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ABSTRACT

Joint sour
e-
hannel 
oding for real-valued memoryless

sour
es and binary Markov 
hannels is 
onsidered. The


hannel is an additive-noise 
hannel where the noise pro-


ess is an M -th order Markov 
hain. We examine the

spe
ial 
ase where the noise sample Z

i

depends only on

the sum of the previous M noise samples. Two joint

sour
e-
hannel 
oding s
hemes are 
onsidered. The �rst is

a 
hannel-optimized ve
tor quantizer { optimized for both

sour
e and 
hannel. The se
ond s
heme 
onsists of a simple

s
alar quantizer and a maximum a posteriori (MAP) dete
-

tor. In this s
heme, it is assumed that the s
alar quantizer

output has residual redundan
y that 
an be exploited by

the MAP dete
tor to 
ombat the 
orrelated 
hannel noise.

These two s
hemes are then 
ompared against two s
hemes

whi
h use interleaving. Numeri
al results show that the

proposed s
hemes outperform the interleaving s
hemes. In

some instan
es, the gain is more than 5 dB.

I. Introdu
tion

Sour
e and 
hannel 
oding are two problems that have

traditionally been dealt with independently. This is due

mainly to Shannon's sour
e-
hannel separation prin
iple

[1℄, [2℄, whi
h states that the two problems 
an be treated

separately without loss of optimality. However, the sepa-

ration prin
iple holds only in the asymptoti
 
ase | when

delay and 
omplexity are not 
onstrained. Re
ent works

[3℄, [4℄, [5℄ have shown that, when delay and/or 
omplex-

ity are 
onstrained, treating these problems jointly (i.e.,

joint sour
e-
hannel 
oding) may result in improved per-

forman
e over the traditional te
hnique of tandem sour
e-


hannel 
oding.

Most of the previous work on joint sour
e-
hannel 
oding

have assumed that the 
hannel is memoryless, disregarding

the fa
t that real-world 
ommuni
ation 
hannels often have

memory. In this work, we will 
onsider two joint sour
e-


hannel 
oding s
hemes for memoryless sour
es and for


hannels with memory. More spe
i�
ally, the sour
e is

assumed to be a real-valued, independent and identi
ally

distributed (i.i.d.) sequen
e of random variables and the


hannel is assumed to be a binary stationary ergodi
 M -th

y
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order Markov 
hannel derived from the Polya 
ontagion

urn model [6℄. This is an additive-noise 
hannel where the

noise sample, Z

i

, depends only on the sum of the previous

M noise samples (Z

i�1

; Z

i�2

; : : : ; Z

i�M

).

We �rst 
onsider the design of a k-dimensional, rate R

bits/sample 
hannel-optimized ve
tor quantizer (COVQ)

[7℄, [8℄ for the given sour
e and 
hannel. The COVQ en-


oder output is transmitted over the Markov 
hannel. For

ea
h blo
k of k sour
e samples, the COVQ en
oder pro-

du
es kR bits for transmission. We assume that kR is

large enough with respe
t to M so that the memory in the


hannel 
an have an e�e
t in kR 
hannel uses. Thus, by

a proper design of the COVQ, we exploit the intra-blo
k

memory of the 
hannel | but not the inter-blo
k memory.

The COVQ design algorithm is a straightforward exten-

sion of the algorithm des
ribed in [7℄ and [8℄, where the

2

kR

� 2

kR


hannel transition matrix is now given in terms

of the transition probabilities of the Markov 
hannel.

We then exploit both intra-blo
k and inter-blo
k mem-

ories of the 
hannel. Here, we 
onsider a s
alar quantizer

(SQ) designed for the noiseless 
hannel. The SQ output

distribution is assumed to be non-uniform so that its en-

tropy (in bits/
hannel use) is stri
tly less than the 
hannel


apa
ity (bits/
hannel use). After a proper assignment of

binary indi
es to the SQ output, we transmit the indi
es

dire
tly over the 
hannel. At the re
eiver, we exploit the

non-uniformity of the SQ output and the memory of the


hannel through the use of a sequen
e maximum a poste-

riori (MAP) dete
tor. The output of the MAP dete
tor

is then fed to the SQ de
oder. This is analogous to pre-

vious works on MAP dete
tion of a Markov sour
e over a

memoryless 
hannel [9℄, [10℄.

The performan
es of the two proposed s
hemes are


ompared against the performan
es of two interleaving

s
hemes. In the interleaving systems, the Markov 
han-

nel is rendered memoryless by an interleaver and de-

interleaver

3

. Here, we assume that the sour
e and 
han-

nel 
odes are designed for the memoryless 
hannel. Thus,

the purpose of the interleaver and de-interleaver is to 
on-

vert the Markov 
hannel (with memory) into a memory-

less 
hannel. In the �rst interleaving s
heme, we 
onsider

3�

It is assumed that the interleaver and de-interleaver

are ideal so that the Markov 
hannel is perfe
tly rendered

memoryless.
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a COVQ designed for a memoryless 
hannel with the same

bit error rate as the Markov 
hannel. This COVQ is then

used over the interleaved 
hannel (
ombination of inter-

leaver, Markov 
hannel and de-interleaver). This system

is 
ompared against the COVQ designed for the Markov


hannel. In the se
ond interleaving system, we 
onsider

an SQ with its output transmitted over a memoryless (in-

terleaved) 
hannel. We 
all this system \SQ-Interleaved".

This is 
ompared against \SQ-MAP" where the MAP de-

te
tor is designed for the Markov 
hannel.

The rest of this paper is organized as follows. In Se
-

tion II, we present the Markov 
hannel model. The two

joint sour
e-
hannel 
oding s
hemes are des
ribed in Se
-

tion III. Simulation results for i.i.d. generalized Gaussian

sour
es are provided in Se
tion IV. In Se
tion V, 
ompar-

isons between the proposed s
hemes and the 
orresponding

interleaving s
hemes are made. Finally, the 
on
lusions are

given in Se
tion VI.

II. Channel Model

Consider a dis
rete 
hannel with memory, with 
ommon

input, noise and output binary alphabet and des
ribed by

the following equation: Y

i

= X

i

� Z

i

, for i = 1; 2; 3; : : :

where:

� � represents the addition operation modulo 2.

� The random variables X

i

, Z

i

and Y

i

are respe
tively

the input, noise and output of the 
hannel.

� fX

i

g ? fZ

i

g, i.e., the input and noise sequen
es are

independent from ea
h other.

� The noise pro
ess fZ

i

g

1

i=1

is a homogeneous station-

ary mixing (hen
e ergodi
) Markov pro
ess of order

M . By this we mean that the noise sample, Z

i

, de-

pends only on the previous M noise samples, i.e.,

PrfZ

i

= e

i

jZ

1

= e

1

; : : : ; Z

i�1

= e

i�1

g =

PrfZ

i

= e

i

jZ

i�M

= e

i�M

; : : : ; Z

i�1

= e

i�1

g:

We assume that the marginal distribution of the noise

pro
ess is given by

PrfZ

i

= 1g = � = 1� PrfZ

i

= 0g;

where � 2 [0; 1=2) is the 
hannel bit error rate (BER).

Furthermore, we assume that the pro
ess fZ

i

g is generated

by the �nite-memory 
ontagion urn model des
ribed in [6℄.

A

ording to this model, the noise sample Z

i

depends only

on the sum of the previous M noise samples. Thus, for

i �M + 1,

PrfZ

i

= 1jZ

i�M

= e

i�M

; : : : ; Z

i�1

= e

i�1

g

= PrfZ

i

= 1j

i�1

X

j=i�M

Z

j

=

i�1

X

j=i�M

e

j

g

=

� + (

P

i�1

j=i�M

e

j

)Æ

1 +MÆ

;

where e

j

= 0 or 1, for j = i �M; : : : ; i � 1. The positive

parameter Æ determines the amount of 
orrelation in fZ

i

g.

The 
orrelation 
oeÆ
ient of the noise pro
ess is Æ=(1+ Æ).

Note that if Æ = 0, the noise pro
ess fZ

i

g be
omes i.i.d.

and the resulting additive noise 
hannel be
omes a binary

symmetri
 
hannel (BSC).

A. Distribution of the Noise

For an input blo
k X = (X

1

; X

2

; : : : ; X

n

) and an out-

put blo
k Y = (Y

1

; Y

2

; : : : ; Y

n

), we denote the blo
k 
han-

nel transition probability matrix PrfY = yjX = xg by

Q(yjx).

� For blo
k length n �M , we have [6℄:

Q(yjx) = L(n; d; �; Æ);

where

L(n; d; �; Æ) =

h

Q

d�1

i=0

(�+ iÆ)

ih

Q

n�d�1

j=0

(1� � + jÆ)

i

�

Q

n�1

l=0

(1 + lÆ)

� ;

and d = d

H

(x;y) is the Hamming distan
e between x

and y.

� For n �M + 1, we obtain [6℄:

Q(yjx) = PrfZ = eg

= L(M; s; �; Æ)

n

Y

i=M+1

h

�+ s

i

Æ

1 +MÆ

i

e

i

h

1�

�+ s

i

Æ

1 +MÆ

i

1�e

i

(1)

where e = (e

1

; e

2

; : : : ; e

n

), e

i

= x

i

� y

i

, s = e

1

+ � � �+

e

M

and s

i

= e

i�1

+ � � �+ e

i�M

:

Note that the 
hannel is entirely des
ribed by �, Æ and M .

B. Capa
ity of the Channel

The 
apa
ity C of this 
hannel is given by [6℄:

C = 1�

M

X

s=0

�

M

s

�

L(M; s; �; Æ)h

b

�

� + sÆ

1 +MÆ

�

where h

b

(x) = �x log

2

(x)�(1�x) log

2

(1�x) is the binary

entropy fun
tion. Note that C is monotoni
ally in
reasing

with Æ (for �xed �;M) and M (for �xed �; Æ). It is mono-

toni
ally de
reasing with � (for �xed Æ;M).

III. Joint Sour
e-Channel Coding S
hemes

A. COVQ and COSQ

The ensuing formulation of COVQ follows that of [8℄.

Consider a real-valued i.i.d. sour
e, V = fV

i

g

1

i=1

, with

probability density fun
tion (p.d.f.) f(v). The sour
e is to

be en
oded by a k-dimensional, n-bit COVQ whose out-

put is to be transmitted over the binary Markov 
hannel.

The en
oding system, depi
ted in Figure 1, 
onsists of an

en
oder mapping, 
, and a de
oder mapping, �. The en-


oder mapping 
 : IR

k

7! f0; 1g

n

is des
ribed in terms of

a partition P = fS

x

� IR

k

: x 2 f0; 1g

n

g of IR

k

a

ording

to


(v) = x if v 2 S

x

; x 2 f0; 1g

n

;

2



COVQ

En
oder

Markov

Channel

COVQ

De
oder

- - - -

V2 IR

k

X Y

^

V

Figure 1. Blo
k Diagram of a COVQ System.

where v = (v

1

; v

2

; : : : ; v

k

) is a blo
k of k su

essive sour
e

samples. The 
hannel takes an input sequen
e x and pro-

du
es and output sequen
e y. It is given in terms of the

blo
k 
hannel transition matrix Q(yjx). Finally, the de-


oder mapping � : f0; 1g

n

7! IR

k

is des
ribed in terms of a


odebook C = f


y

2 IR

k

: y 2 f0; 1g

n

g a

ording to

�(y) = 


y

; y 2 f0; 1g

n

:

The en
oding rate of the above system is R = n=k

bits/sample and its average squared-error distortion per

sample is given by [8℄:

D =

1

k

X

x

Z

S

x

f(v)

8

<

:

X

y

Q(yjx)jjv� 


y

jj

2

9

=

;

dv; (2)

where f(v) =

Q

k

i=1

f(v

i

) is the k-dimensional sour
e p.d.f.

For a given sour
e, 
hannel, k and n, we wish to minimize

D by proper 
hoi
e of P and C.

From (2), we see that for a �xed C the optimal partition

P

�

= fS

�

x

g is given by [8℄:

S

�

x

=

8

<

:

v :

X

y

Q(yjx)jjv� 


y

jj

2

�

X

y

Q(yj
~
x)jjv� 


y

jj

2

; 8
~
x 2 f0; 1g

n

9

=

;

; (3)

x 2 f0; 1g

n

. Similarly, the optimal 
odebook C

�

= f


�

y

g

for a given partition is [8℄:




�

y

=

P

x

Q(yjx)

R

S

x

vf(v)dv

P

x

Q(yjx)

R

S

x

f(v)dv

: (4)

The COVQ design algorithm is a straightforward exten-

sion of the iterative algorithm in [11℄. The algorithm starts

out with an initial 
odebook, C

(0)

. With this �xed, it �nds

the optimal partition, P

(1)

, using (3). With P

(1)

�xed, it

uses (4) to �nd the optimal 
odebook, C

(1)

. This pro
e-

dure is repeated until the relative 
hange in distortion is

suÆ
iently small. Note that the average distortion, D, de-


reases monotoni
ally at ea
h step. Thus, the algorithm is

guaranteed to 
onverge to a lo
ally optimal solution (sin
e

D � 0). For k = 1, the above system is referred to as


hannel-optimized s
alar quantizer (COSQ). We will as-

sume that n �M + 1. Therefore, the blo
k 
hannel tran-

sition matrix, Q(yjx), will always be given by (1).

V

i

2 IR

SQ

En
oder

Markov

Channel

MAP

Dete
tor

SQ

De
oder

^

V

i

-

?

���

X

i

2 f0; 1g

n

Y

i

^

X

i

Figure 2. Blo
k Diagram of Joint Sour
e-Channel Coding

System Using MAP Dete
tion.

B. MAP Dete
tion

Next 
onsider the system depi
ted in Figure 2. Here,

instead of using COVQ we use a s
alar quantizer (SQ).

The SQ is also des
ribed by 
 and � as above | ex
ept

that k = 1 and R = n bits/sample. Instead of optimizing

the SQ for the Markov 
hannel, we make use of the residual

redundan
y of the SQ to 
ombat 
hannel noise. This is in

the spirit of the approa
hes in [5℄, [9℄ and [10℄.

The SQ in Figure 2 is designed using the Lloyd-Max

formulation [12℄, [13℄ whi
h assumes the 
hannel is noise-

free. Sin
e the sour
e, V = fV

i

g

1

i=1

, is i.i.d., the SQ en-


oder output, fX

i

g

1

i=1

, is also i.i.d. Therefore, there is no

memory at the en
oder output. However, there may be

redundan
y in the form of a non-uniform distribution on

X. Let p(x) = PrfX = xg, x 2 f0; 1g

n

be the en
oder

output distribution and H(X) = �

P

p(x) log p(x) be the

entropy of this distribution. Let �

D

= n�H(X) be the re-

dundan
y (due to the non-uniform distribution) of X. We

will assume that �

D

> 0, i.e., p(x) is non-uniform. For a

Lloyd-Max s
alar quantizer, this is often the 
ase when the

sour
e distribution, f(v), is non-uniform (assuming that

R > 1 bit/sample).

The SQ en
oder output is transmitted dire
tly over the


hannel. At the re
eiver, a sequen
e MAP dete
tor is used

to exploit the redundan
y of X and the memory of the

noise. The MAP dete
tor output is then fed to the SQ

de
oder. The sequen
e MAP dete
tor observes a sequen
e

y

N

= (y

1

;y

2

; : : : ;y

N

) 2 f0; 1g

nN

and makes an estimate

of the sequen
e x

N

= (x

1

;x

2

; : : : ;x

N

) 2 f0; 1g

nN

a

ord-

ing to

^
x

N

= argmax

x

N

PrfX

N

= x

N

jY

N

= y

N

g:

It 
an be easily shown that if n �M ,

^
x

N

= argmax

x

N

�

log [Q(y

1

jx

1

)p(x

1

)℄

+

N

X

i=2

log

�

~

Q(e

i

je

i�1

)p(x

i

)

�

)

; (5)

where e

i

= x

i

� y

i

2 f0; 1g

n

; i = 1; 2; : : : ; N , and

~

Q(e

i

je

i�1

) = PrfZ

i

= e

i

jZ

i�1

= e

i�1

g. Note that for

3



i � 2,

~

Q(e

i

je

i�1

) =

ni

Y

j=n(i�1)+1

h

�+ s

j

Æ

1 +MÆ

i

e

j

h

1�

�+ s

j

Æ

1 +MÆ

i

1�e

j

;

where e

i�1

= (e

n(i�2)+1

; e

n(i�2)+2

; : : : ; e

n(i�1)

), e

i

=

(e

n(i�1)+1

; e

n(i�1)+2

; : : : ; e

ni

) and s

j

= e

j�1

+ � � �+ e

j�M

:

As expressed in (5), the sequen
e MAP dete
tor 
an be

implemented using the Viterbi algorithm, where x

i

is the

state at time instant i. The trellis has 2

n

states with 2

n

bran
hes leaving and entering ea
h state. For a bran
h

leaving state x

i�1

and entering state x

i

, the path metri


is log[

~

Q(x

i

� y

i

jx

i�1

� y

i�1

)p(x

i

)℄. From here on, this

s
heme will be referred to as SQ-MAP. We note that the


omplexity and delay of SQ-MAP is due mainly to the

MAP dete
tor.

In some spe
ial instan
es, the output of the MAP dete
-

tor is identi
al to its input. In su
h 
ases, we say that the

MAP dete
tor is useless. As an example, whenM = n = 1,

it is shown in [14℄ that the MAP dete
tor is useless if

h

1� �+ Æ

�+ Æ

i

�

1� p

p

�

� 1; (6)

where p = PrfX = 0g 2 (1=2; 1℄. If (6) does not hold, then

the sequen
e MAP dete
tor will be useful for suÆ
iently

large N [14℄.

In this paper, we are mainly interested in 
ases where

M = 1 and n > 1. In these 
ases, little is known about

the usefulness of the MAP dete
tor. However, an impor-

tant fa
tor 
ontributing to the performan
e of the MAP

dete
tor is how the binary 
odewords are assigned to the

SQ quantization levels. This issue will be dis
ussed in the

following se
tion.

IV. Numeri
al Results

In the following, we will assume that the sour
e distri-

bution is given by

f(v) =

��(�; �)

2�(1=�)

expf�[�(�; �)jvj℄

�

g; (7)

where �(�; �) = �

�1

[�(3=�)=�(1=�)℄

�1=2

, � > 0 is the

exponential rate of de
ay and �

2

is distribution varian
e.

Note that for � = 2 the above is the Gaussian p.d.f. For

� = 1, it is the Lapla
ian p.d.f. Any i.i.d. sour
e with

distribution given by (7) is referred to as a generalized

Gaussian sour
e.

Numeri
al results for binary Markov 
hannels with Æ =

10 andM = 1 and generalized Gaussian sour
es with shape

parameter � = 0:5, 1 and 2 are presented in Tables 1, 2

and 3, respe
tively. Signal-to-noise ratio (SNR) perfor-

man
es are given in dB for rates R=3 and 4 bits/sample

and 
hannel BER �=0.005, 0.01, 0.05 and 0.1. Also pro-

vided in Tables 1-3 are the optimal performan
es theoret-

i
ally attainable (OPTA) obtained by evaluating D(RC),

where D(�) is the distortion-rate fun
tion of the sour
e for

the squared-error distortion measure.

The COVQ results were obtained from 500,000 training

ve
tors. A ve
tor quantization 
odebook (optimized for the

noiseless 
hannel) with 
odewords assigned by a simulated

annealing algorithm (des
ribed in [15℄) is 
hosen as the

initial 
odebook for the COVQ with �=0.005. The �nal


odebook for �=0.005 is 
hosen as the initial 
odebook for

�=0.01, and so on.

The SQ-MAP results were obtained via simulations. The

simulations were run 100 times, with N=1000 sour
e sam-

ples used in ea
h run. The average distortion, averaged

over the 100 runs, is given in dB. The SQ's used in the sim-

ulations were symmetri
 Lloyd-Max s
alar quantizers. As

mentioned earlier, how the quantization levels are mapped

to binary 
odewords is an important 
onsideration. We

have examined two 
odeword assignments: the natural bi-

nary 
ode (NBC) and the folded binary 
ode (FBC). An

example of these two 
odes is illustrated in Figure 3. Note

that the least signi�
ant bit (LSB) is the leftmost bit. Also,

the FBC sign bit is the LSB. From our observations, FBC


onsistently outperforms NBC. FBC was used in the SQ-

MAP results in Tables 1, 2 and 3.

NBC
000 100 010 110 001 101 011 111

FBC
011 001 010 000 100 110 101 111

Figure 3. NBC and FBC Codeword Assignments for an

8-Level Lloyd-Max S
alar Quantizer; Generalized Gaussian

Sour
e with Shape Parameter � = 1.

Note that, when M=1,

~

Q(e

i

je

i�1

) depends only on e

i

and e

n(i�1)

(most signi�
ant bit (MSB) of e

i�1

). Thus,

for �xed y

N

, the path metri
 from state x

i�1

to state x

i

depends only on x

i

and x

n(i�1)

(MSB of x

i�1

). Therefore,

the MSB of the binary 
odeword plays an important role in

the Viterbi sear
h. Now note that, be
ause of symmetry,

the MSB of NBC is 0 or 1 with equal probability. Hen
e,

the MSB of NBC has zero redundan
y. FBC, on the other

hand, has the property that the MSB is mu
hmore likely to

be 0 than 1. Hen
e, the MSB of FBC has high redundan
y.

Therefore, it is easier to determine whether e

n(i�1)

=0 or

1 with FBC than with NBC. We believe that this is the

reason for the superiority of FBC over NBC in the SQ-

MAP s
heme. We next 
ompare COVQ and SQ-MAP.

The COVQ system is a (lo
ally) optimal system that

eÆ
iently exploits the intra-blo
k memory. Both en
oder

and de
oder of this system are optimal in the sense of

minimizing the mean squared error. However, this system

does not make any use of the inter-blo
k memory. On

the other hand, the SQ-MAP system, whi
h exploits both

memories, 
onsists of a sub-optimal en
oder and a MAP

de
oder that minimizes the error probability but not the

mean squared error. For �xed M , the e�e
t of the intra-

4



blo
k memory of the 
hannel be
omes more dominant as

kR in
reases. Therefore, for large blo
ks of kR bits, the

COVQ system outperforms the SQ-MAP system (e.g. for

k = 1, R = 4 in Tables 1-3).

V. Comparisons with Interleaving

The traditional te
hnique for handling a 
hannel with

memory is to use interleaving. In the following, we 
on-

sider two interleaving s
hemes and 
ompare their perfor-

man
es against COVQ and SQ-MAP. The �rst s
heme,

COVQ-IL, 
onsists of a COVQ optimized for a BSC and

an interleaver. It is assumed that the interleaving length

is suÆ
iently large so that the 
ombination of interleaver,

Markov 
hannel and de-interleaver is equivalent to a BSC.

The SNR performan
es of this s
heme are given in Ta-

bles 1-3. COVQ-IL is 
ompared against COVQ (optimized

for the Markov 
hannel). Observe that in all 
ases | ex-


ept for �=0.5, R=3, k=1 and � =0.005 | COVQ outper-

forms COVQ-IL. The gain of COVQ over COVQ-IL is due

to the fa
t that COVQ exploits the noise memory whereas

COVQ-IL does not.

The se
ond interleaving s
heme, SQ-IL, 
onsists of an

SQ designed by the Lloyd-Max formulation and an inter-

leaver. The SQ binary 
odewords are assigned by FBC.

The argument here is that FBC is a good 
odeword assign-

ment for BSC [16℄ and the purpose of the interleaver/de-

interleaver is to 
onvert the Markov 
hannel into a BSC.

The SNR results of SQ-IL are provided in Tables 1-3. This

s
heme is 
ompared against SQ-MAP. Note that SQ-MAP

beats SQ-IL in all 
ases. The gain of SQ-MAP over SQ-IL

is due to the residual redundan
y, �

D

, of the SQ and the

noise memory. In Table 4, we provide the numeri
al val-

ues of �

D

for �=0.5, 1 and 2 and R=3 and 4. Note that

�

D

tends to be larger for small � (broad-tailed distribu-

tions). Also, observe that the improvement of SQ-MAP

over SQ-IL is larger for larger �

D

.

Finally, we note that the two interleaving s
hemes have

large en
oding and de
oding delays (due to the interleaver

and de-interleaver). The COVQ s
heme only have a blo
k

delay of k�1 samples. The SQ-MAP s
heme has the MAP

dete
tor delay.

VI. Con
lusions

We 
onsidered joint sour
e-
hannel 
oding for real-

valued i.i.d. sour
es and binary Markov 
hannel. Two

s
hemes were 
onsidered, COVQ and SQ-MAP. COVQ

outperforms SQ-MAP when kR is large. These s
hemes

were 
ompared against two interleaving s
hemes. In most


ases, the proposed s
hemes beat the interleaving s
hemes.

In some instan
es, the performan
e gain is as mu
h as 5

dB. These results, however, are still far from the theoreti
al

limit (OPTA).
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R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 7.80 7.75 6.52 5.23

COSQ-IL 8.35 7.23 4.05 2.32

SQ-MAP 9.27 8.37 5.67 4.03

SQ-IL 7.94 6.35 0.78 -2.24

2 COVQ 11.58 10.97 9.17 7.64

COVQ-IL 10.99 9.65 5.73 3.75

3 COVQ 13.59 12.72 10.35 9.11

COVQ-IL 11.63 10.50 6.78 4.43

1 OPTA 21.59 21.46 20.63 19.76

4 1 COSQ 11.26 10.39 8.73 7.22

COSQ-IL 10.79 9.09 5.39 3.38

SQ-MAP 11.15 9.46 4.72 2.73

SQ-IL 8.98 6.42 -0.46 -3.81

2 COVQ 15.21 14.43 11.58 9.88

COVQ-IL 13.75 12.11 7.48 4.94

1 OPTA 27.59 27.42 26.31 25.18

Table 1. SNR (in dB) Performan
es of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Sour
e with Shape Parameter � = 0:5;

R = Rate (Bits/Sample); k = Ve
tor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performan
e Theoreti
ally Attainable.

R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 10.50 9.45 8.27 7.17

COSQ-IL 10.49 9.17 5.21 3.62

SQ-MAP 10.78 9.75 6.01 3.98

SQ-IL 10.36 8.87 3.61 0.82

2 COVQ 11.88 10.97 10.00 8.64

COVQ-IL 11.67 10.28 6.60 4.47

3 COVQ 13.01 12.43 10.68 9.48

COVQ-IL 11.52 10.67 7.08 4.84

1 OPTA 18.54 18.42 17.59 16.74

4 1 COSQ 13.57 13.19 10.54 8.61

COSQ-IL 12.76 11.03 6.82 4.79

SQ-MAP 12.90 10.86 5.73 3.43

SQ-IL 12.13 9.69 3.13 0.07

2 COVQ 15.38 15.09 12.27 10.68

COVQ-IL 14.41 12.92 8.33 5.71

1 OPTA 24.51 24.35 23.24 22.10

Table 2. SNR (in dB) Performan
es of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Sour
e with Shape Parameter � = 1;

R = Rate (Bits/Sample); k = Ve
tor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performan
e Theoreti
ally Attainable.

R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 12.39 11.17 9.29 7.47

COSQ-IL 12.04 10.50 6.47 4.67

SQ-MAP 12.20 10.91 5.77 3.35

SQ-IL 11.99 10.36 4.93 2.18

2 COVQ 12.81 11.89 10.59 9.42

COVQ-IL 12.46 11.15 7.36 5.15

3 COVQ 13.55 12.90 11.35 10.05

COVQ-IL 12.01 11.40 7.67 5.37

1 OPTA 17.92 17.80 16.96 16.11

4 1 COSQ 15.67 14.93 11.24 9.13

COSQ-IL 14.15 12.30 7.81 5.60

SQ-MAP 13.90 11.89 5.58 2.93

SQ-IL 13.84 11.36 4.84 1.89

2 COVQ 16.70 16.11 13.28 11.52

COVQ-IL 15.28 13.70 9.06 6.40

1 OPTA 23.89 23.73 22.61 21.48

Table 3. SNR (in dB) Performan
es of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Sour
e with Shape Parameter � = 2;

R = Rate (Bits/Sample); k = Ve
tor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performan
e Theoreti
ally Attainable.

� R �

D

= R�H(X)

0.5 3 0.88

4 1.05

1 3 0.42

4 0.50

2 3 0.18

4 0.23

Table 4. Redundan
y (in Bits/Sample) of Symmetri
 Lloyd-

Max S
alar Quantizer Output; Generalized Gaussian Sour
e

with Shape Parameter �; R = Rate of S
alar Quantizer in

Bits/Sample.
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