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ABSTRACT

Joint source-channel coding for real-valued memoryless
sources and binary Markov channels is considered. The
channel is an additive-noise channel where the noise pro-
cess is an M-th order Markov chain. We examine the
special case where the noise sample Z; depends only on
the sum of the previous M noise samples. Two joint
source-channel coding schemes are considered. The first is
a channel-optimized vector quantizer — optimized for both
source and channel. The second scheme consists of a simple
scalar quantizer and a maximum a posteriori (MAP) detec-
tor. In this scheme, it is assumed that the scalar quantizer
output has residual redundancy that can be exploited by
the MAP detector to combat the correlated channel noise.
These two schemes are then compared against two schemes
which use interleaving. Numerical results show that the
proposed schemes outperform the interleaving schemes. In
some instances, the gain is more than 5 dB.

I. Introduction

Source and channel coding are two problems that have
traditionally been dealt with independently. This is due
mainly to Shannon’s source-channel separation principle
[1], [2], which states that the two problems can be treated
separately without loss of optimality. However, the sepa-
ration principle holds only in the asymptotic case — when
delay and complexity are not constrained. Recent works
[3], [4], [5] have shown that, when delay and/or complex-
ity are constrained, treating these problems jointly (i.e.,
joint source-channel coding) may result in improved per-
formance over the traditional technique of tandem source-
channel coding.

Most of the previous work on joint source-channel coding
have assumed that the channel is memoryless, disregarding
the fact that real-world communication channels often have
memory. In this work, we will consider two joint source-
channel coding schemes for memoryless sources and for
channels with memory. More specifically, the source is
assumed to be a real-valued, independent and identically
distributed (i.i.d.) sequence of random variables and the
channel is assumed to be a binary stationary ergodic M-th
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order Markov channel derived from the Polya contagion
urn model [6]. This is an additive-noise channel where the
noise sample, Z;, depends only on the sum of the previous
M noise samples (Zi—1,Zi—2,..., Zi—m).

We first consider the design of a k-dimensional, rate R
bits/sample channel-optimized vector quantizer (COVQ)
[7], [8] for the given source and channel. The COVQ en-
coder output is transmitted over the Markov channel. For
each block of k source samples, the COV(Q encoder pro-
duces kR bits for transmission. We assume that kR is
large enough with respect to M so that the memory in the
channel can have an effect in kR channel uses. Thus, by
a proper design of the COVQ, we exploit the intra-block
memory of the channel — but not the inter-block memory.
The COVQ design algorithm is a straightforward exten-
sion of the algorithm described in [7] and [8], where the
2k 5 2R channel transition matrix is now given in terms
of the transition probabilities of the Markov channel.

We then exploit both intra-block and inter-block mem-
ories of the channel. Here, we consider a scalar quantizer
(SQ) designed for the noiseless channel. The SQ output
distribution is assumed to be non-uniform so that its en-
tropy (in bits/channel use) is strictly less than the channel
capacity (bits/channel use). After a proper assignment of
binary indices to the SQ output, we transmit the indices
directly over the channel. At the receiver, we exploit the
non-uniformity of the SQ output and the memory of the
channel through the use of a sequence maximum a poste-
riori (MAP) detector. The output of the MAP detector
is then fed to the SQ decoder. This is analogous to pre-
vious works on MAP detection of a Markov source over a
memoryless channel [9], [10].

The performances of the two proposed schemes are
compared against the performances of two interleaving
schemes. In the interleaving systems, the Markov chan-
nel is rendered memoryless by an interleaver and de-
interleaver®. Here, we assume that the source and chan-
nel codes are designed for the memoryless channel. Thus,
the purpose of the interleaver and de-interleaver is to con-
vert the Markov channel (with memory) into a memory-
less channel. In the first interleaving scheme, we consider

3% Tt is assumed that the interleaver and de-interleaver
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a COVQ designed for a memoryless channel with the same
bit error rate as the Markov channel. This COVQ is then
used over the interleaved channel (combination of inter-
leaver, Markov channel and de-interleaver). This system
is compared against the COVQ designed for the Markov
channel. In the second interleaving system, we consider
an SQ with its output transmitted over a memoryless (in-
terleaved) channel. We call this system “SQ-Interleaved”.
This is compared against “SQ-MAP” where the MAP de-
tector is designed for the Markov channel.

The rest of this paper is organized as follows. In Sec-
tion II, we present the Markov channel model. The two
joint source-channel coding schemes are described in Sec-
tion III. Simulation results for i.i.d. generalized Gaussian
sources are provided in Section IV. In Section V, compar-
isons between the proposed schemes and the corresponding
interleaving schemes are made. Finally, the conclusions are
given in Section VI.

II. Channel Model
Consider a discrete channel with memory, with common
input, noise and output binary alphabet and described by
the following equation: Y; = X; & Z;, for ¢ = 1,2,3,...
where:
e @ represents the addition operation modulo 2.
e The random variables X;, Z; and Y; are respectively
the input, noise and output of the channel.
e {X;} L {Z}, i.e., the input and noise sequences are
independent from each other.
e The noise process {Z;}{2; is a homogeneous station-
ary mixing (hence ergodic) Markov process of order
M. By this we mean that the noise sample, Z;, de-
pends only on the previous M noise samples, i.e.,

PI‘{Zi = 6i|Zl = €1,.. .,Zifl = 61;1} =
Pr{Z; =ei|Zi—mr = €i—nty- .., Zi—1 = €i—1}.

We assume that the marginal distribution of the noise
process is given by

Pr{Z; =1} =e=1-Pr{Z; =0},

where ¢ € [0,1/2) is the channel bit error rate (BER).
Furthermore, we assume that the process {Z;} is generated
by the finite-memory contagion urn model described in [6].
According to this model, the noise sample Z; depends only
on the sum of the previous M noise samples. Thus, for
1> M+1,

Pr{Z; =1Zi—ms = €i—nty-.., Zi—1 = €i—1}
i i1

ZPI‘{Zi=1| i Z]‘: Z 6]'}

j=i—-M j=i-M

et (X e)s
14+ Mé ’

where ¢;j =0 or 1, for j =4 — M,...,7: —1. The positive
parameter ¢ determines the amount of correlation in {Z;}.

The correlation coeflicient of the noise process is §/(1+6).
Note that if 6 = 0, the noise process {Z;} becomes i.i.d.
and the resulting additive noise channel becomes a binary
symmetric channel (BSC).

A. Distribution of the Noise

For an input block X = (X1, X>,...,X,) and an out-
put block Y = (Y1,Y3,...,Y,), we denote the block chan-
nel transition probability matrix Pr{¥ = y|X = x} by
Q(ylx).

e For block length n < M, we have [6]:

Q(ylx) = L(n,d,¢,0),
where

[Hf;ol(e + ié)] [H;”;S“l(l —et ja)]

Hom et = [I1 (L +10)]

I

and d = du(x,y) is the Hamming distance between x
and y.
e For n > M + 1, we obtain [6]:

Q(y|x) = Pr{Z = e}

€+ 50 1° €+ s;0 117¢
= L(M;s,¢,0 [1+M5] [1_1+M6] (1)

i=M+1

where e = (e1,e2,...,en), 6, =2 DY;, s=e1+---+
ev and s; =e€i—1+ -+ €i—m-
Note that the channel is entirely described by €, § and M.

B. Capacity of the Channel
The capacity C of this channel is given by [6]:

M

M + 50
Czl—Z( ) >L(M,s,e,6)hb(1€+;/m)

s=0

where hy(x) = —zlog,(z) — (1 —z)log, (1 —x) is the binary
entropy function. Note that C' is monotonically increasing
with § (for fixed €, M) and M (for fixed €,d). It is mono-
tonically decreasing with e (for fixed 4, M).

III. Joint Source-Channel Coding Schemes

A. COVQ and COSQ

The ensuing formulation of COVQ follows that of [8].
Consider a real-valued i.i.d. source, ¥V = {V;}:2,, with
probability density function (p.d.f.) f(v). The source is to
be encoded by a k-dimensional, n-bit COV(Q whose out-
put is to be transmitted over the binary Markov channel.
The encoding system, depicted in Figure 1, consists of an
encoder mapping, v, and a decoder mapping, 5. The en-
coder mapping v : R* +— {0,1}" is described in terms of
a partition P = {Sx C RF : x € {0,1}"} of R* according
to

v(v)=x ifveSx, xe{0,1}",
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Figure 1. Block Diagram of a COVQ System.

where v = (v1,v2,...,v;) is a block of k successive source
samples. The channel takes an input sequence x and pro-
duces and output sequence y. It is given in terms of the
block channel transition matrix (y|x). Finally, the de-
coder mapping f : {0,1}" — R” is described in terms of a
codebook C = {cy € R* : y € {0,1}"} according to
Bly) =cy, yef{0,1}"

The encoding rate of the above system is R = n/k
bits/sample and its average squared-error distortion per
sample is given by [8]:

i

where f(v Hl , f(vi) is the k-dimensional source p.d.f.
For a glven source, channel, k and n, we wish to minimize
D by proper choice of P and C.

From (2), we see that for a fixed C the optimal partition
P = {Sx} is given by [8]:

S QuRllv eyl pdv, ()
y

Sx=4v: 3 Qv - eyl
y

> QuRIIv —eylF, ¥k € {0,1}" p,  (3)
y

x € {0,1}". Similarly, the optimal codebook C* = {cy}
for a given partition is [8]:

. 2x Q) [y vi(v)dv
YT Tk Qb) [ FWdv

The COVQ design algorithm is a straightforward exten-
sion of the iterative algorithm in Ell]. The algorithm starts
out with an initial codebook, C©). With this fixed, it finds
the optimal partition, P, using (3). With P fixed, it
uses (4) to find the optimal codebook, C¥). This proce-
dure is repeated until the relative change in distortion is
sufficiently small. Note that the average distortion, D, de-
creases monotonically at each step. Thus, the algorithm is
guaranteed to converge to a locally optimal solution (since
D > 0). For k = 1, the above system is referred to as
channel-optimized scalar quantizer (COSQ). We will as-
sume that n > M + 1. Therefore, the block channel tran-
sition matrix, Q(y|x), will always be given by (1).

(4)

: SQ X; € {0,1}"
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Figure 2. Block Diagram of Joint Source-Channel Coding
System Using MAP Detection.

B. MAP Detection

Next consider the system depicted in Figure 2. Here,
instead of using COVQ we use a scalar quantizer (SQ).
The SQ is also described by v and [ as above — except
that k = 1 and R = n bits/sample. Instead of optimizing
the SQ for the Markov channel, we make use of the residual
redundancy of the SQ to combat channel noise. This is in
the spirit of the approaches in [5], [9] and [10].

The SQ in Figure 2 is designed using the Lloyd-Max
formulation [12], [13] which assumes the channel is noise-
free. Since the source, V = {V;}{2,, is i.i.d., the SQ en-
coder output, {X;}:2,, is also i.i.d. Therefore, there is no
memory at the encoder output. However, there may be
redundancy in the form of a non-uniform distribution on
X. Let p(x) = Pr{X = x}, x € {0,1}" be the encoder
output distribution and H(X) = — ) p(x) log p(x) be the
entropy of this dlstrlbutlon Let pp = n— H(X) be the re-
dundancy (due to the non-uniform distribution) of X. We
will assume that pp > 0, i.e., p(x) is non-uniform. For a
Lloyd-Max scalar quantizer, this is often the case when the
source distribution, f(v), is non-uniform (assuming that
R > 1 bit/sample).

The SQ encoder output is transmitted directly over the
channel. At the receiver, a sequence MAP detector is used
to exploit the redundancy of X and the memory of the
noise. The MAP detector output is then fed to the SQ
decoder. The sequence MAP detector observes a sequence

yY = (¥, ¥+, ¥n) € {0,1}™" and makes an estimate
of the sequence x" = (x1,x2,...,xn) € {0,1}"" accord-
ing to

£V = argmax Pr{X" = xV|Y" =y"}.
XN

It can be easily shown that if n > M,
%" = arg II)I(E}VX{ log [Q(y1x1)p(x1)]

Zlog (eilei—1)p(x:)] }, (5)

where e; = x; ®y;, € {0,1}", i = 1,2,...,N, and
Q(ei|ei_1) = PI‘{ZZ‘ = ei|Zi_1 = ei_l}. Note that for



i>2
~ - E+5j6]ej [ e+515]1781
ilei-1) = 1- )
Qe = ] [1+M6 1+ Ms
j=n(i=1)+1
where ei—1 = (en(i—2)41,Cn(i=2)+2,-++,En(i=1)), € =
(En(i—1)+1>€n(i—1)425---s€ni) and s; =ej 1+ -+ ej_um.

As expressed in (5), the sequence MAP detector can be
implemented using the Viterbi algorithm, where x; is the
state at time instant i. The trellis has 2" states with 2"
branches leaving and entering each state. For a branch
leavingﬁtate x;—1 and entering state x;, the path metric
is log[Q(x: ® y;|xi—1 ® y;_;)p(xi)]. From here on, this
scheme will be referred to as SQ-MAP. We note that the
complexity and delay of SQ-MAP is due mainly to the
MAP detector.

In some special instances, the output of the MAP detec-
tor is identical to its input. In such cases, we say that the
MAP detector is useless. As an example, when M =n =1,
it is shown in [14] that the MAP detector is useless if

[1 —e+46 ] 1—-p
e+46 p
where p = Pr{X = 0} € (1/2, 1]. If (6) does not hold, then
the sequence MAP detector will be useful for sufficiently

large N [14].

In this paper, we are mainly interested in cases where
M =1 and n > 1. In these cases, little is known about
the usefulness of the MAP detector. However, an impor-
tant factor contributing to the performance of the MAP
detector is how the binary codewords are assigned to the

SQ quantization levels. This issue will be discussed in the
following section.

>1, (6)

IV. Numerical Results
In the following, we will assume that the source distri-
bution is given by

f0) = S D el ell’y, (@)

where n(a,0) = o' [[(3/a)/T(1/a)]"?, a > 0 is the
exponential rate of decay and o? is distribution variance.
Note that for @ = 2 the above is the Gaussian p.d.f. For
a = 1, it is the Laplacian p.d.f. Any i.i.d. source with
distribution given by (7) is referred to as a generalized
Gaussian source.

Numerical results for binary Markov channels with § =
10 and M = 1 and generalized Gaussian sources with shape
parameter o = 0.5, 1 and 2 are presented in Tables 1, 2
and 3, respectively. Signal-to-noise ratio (SNR) perfor-
mances are given in dB for rates R=3 and 4 bits/sample
and channel BER €=0.005, 0.01, 0.05 and 0.1. Also pro-
vided in Tables 1-3 are the optimal performances theoret-
ically attainable (OPTA) obtained by evaluating D(RC),
where D(-) is the distortion-rate function of the source for
the squared-error distortion measure.

The COVQ results were obtained from 500,000 training
vectors. A vector quantization codebook (optimized for the
noiseless channel) with codewords assigned by a simulated
annealing algorithm (described in [15]) is chosen as the
initial codebook for the COVQ with €=0.005. The final
codebook for €e=0.005 is chosen as the initial codebook for
€=0.01, and so on.

The SQ-MAP results were obtained via simulations. The
simulations were run 100 times, with N=1000 source sam-
ples used in each run. The average distortion, averaged
over the 100 runs, is given in dB. The SQ’s used in the sim-
ulations were symmetric Lloyd-Max scalar quantizers. As
mentioned earlier, how the quantization levels are mapped
to binary codewords is an important consideration. We
have examined two codeword assignments: the natural bi-
nary code (NBC) and the folded binary code (FBC). An
example of these two codes is illustrated in Figure 3. Note
that the least significant bit (LSB) is the leftmost bit. Also,
the FBC sign bit is the LSB. From our observations, FBC
consistently outperforms NBC. FBC was used in the SQ-
MAP results in Tables 1, 2 and 3.

// ™
//—/ X
\ \ \ \ \ \
NBC 000 100 010 110001 101 011 111
FBC 011 001 010 000100 110 101 111
Figure 3. NBC and FBC Codeword Assignments for an

8-Level Lloyd-Max Scalar Quantizer; Generalized Gaussian
Source with Shape Parameter a = 1.

Note that, when M=1, Q(e;|e;—1) depends only on e;
and e, (;_1) (most significant bit (MSB) of e;_1). Thus,
for fixed y", the path metric from state x;_1 to state x;
depends only on x; and z,(;—1) (MSB of x;_1). Therefore,
the MSB of the binary codeword plays an important role in
the Viterbi search. Now note that, because of symmetry,
the MSB of NBC is 0 or 1 with equal probability. Hence,
the MSB of NBC has zero redundancy. FBC, on the other
hand, has the property that the MSB is much more likely to
be 0 than 1. Hence, the MSB of FBC has high redundancy.
Therefore, it is easier to determine whether e, ;_1)=0 or
1 with FBC than with NBC. We believe that this is the
reason for the superiority of FBC over NBC in the SQ-
MAP scheme. We next compare COVQ and SQ-MAP.

The COVQ system is a (locally) optimal system that
efficiently exploits the intra-block memory. Both encoder
and decoder of this system are optimal in the sense of
minimizing the mean squared error. However, this system
does not make any use of the inter-block memory. On
the other hand, the SQ-MAP system, which exploits both
memories, consists of a sub-optimal encoder and a MAP
decoder that minimizes the error probability but not the
mean squared error. For fixed M, the effect of the intra-



block memory of the channel becomes more dominant as
kR increases. Therefore, for large blocks of kR bits, the
COVQ system outperforms the SQ-MAP system (e.g. for
k=1, R =4 in Tables 1-3).

V. Comparisons with Interleaving

The traditional technique for handling a channel with
memory is to use interleaving. In the following, we con-
sider two interleaving schemes and compare their perfor-
mances against COVQ and SQ-MAP. The first scheme,
COVQ-IL, consists of a COVQ optimized for a BSC and
an interleaver. It is assumed that the interleaving length
is sufficiently large so that the combination of interleaver,
Markov channel and de-interleaver is equivalent to a BSC.
The SNR performances of this scheme are given in Ta-
bles 1-3. COVQ-IL is compared against COVQ (optimized
for the Markov channel). Observe that in all cases — ex-
cept for «=0.5, R=3, k=1 and ¢ =0.005 — COVQ outper-
forms COVQ-IL. The gain of COVQ over COVQ-IL is due
to the fact that COVQ exploits the noise memory whereas
COVQ-IL does not.

The second interleaving scheme, SQ-IL, consists of an
SQ designed by the Lloyd-Max formulation and an inter-
leaver. The SQ binary codewords are assigned by FBC.
The argument here is that FBC is a good codeword assign-
ment for BSC [16] and the purpose of the interleaver/de-
interleaver is to convert the Markov channel into a BSC.
The SNR results of SQ-IL are provided in Tables 1-3. This
scheme is compared against SQ-MAP. Note that SQ-MAP
beats SQ-IL in all cases. The gain of SQ-MAP over SQ-IL
is due to the residual redundancy, pp, of the SQ and the
noise memory. In Table 4, we provide the numerical val-
ues of pp for ®=0.5, 1 and 2 and R=3 and 4. Note that
pp tends to be larger for small o (broad-tailed distribu-
tions). Also, observe that the improvement of SQ-MAP
over SQ-IL is larger for larger pp.

Finally, we note that the two interleaving schemes have
large encoding and decoding delays (due to the interleaver
and de-interleaver). The COVQ scheme only have a block
delay of k—1 samples. The SQ-MAP scheme has the MAP
detector delay.

VI. Conclusions

We considered joint source-channel coding for real-
valued i.i.d. sources and binary Markov channel. Two
schemes were considered, COVQ and SQ-MAP. COVQ
outperforms SQ-MAP when kR is large. These schemes
were compared against two interleaving schemes. In most
cases, the proposed schemes beat the interleaving schemes.
In some instances, the performance gain is as much as 5
dB. These results, however, are still far from the theoretical
limit (OPTA).
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| R| k | System | ¢=0.005 | €=0.01 | €=0.05 | e=0.1 |
3|11 |COSQ 7.80 7.75 6.52 5.23
COSQ-IL 8.35 7.23 4.05 2.32
SQ-MAP 9.27 8.37 5.67 | 4.03
SQ-IL 7.94 6.35 0.78 -2.24
2 | COVQ 11.58 10.97 9.17 7.64
COVQ-IL| 10.99 9.65 5.73 3.75
3 | COVQ 13.59 12.72 10.35 9.11
COVQ-IL| 11.63 10.50 6.78 4.43
oo | OPTA 21.59 21.46 | 20.63 | 19.76

411 ]COSQ 11.26 10.39 | 8.73 | 7.22
COSQ-IL | 10.79 9.09 5.39 | 3.38
SQ-MAP | 11.15 9.46 4.72 2.73

SQ-IL 8.98 6.42 -0.46 | -3.81
2 | COVQ 15.21 14.43 | 11.58 | 9.88
COVQ-IL| 13.75 12.11 7.48 | 4.94
oo | OPTA 27.59 2742 | 26.31 | 25.18

Table 1. SNR (in dB) Performances of Several Systems Op-
erating Over a Markov Channel with § = 10 and M = 1;
Generalized Gaussian Source with Shape Parameter o = 0.5;
R = Rate (Bits/Sample); k = Vector Dimension; ¢ = Chan-
nel Bit Error Rate; In the Interleaved Systems, COSQ and
COVQ are Designed for Memoryless Channels; OPTA = Op-
timal Performance Theoretically Attainable.

|R] k |[System [e=0.005[e=0.01]e=0.05]e=0.1]
3] 1]COSQ 1050 | 945 [ 827 [ 7.17
COSQ-IL | 1049 | 9.17 | 521 | 3.62
SQ-MAP | 10.78 | 9.75 | 6.01 | 3.98
SQ-IL 10.36 | 887 | 3.61 | 0.82
2 [COVQ 11.88 | 10.97 | 10.00 | 8.64
COVQ-IL| 11.67 | 10.28 | 6.60 | 4.47

3 | COVQ 13.01 12.43 | 10.68 | 9.48
COVQ-IL| 11.52 10.67 | 7.08 | 4.84

oo | OPTA 18.54 18.42 | 17.59 | 16.74
411 |{COSQ 13.57 13.19 | 10.54 | 8.61

COSQ-IL | 12.76 11.03 | 6.82 | 4.79
SQ-MAP | 12.90 10.86 | 5.73 | 3.43
SQ-IL 12.13 9.69 3.13 | 0.07
2 | COVQ 15.38 15.09 | 12.27 | 10.68
COVQ-IL | 1441 12.92 8.33 | 5.71
oo | OPTA 24.51 24.35 | 23.24 | 22.10

Table 2. SNR (in dB) Performances of Several Systems Op-
erating Over a Markov Channel with § = 10 and M = 1;
Generalized Gaussian Source with Shape Parameter a = 1;
R = Rate (Bits/Sample); k = Vector Dimension; ¢ = Chan-
nel Bit Error Rate; In the Interleaved Systems, COSQ and
COVQ are Designed for Memoryless Channels; OPTA = Op-
timal Performance Theoretically Attainable.

| R| k | System | €=0.005 | €=0.01 | €=0.05 | e=0.1 |
3|1 |COSQ 12.39 11.17 9.29 7.47
COSQ-IL 12.04 10.50 6.47 4.67
SQ-MAP | 12.20 10.91 5.77 | 3.35
SQ-IL 11.99 10.36 4.93 2.18
2 |COVQ 12.81 11.89 10.59 | 9.42
COVQ-IL| 12.46 11.15 7.36 5.15
3 | COVQ 13.55 12.90 | 11.35 | 10.05
COVQ-IL | 12.01 11.40 7.67 5.37
oo | OPTA 17.92 17.80 16.96 | 16.11

41 ]COSQ 15.67 | 14.93 | 11.24 | 9.13
COSQ-IL | 14.15 12.30 | 7.81 5.60
SQ-MAP | 13.90 11.89 | 5.58 | 2.93

SQ-IL 13.84 11.36 | 4.84 1.89
2 |COVQ 16.70 16.11 | 13.28 | 11.52
COVQ-IL| 15.28 13.70 9.06 | 6.40
oo | OPTA 23.89 23.73 | 22.61 | 21.48

Table 3. SNR (in dB) Performances of Several Systems Op-
erating Over a Markov Channel with § = 10 and M = 1;
Generalized Gaussian Source with Shape Parameter a = 2;
R = Rate (Bits/Sample); k = Vector Dimension; ¢ = Chan-
nel Bit Error Rate; In the Interleaved Systems, COSQ and
COVQ are Designed for Memoryless Channels; OPTA = Op-
timal Performance Theoretically Attainable.

| o | R | pp=R-HX) |
0.5 3 0.88
! 1.05
1 3 0.42
4 0.50
2 3 0.18
4 0.23

Table 4. Redundancy (in Bits/Sample) of Symmetric Lloyd-
Max Scalar Quantizer Output; Generalized Gaussian Source
with Shape Parameter a; R = Rate of Scalar Quantizer in
Bits/Sample.



