there exists a
channel from the receiver to the transmitter which is noiseless,
delayless and has large capacity. Thus at any given time, all
previously received outputs are unambiguously known by the
transmitter and can be used for encoding the message into the
next code symbol.

A feedback code with blocklengthn and rateR consists of
a sequence of mappings

ψi : {1, 2, ..., 2nR} × Yi−1 → X

for i = 1, 2, ...n and an associated decoding function

φ : Yn → {1, 2, ..., 2nR}.

Thus when the transmitter wants to send a message, say
V ∈ {1, 2, ..., 2nR}, it sends the codewordXn, whereX1 =
ψ1(V ) andXi = ψi(V, Y1, · · · , Yi−1), for i = 2, · · · , n. For
a receivedY n at the channel output, the receiver uses the
decoding function to estimate the transmitted message asV̂ =
φ(Y n). A decoding error is made when̂V 6= V .



We assume that the messageV is uniformly distributed over
{1, 2, ..., 2nR}. Therefore, the probability of error is given by

P (n)
e =

1

2nR

2nR

∑

k=1

P {φ(Y n) 6= V |V = k} = P {φ(Y n) 6= V } .

The capacity with feedback,CFB , is the supremum of
all admissible feedback code rates (i.e., all rates for which
there exists sequences of feedback codes with asymptotically
vanishing probability of error).

From Fano’s inequality, we have

H(V |Yn) ≤ hb(Pe
(n)) + Pe

(n) log2(2
nR − 1)

≤ 1 + Pe
(n)nR

where the first inequality holds sincehb(P
(n)
e ) ≤ 1, where

hb(·) is the binary entropy function. We also know that

nR = H(V )

= H(V |Y n) + I(V ;Y n)

≤ 1 + Pe
(n)nR+ I(V ;Y n)

whereR is any admissible rate. Dividing both sides above by
n and taking the limit yields

CFB ≤ lim
n→∞

sup
1

n
I(V ;Y n)

where the supremum is taken over all feedback policies
{

P (xi|x
i−1, yi−1)

}n

i=1
. We can writeI(V ;Y n) as follows

I(V ;Y n) =

n
∑

i=1

I(V ;Yi|Y
i−1)

=

n
∑

i=1

(

H(Yi|Y
i−1) −H(Yi|V, Y

i−1)
)

=

n
∑

i=1

(

H(Yi|Y
i−1) −H(Yi|V, Y

i−1, Xi, X
i−1)

)

where the last equality follows from the fact thatXk =
ψk(V, Y1, Y2, . . . , Yk−1) for k = 1, · · · , i. We also can write

H(Yi|V, Y
i−1, Xi, X

i−1)

= H(f(Xi, Zi)|V, Y
i−1, Xi, X

i−1)

= H(Zi|V, Y
i−1, Xi, X

i−1)

= H(Zi|V, Y
i−1, Xi, X

i−1, Zi−1)

= H(Zi|Z
i−1)

where the second and third equalities follow from chan-
nel property (a) and the last equality holds sinceZi and
(V,Xi, Y

i−1) are conditionally independent givenZi−1.
Therefore, we get that

I(V ;Y n) =

n
∑

i=1

I(V ;Yi|Y
i−1)

=

n
∑

i=1

[

H(Yi|Y
i−1) −H(Zi|Z

i−1)
]

. (9)

We next prove that all of the output conditional entropies
H(Y i|Y i−1) in (9) are maximized by uniform conditional in-
put distributionsP (Xi|X

i−1, Y i−1) (feedback policies). With
this result in hand, we can then directly deduce that feedback
does not increase the capacity of the NBNDC as the right
hand side of (9) will equalCNFB after normalizing byn and
taking the limit.

Lemma 1: For a general noise process{Zk}, each condi-
tional output entropiesH(Yi|Y

i−1), i = 1, · · · , n in (9) is
maximized by a uniform feedback policy:

P (Xi = a|X i−1 = xi−1, Y i−1 = yi−1) =
1

2

for all a ∈ {0, 1}, xi−1 ∈ {0, 1}i−1 andyi−1 ∈ Yi−1.

Proof: Let us first write the output conditional entropy
H(Yi|Y

i−1) as

H(Yi|Y
i−1) =

∑

yi−1

P (yi−1)H(Yi|Y
i−1 = yi−1) (10)

where

H(Yi|Y
i−1 = yi−1) = −

∑

yi

P (yi|y
i−1) logP (yi|y

i−1). (11)

To show thatH(Yi|Y
i−1) in (10) is maximized by a uniform

feedback policy, it is enough to show that such a uniform
policy maximizes each of theH(Yi|Y

i−1 = yi−1) terms.

We now expandP (yi|y
i−1) as follows

∑

xi

∑

xi−1

∑

zi

∑

zi−1

P (yi, xi, zi, x
i−1, zi−1|yi−1)

=
∑

xi

· · ·
∑

zi−1

P (yi|xi, zi, x
i−1, zi−1, yi−1)

P (xi, zi, x
i−1, zi−1|yi−1) (12)

=
∑

xi

· · ·
∑

zi−1

P (yi|xi, zi)

P (xi, zi, x
i−1, zi−1|yi−1) (13)

=
∑

xi

· · ·
∑

zi−1

P (yi|xi, zi)P (xi, x
i−1, zi−1|yi−1)

P (zi|xi, x
i−1, zi−1, yi−1) (14)

=
∑

xi

· · ·
∑

zi−1

P (yi|xi, zi)P (zi|z
i−1)

P (xi|x
i−1, zi−1, yi−1)P (xi−1, zi−1|yi−1) (15)

=
∑

xi

· · ·
∑

zi−1

P (yi|xi, zi)P (xi|x
i−1, yi−1)

P (zi|z
i−1)P (xi−1, zi−1|yi−1). (16)

Thus

P (yi|y
i−1) =

∑

xi

· · ·
∑

zi−1

P (yi|xi, zi)P (zi|z
i−1)

P (xi|x
i−1, yi−1)P (xi−1, zi−1|yi−1). (17)

SettingP (Xi = 0|xi−1, yi−1) = p and applying channel
properties (a) and (b) to (17) yields



P (Yi = j|yi−1) + P (Yi = 2q − 1 − j|yi−1)

=
∑

xi−1,zi−1

P (Zi = j|zi−1)P (xi−1, zi−1|yi−1) (p+ (1 − p))

+
∑

xi−1,zi−1

P (Zi = 2q − 1 − j|zi−1)P (xi−1, zi−1|yi−1)

× (p+ (1 − p))

=
∑

xi−1,zi−1

[

P (Zi = j|zi−1) + P (Zi = 2q − 1 − j|zi−1)
]

×P (xi−1, zi−1|yi−1)

=
∑

zi−1

[

P (Zi = j|zi−1) + P (Zi = 2q − 1 − j|zi−1)
]

×P (zi−1|yi−1)
△
= kj (18)

for j = 0, 1, · · · , 2q−1 − 1. It should be noted that each
kj in (18) is independent of the feedback policyP (Xi =
0|xi−1, yi−1). Using (18), we can write (11) as

H(Yi|Y
i−1 = yi−1) = −

2q−1
−1

∑

j=0

[aj log aj

+(kj − aj) log(kj − aj)] (19)

where
aj = P (Yi = j|yi−1)

and
kj − aj = P (Yi = 2q − 1 − j|yi−1).

Applying the log-sum inequality on each summand (within
brackets) in (19) yields that

H(Yi|Y
i−1 = yi−1) ≤ −

2q−1
−1

∑

j=0

kj log(kj/2) (20)

with equality iff aj = kj − aj for j = 0, 1, ..., 2q−1 − 1. In
other words,H(Yi|Y

i−1 = yi−1) is maximized iff

P (Yi = j|yi−1) = P (Yi = 2q − 1 − j|yi−1). (21)

From (17) and using the channel’s properties, it can be shown
that (21) is satisfied when

P (Xi = 0|xi−1, yi−1) = P (Xi = 1|xi−1, yi−1) =
1

2
. (22)

Hence a uniform feedback policy maximizes the conditional
entropyH(Yi|Y

i−1 = yi−1) for eachyi−1; this completes the
proof.

Lemma 1 directly implies that a uniform feedback policy
yields a uniformly distributed inputXn and maximizes the
channel’s output block entropyH(Y n), resulting inH(Y n) =
n+H(Wn) as in (4). Substituting the later in (9), normalizing
by n and taking the limit yield that

CFB ≤ 1 +H(W) −H(Z) = CNFB (23)

for a stationary ergodic noise. But by definition of the feedback
capacity, we know thatCNFB ≤ CFB. Thus we have shown
the following.

Theorem 1: Feedback does not increase the capacity of the
NBNDC with stationary ergodic noise:

CFB = CNFB = 1 +HW) −H(Z).

Observation: Remark that, since Lemma 1 holds for arbitrary
noise processes, Theorem 1 can be extended for such noise
sources (i.e., without requiring them to be stationary ergodic)
by using Verdú and Han’s non-feedback capacity formula for
general channels with memory [8].

V. CONCLUSIONS

In this work, we investigated the feedback capacity of a
discrete binary-input2q-ary output communication channel
with memory which was recently proposed in [5] to model
BPSK-modulated correlated fading channels used in conjunc-
tion with 2q-ary soft-decision demodulation. We showed that
feedback does not increase the capacity of this channel. The
result is obtained by first demonstrating that, due to the
channel invertibility properties, the best feedback policy is
a uniform policy, as in the non-feedback case. Future work
may include the study of the channel’s capacity-cost function
(with and without feedback); i.e., the largest rate for reliably
communicating over the channel when cost constraints are
imposed on its binary-valued input. It is plausible that in this
case feedback can strictly increase the channel’s capacity-cost
function.
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