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ABSTRACT

In light of re
ent results by Verd�u and Han on 
hannel


apa
ity, we examine three problems: the strong 
onverse


ondition to the 
hannel 
oding theorem, the 
apa
ity of

arbitrary 
hannels with feedba
k and the Neyman-Pearson

hypothesis testing type-II error exponent. It is �rst re-

marked that the strong 
onverse 
ondition holds if and only

if the sequen
e of normalized 
hannel information densities


onverges in probability to a 
onstant. Examples illustrat-

ing this 
ondition are also provided. A general formula

for the 
apa
ity of arbitrary 
hannels with output feed-

ba
k is then obtained. Finally, a general expression for

the Neyman-Pearson type-II error exponent based on ar-

bitrary observations subje
t to a 
onstant bound on the

type-I error probability is derived.

I. Introdu
tion

In this paper, we investigate three problems inspired by

the re
ent work of Verd�u and Han on the general 
apa
-

ity formula of arbitrary single-user 
hannels [6℄. We �rst

address the strong 
onverse 
ondition obtained in [6℄ and

provide examples of 
hannels for whi
h the strong 
onverse

holds. We next derive a general 
apa
ity formula for arbi-

trary single-user 
hannels with output feedba
k. Finally,

we analyze the Neyman-Pearson hypothesis testing prob-

lem based on arbitrary observations.

In [6℄, Verd�u and Han give a ne
essary and suÆ
ient 
on-

dition for the validity of the strong 
onverse to the 
hannel


oding theorem. They state that the strong 
onverse holds

if and only if the 
hannel 
apa
ity is equal to the 
han-

nel resolvability. We remark that if there exists an input

distribution P

�

X

n
a
hieving the 
hannel 
apa
ity, then the

strong 
onverse 
ondition is a
tually equivalent to the 
on-

vergen
e in probability to a 
onstant (or in distribution to

a degenerate random variable) of the sequen
e of normal-

ized information densities a

ording to a joint input-output

distribution with P

�

X

n
as its indu
ed marginal. We further-

more note that the expression of the strong 
apa
ity, whi
h

will be de�ned later, is given by the 
hannel resolvability.

We also obtain examples of dis
rete 
hannels satisfying the

strong 
onverse 
ondition.

The main tool used in [6℄ to derive a general expression

for the (nonfeedba
k) 
hannel 
apa
ity is a new approa
h

to the (weak) 
onverse of the 
oding theorem based on a

simple lower bound on error probability. We utilize this

result to generalize the 
apa
ity expression for 
hannels

with feedba
k. Feedba
k 
apa
ity is shown to equal the

supremum, over all feedba
k en
oding strategies, of the

input-output inf-information rate whi
h is de�ned as the

liminf in probability of the normalized information density.

We �nally 
onsider the Neyman-Pearson hypothesis test-

ing problem based on arbitrary observations. We derive a

general expression for the type-II error exponent subje
t

to a �xed bound on the type-I error probability. We ob-

serve that this expression is indeed the dual of the general

"-
apa
ity formula given in [6℄.

II. The strong 
onverse of the single - user


hannel

A. Strong 
onverse 
ondition

Consider an arbitrary single-user 
hannel with input al-

phabet A and output alphabet B and n-dimensional tran-

sition distribution given by W

(n)

= P

Y

n

jX

n

: A

n

! B

n

;

n = 1; 2; : : :.

De�nition 1 ([6℄) An (n;M; �) 
ode has blo
klength n,

M 
odewords, and (average) error probability not larger

than �. R � 0 is an �-a
hievable rate if for every 
 > 0

there exists, for all suÆ
iently large n, (M;n; �) 
odes with

rate

log

2

M

n

> R� 
:

The maximum �-a
hievable rate is 
alled the �-
apa
ity, C

�

.

The 
hannel 
apa
ity, C, is de�ned as the maximal rate

that is �-a
hievable for all 0 < � < 1. It follows immedi-

ately from the de�nition that C = lim

�!0

C

�

.

De�nition 2 ([6℄) A 
hannel with 
apa
ity C is said to

satisfy the strong 
onverse if for every Æ > 0 and every

sequen
e of (n;M; �

n

) 
odes with rate

log

2

M

n

> C + Æ;

it holds that �

n

! 1 as n!1.
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In [6℄, Verd�u and Han derive a general formula for the

operational 
apa
ity of arbitrary single-user 
hannels (not

ne
essarily stationary, ergodi
, information stable, et
.).

The (nonfeedba
k) 
apa
ity was shown to equal the supre-

mum, over all input pro
esses, of the input-output inf-

information rate de�ned as the liminf in probability of the

normalized information density:

C = sup

X

n

I (X

n

;Y

n

); (1)

where X

n

= (X

1

; : : : ; X

n

), for n = 1; 2; : : :, is the blo
k

input ve
tor and Y

n

= (Y

1

; : : : ; Y

n

) is the 
orresponding

blo
k output ve
tor indu
ed by X

n

via the 
hannel.

The symbol I (X

n

;Y

n

) appearing in (1) is the inf-

information rate between X

n

and Y

n

and is de�ned as

the liminf in probability of the sequen
e of normalized in-

formation densities

1

n

i

X

n

Y

n

(X

n

;Y

n

), where

i

X

n

Y

n

(a

n

; b

n

) = log

2

P

Y

n

jX

n

(b

n

ja

n

)

P

Y

n

(b

n

)

: (2)

Likewise, the sup-information rate denoted as

�

I(X

n

;Y

n

)

is de�ned as the limsup in probability of the sequen
e of

normalized information densities.

The liminf in probability of a sequen
e [6℄ of random vari-

ables is de�ned as follows: If A

n

is a sequen
e of random

variables, its liminf in probability is the largest extended

real number � su
h that for all � > 0, lim sup

n!1

Pr[A

n

�

� � �℄ = 0. Similarly, its limsup in probability is the

smallest extended real numbers � su
h that for all � > 0,

lim sup

n!1

Pr[A

n

� � + �℄ = 0. Note that these two

quantities are always de�ned; if they are equal, then the

sequen
e of random variables 
onverges in probability to a


onstant (whi
h is �).

In Theorem 6 in [6℄, Verd�u and Han establish general

expressions for �-
apa
ity. They also give a ne
essary and

suÆ
ient 
ondition for the validity of the strong 
onverse

(Theorem 7 in [6℄), whi
h states that the strong 
onverse


ondition is equivalent to the 
ondition

sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

); (3)

i.e. C = S, where S

4

=sup

X

n

�

I(X

n

;Y

n

) denotes the 
han-

nel resolvability, whi
h is de�ned as the minimum number

of random bits required per 
hannel use in order to gen-

erate an input that a
hieves arbitrarily a

urate approxi-

mation of the output statisti
s for any given input pro
ess

[4℄. Furthermore, if 
hannel input alphabet is �nite, then

C = S = lim

n!1

sup

X

n

1

n

I(X

n

;Y

n

):

Lemma 1 If (3) holds and there exists

~

X

n

su
h that

sup

X

n

I(X

n

;Y

n

) = I(

~

X

n

;Y

n

);

then

I(

~

X

n

;Y

n

) =

�

I(

~

X

n

;Y

n

):

Proof : We know that

I(

~

X

n

;Y

n

) = sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

) �

�

I(

~

X

n

;Y

n

):

But I(X

n

; Y

n

) �

�

I(

~

X

n

;Y

n

), for all

~

X

n

. Hen
e

I(

~

X

n

;Y

n

) =

�

I(

~

X

n

;Y

n

):

2

Remark: The above lemma states that if (3) holds and

there exists an input distribution that a
hieves the 
han-

nel 
apa
ity, then it also a
hieves the 
hannel resolvabil-

ity. However, the 
onverse is not true in general; i.e.,

if (3) holds and there exists an input distribution that

a
hieves the 
hannel resolvability, then it does not ne
-

essarily a
hieve the 
hannel 
apa
ity.

Observation 1 If we assume that there exists an input

distribution P

�

X

n
that a
hieves the 
hannel 
apa
ity, then

the following two 
onditions are equivalent:

1. sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

).

2.

1

n

i

X

n

W

n

(X

n

; Y

n

) 
onverges to a 
onstant (whi
h is

the 
apa
ity C) in probability a

ording to the joint

input-output distribution P

X

n

Y

n

, su
h that its indu
ed

marginal is P

�

X

n
and the indu
ed 
onditional distribu-

tion P

Y

n

jX

n

is given by the 
hannel transition distri-

bution.

We will hereafter use the 
ondition stated in the above

observation to verify the validity of the strong 
onverse.

But �rst, we note the following result.

De�ne the strong 
onverse 
apa
ity (or strong 
apa
ity)

C

SC

as the in�mum of the rates R su
h that for all blo
k


odes with rate R and blo
klength n,

lim inf

n!1

P

(n)

e

= 1;

where P

(n)

e

is probability of de
oding error. It follows from

the de�nition that

C

SC

= lim

"!1

C

"

:

Lemma 2

C

SC

= sup

X

n

�

I(X

n

;Y

n

):

Proof :

1. C

SC

� sup

X

n

�

I(X

n

;Y

n

): From the de�nition of the

strong 
onverse 
apa
ity, we only need to show that if the

probability of de
oding error of a (sequen
e of) blo
k 
ode

satis�es lim inf

n!1

P

(n)

e

= 1, its rate must be greater than

sup

X

n

�

I(X

n

;Y

n

).

Let

e

X

n

be the input distribution satisfying

�

I(

e

X

n

;Y

n

) >

sup

X

n

�

I(X

n

;Y

n

) � ", and let M = e

nR

. Also let P

(n)

e

satisfy lim inf

n!1

P

(n)

e

= 1.

2



From Theorem 1 in [6℄ (also from Feinsteins's lemma),

there exists an (n;M; P

(n)

e

) 
ode that satis�es

P

(n)

e

� P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) �

1

n

logM + 


i

+exp f�
ng ;

for any 
 > 0

1

, whi
h implies

(8 
 > 0) lim inf

n!1

P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) � R+ 


i

= 1:

The above result is identi
al to

(8 
 > 0) lim sup

n!1

P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) > R+ 


i

= 0:

Finally, by the de�nition of sup-information rate, R must

be greater than

�

I(

e

X

n

;Y

n

) > sup

X

n

�

I(X

n

;Y

n

) � ". Sin
e

" 
an be made arbitrarily small, we have the desired result.

2. C

SC

= sup

X

n

�

I(X

n

; Y

n

): If C

SC

>

sup

X

n

�

I(X

n

;Y

n

), then there exists a 
ode with rate C

SC

>

R =

1

n

logM > sup

X

n

�

I(X

n

;Y

n

) + " su
h that

lim inf

n!1

P

(n)

e

< 1; (4)

for some " > 0. From [6,Theorem 4℄, every (n;M) 
ode

satis�es,

P

(n)

e

�P

h

1

n

i

X

n

W

n

(X

n

;Y

n

) �

1

n

logM �

"

2

i

�exp

n

�"n

2

o

;

where X

n

pla
es probability mass 1=M on ea
h 
odeword.

Hen
e,

lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

)�

1

n

logM �

"

2

i

�exp

n

�"n

2

o

= lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

) � R�

"

2

i

� exp

n

�"n

2

o

� lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

)�

�

I(X

n

;Y

n

) +

"

2

i

� e

�

"n

2

= 1;

whi
h implies lim inf

n!1

P

(n)

e

= 1, and 
ontradi
ts (4).2

It 
an be easily shown that for any input distribution

X

n

,

I(X

n

;Y

n

) � supfR : F

X

(R) � "g �

�

I(X

n

;Y

n

);

where

F

X

(R)

4

= lim sup

n!1

P

h

1

n

i

X

n

W

n

(X

n

; Y

n

) � R

i

:

1

To make it 
lear, we re-phrase Theorem 1 in [6℄ as follows.

Fix n and 0 < P

(n)

e

< 1, and also �x the input distribution

P

eX

n

on A

n

. Then for every 
 > 0, there exists an (n;M; P

(n)

e

)


ode for the given transition probability W

n

that satis�es

P

(n)

e

� P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) �

1

n

logM + 


i

+ exp f�
ng :

Hen
e, from Theorem 6 in [6℄, if we assume that

sup

X

n

supfR : F

X

(R) � "g is 
ontinuous in ", we obtain

that

C � C

"

� C

SC

:

The above equation leads to the following result.

Corollary 1 C = S = C

SC

i� C

"

= C for all " 2 (0; 1).

B. Examples of 
hannels satisfying the strong


onverse

(i). Additive noise 
hannel

Consider the 
hannel with 
ommon input, noise, and out-

put alphabet, A = f0; 1; : : : ; q � 1g, des
ribed by

Y

n

= X

n

� Z

n

;

where � denotes addition modulo q and X

n

, Z

n

and Y

n

are respe
tively the input, noise, and output symbols of

the 
hannel at time n, n = 1; 2; : : :. We assume that the

input and noise sequen
es are independent of ea
h other.

We also assume that the noise pro
ess is stationary and

ergodi
.

Sin
e the 
hannel is symmetri
, the input pro
ess

that a
hieves (3) is uniform i.i.d. , whi
h yields a uni-

form i.i.d. output pro
ess. It follows from the Shannon-

M
Millian theorem that the information spe
trum 
on-

verges to C where C = log q � H(Z

1

). Here, H(Z

1

)

denotes the noise entropy rate. Therefore, the strong 
on-

verse holds, and C

"

= C

SC

= C for all " 2 (0; 1).

Observation 2 If the noise pro
ess is only stationary,

then the strong 
onverse does not hold in general. Indeed,

by the ergodi
 de
omposition theorem [2℄, we 
an show that

the additive noise 
hannel is an averaged 
hannel whose


omponents are q-ary 
hannels with stationary ergodi
 ad-

ditive noise. In this 
ase, we obtain using Theorem 6 in

[6℄, a general �-
apa
ity formula for this 
hannel:

C

"

= log q � F

�1

U

(1� ");

where U is a random variable with 
umulative distribution

fun
tion F

U

(�)

2

su
h that the sequen
e �

1

n

log P (Z

n

) 
on-

verges to U in probability. Furthermore, it is known that

U = H

�

(Z

1

) where H

�

(Z

1

) is the entropy rate of the

ergodi
 
omponents � de�ned on the spa
e (�; �(�);G)

3

.

The distribution of U 
an hen
e be derived using the mixing

distribution G of the average 
hannel. Finally, we remark

that

lim

�!0

C

"

= log q � F

�1

U

(1) = log q � ess

�

supH

�

(Z

1

) = C;

2

We assume the CDF F

U

(�) admits an inverse. Otherwise,

we 
an repla
e F

�1

U

(�) by

F

�1

U

(x)

4

=supfy : F

U

(y) < xg:

3

We assume that the probability spa
e (�; �(�); G) satis�es


ertain regularity 
onditions [2℄.

3



as expe
ted.

(ii). Additive noise 
hannel with input 
ost


onstraints

In general, the use of the 
hannel is not free; we asso
iate

with ea
h input letter x a nonnegative number b(x), that

we 
all the \
ost" of x. The fun
tion b(�) is 
alled the 
ost

fun
tion. If we use the 
hannel n 
onse
utive times, i.e.,

we send an input ve
tor x

n

= (x

1

; x

2

; : : : ; x

n

), the 
ost

asso
iated with this input ve
tor is \additive"; i.e.,

b(x

n

) =

n

X

i=1

b(x

i

):

For an input pro
ess fX

i

g

1

i=1

with blo
k input distribution

P

(n)

(X

n

= x

n

) the average 
ost for sending X

n

is de�ned

by

E [b(X

n

)℄ =

X

x

n

P

(n)

(x

n

) b(x

n

) =

n

X

i=1

E [b(X

i

)℄ :

We assume that the 
ost fun
tion is \bounded"; i.e., there

exists a �nite b

max

su
h that b(x) � b

max

for all x in the

set f0; : : : ; q � 1g.

De�nition 3 An n-dimensional input random ve
tor

X

n

= (X

1

; X

2

; : : : ; X

n

) that satis�es

1

n

E [b(X

n

)℄ � �;

is 
alled a �-admissible input ve
tor. We denote the set of

n-dimensional �-admissible input distributions by �

n

(�):

�

n

(�) =

n

P

(n)

(X

n

) :

1

n

E [b(X

n

)℄ � �

o

:

Re
all that a 
hannel is said to be stationary if for every

stationary input, the joint input-output pro
ess is station-

ary. Furthermore, a 
hannel is said to be ergodi
 if for

every ergodi
 input pro
ess, the joint input-output pro-


ess is ergodi
. It is known that a 
hannel with stationary

mixing additive noise is ergodi
 [2,5℄.

Lemma 3 If the noise pro
ess is stationary and mixing,

then the strong 
onverse holds:

C

"

(�) = C(�) = lim

n!1

C

n

(�);

where C

n

(�) is the n'th 
apa
ity-
ost fun
tion given by

C

n

(�)

4

= max

P

(n)

(X

n

)2�

n

(�)

1

n

I(X

n

;Y

n

):

Proof : Sin
e the 
hannel is a 
ausal, historyless

4

and

stationary ergodi
 
hannel, and the 
ost fun
tion is addi-

tive and bounded, then there exists a stationary ergodi


4

Re
all that a 
hannel is said to be 
ausal (with no anti
ipa-

tion) if for a given input and a given input-output history, its


urrent output is independent of future inputs. Furthermore, a


hannel is said to be historyless (with no input memory) if its


urrent output is independent of previous inputs. Refer to [2℄

for more rigorous de�nitions of 
ausal and historyless 
hannels.

input pro
ess that a
hieves C(�). This follows from the

dual result on the distortion rate fun
tion D(R) of sta-

tionary ergodi
 sour
es, whi
h states that for a stationary

ergodi
 sour
e with additive and bounded distortion mea-

sure, there exists a stationary ergodi
 input-output pro
ess

P

X

n

Y

n

that a
hieves D(R) su
h that the indu
ed marginal

P

X

n

is the sour
e distribution [2,3℄.

Therefore, if we form the joint input-output pro
ess

f(X

n

; Y

n

)g

1

n=1

using the stationary ergodi
 input pro
ess

that a
hieves C(�), we obtain that f(X

n

; Y

n

)g

1

n=1

is sta-

tionary ergodi
. Hen
e,

1

n

i

X

n

Y

n

(X

n

;Y

n

) 
onverges to

C(�) in probability. 2

III. General 
apa
ity formula with

feedba
k

Consider a dis
rete 
hannel (with input alphabet A and

output alphabet B) with output feedba
k. By this we mean

that there exists a \return 
hannel" from the re
eiver to

the transmitter; we assume this return 
hannel is noiseless,

delayless, and has large 
apa
ity. The re
eiver uses the re-

turn 
hannel to inform the transmitter what letters were

a
tually re
eived; these letters are re
eived at the trans-

mitter before the next letter is transmitted, and therefore


an be used in 
hoosing the next transmitted letter.

A feedba
k 
ode with blo
klength n and rate R 
onsists

of sequen
e of en
oders

f

i

: f1; 2; : : : ; 2

nR

g � B

i�1

! A

for i = 1; 2; : : : ; n, along with a de
oding fun
tion

g : B

n

! f1; 2; : : : ; 2

nR

g:

The interpretation is simple: If the user wishes to 
on-

vey message V 2 f1; 2; : : : ; 2

nR

g then the �rst 
ode sym-

bol transmitted is X

1

= f

1

(V ); the se
ond 
ode symbol

transmitted is X

2

= f

2

(V; Y

1

), where Y

1

is the 
hannel's

output due to X

1

. The third 
ode symbol transmitted

is X

3

= f

3

(V; Y

1

; Y

2

), where Y

2

is the 
hannel's output

due to X

2

. This pro
ess is 
ontinued until the en
oder

transmits X

n

= f

n

(V; Y

1

; Y

2

; : : : ; Y

n�1

). At this point

the de
oder estimates the message to be g(Y

n

), where

Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄.

We assume that V is uniformly distributed over

f1; 2; : : : ; 2

nR

g. The probability of de
oding error is thus

given by:

P

(n)

e

=

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6= V jV = kg=Prfg(Y

n

) 6= V g:

We say that a rate R is a
hievable (admissible) if there

exists a sequen
e of 
odes with blo
klength n and rate R

su
h that

lim

n!1

P

(n)

e

= 0:

We will denote the 
apa
ity of the 
hannel with feedba
k

by C

FB

. As before, C

FB

is the supremum of all admissible

feedba
k 
ode rates.

4



Lemma 4 The general 
apa
ity formula of an arbitrary


hannel with feedba
k is

C

FB

= sup

X

n

I(V ;Y

n

);

where the supremum is taken over all possible feedba
k en-


oding s
hemes.

5

Proof :

1. C

FB

� sup

(f

1

;:::;f

n

)

I(V ; Y

n

).

We �rst state the following result.

Proposition 1 For a feedba
k 
ode of blo
klength n and

size M , the probability of error satis�es

P

(n)

e

� P

h

1

n

i

WY

n

(W ;Y

n

) �

1

n

logM � 


i

�exp f�
ng

for every 
 > 0, where P

W

(W = w) = 1=M for all w.

The proof of the proposition is as follows. Let � =

exp f�
ng. De�ne

L

4

=

�

(w; b

n

) 2 f1; 2; : : : ;Mg � Y

n

: P

W jY

n

(wjb

n

) � �

	

=f(w; b

n

) 2 f1; 2; : : : ;Mg � Y

n

:

1

n

i

WY

n

(w; b

n

) �

1

n

logM � 


o

= [

M

w=1

fwg � B

w

;

where B

w

4

= fb

n

2 Y

n

: P

W jY

n

(wjb

n

) � �g. By de�n-

ing D

w

2 Y

n

be the de
oding set 
orresponding to w, we

obtain

P

WY

n

(L) =

M

X

w=1

P

WY

n

(fwg � B

w

)

=

M

X

w=1

P

WY

n

(fwg � (B

w

\ D




w

))

+

M

X

w=1

P

WY

n

(fwg � (B

w

\ D

w

))

=

M

X

w=1

1

M

P

Y

n

jW

(B

w

\ D




w

jw)

+

M

X

w=1

P

WY

n

(fwg � (B

w

\ D

w

))

�

M

X

w=1

1

M

P

Y

n

jW

(D




w

jw) + �P

Y

n

([

M

w=1

D

w

);

5

sup

X

n

I(V ;Y

n

) = sup

X

n

=(f

1

(V );f

2

(V;Y

1

);:::;f

n

(V;Y

n�1

))

I(V ;Y

n

)

= sup

(f

1

;f

2

;:::;f

n

)

I(V ;Y

n

):

be
ause D

w

are pair�wise disjoint:

� P

(n)

e

+ �:

Based on this proposition, we 
an show that

C

FB

� sup

(f

1

;:::;f

n

)

I(V ;Y

n

)

using proof-by-
ontradi
tion [6℄.

2. C

FB

� sup

(f

1

;:::;f

n

)

I(V ; Y

n

).

This follows dire
tly using Feinstein's lemma as in [6℄.

2

IV. General formula for the Neyman-

Pearson hypothesis testing error

exponent

In this se
tion, we 
onsider a Neyman-Pearson hypoth-

esis testing problem for testing a null hypothesis H

0

: P

X

n

against an alternative hypothesis H

1

: Q

X

n

based on a se-

quen
e of random observations X

n

= (X

1

; : : : ; X

n

), whi
h

is supposed to exhibit a probability distribution of either

P

X

n

or Q

X

n

. Upon re
eipt of the n observations, a �nal

de
ision about the nature of the random observations is

made so that the type-II error probability �

n

, subje
t to a

�xed upper bound " on the type-I error probability �

n

, is

minimized. The type-I error probability is de�ned as the

probability of a

epting hypothesis H

1

when a
tually H

0

is true; while the type-II error probability is de�ned as the

probability of a

epting hypothesis H

0

when a
tually H

1

is true [1℄.

For arbitrary observations (not ne
essarily stationary,

ergodi
), we derive a general formula for the type-II error

exponent subje
t to a 
onstant upper bound " on the type-I

error probability. This is given in the following lemma.

Lemma 5 Given a sequen
e of random observations

X

n

= (X

1

; : : : ; X

n

) whi
h is assumed to have a probability

distribution either P

X

n

or Q

X

n

, the type-II error exponent

satis�es

supfD : F (D) < "g � lim sup

n!1

�

1

n

log �

�

n

(")

� supfD : F (D) � "g;

supfD :

�

F (D) < "g � lim inf

n!1

�

1

n

log �

�

n

(")

� supfD :

�

F (D) � "g;

where

F (D)

4

= lim inf

n!1

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

;

�

F (D)

4

= lim sup

n!1

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

;

and �

�

n

(") represents the minimum type-II error probability

subje
t to a �xed type-I error bound " 2 (0; 1).

5



Proof : We �rst prove the lower bound of the limsup

of �(1=n) log �

�

n

("). For any D satisfying F (D) < ", there

exists Æ > 0 su
h that F (D) < " � 2Æ; and hen
e, by the

de�nition of F (D), (9 a subsequen
e fn

j

g and N) su
h

that for j > N ,

P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

� D

�

� "� Æ < ":

:

:

: �

�

n

j

(") � Q

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

> D

�

� P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

> D

�

� exp f�n

j

Dg

� exp f�n

j

Dg :

Therefore,

lim sup

n!1

�

1

n

log �

�

n

(") � lim sup

j!1

�

1

n

j

log �

�

n

j

(") � D;

for any D with F (D) < ".

For the proof of the upper bound of the limsup of

�(1=n) log �

�

n

("), let U

n

be the optimal a

eptan
e region

for alternative hypothesis under likelihood ratio partition,

whi
h is de�ned as follows.

U

n

4

=

�

1

n

log

P (X

n

)

Q(X

n

)

< �

n

�

+ �

n

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

;

for some �

n

and possible randomization fa
tor �

n

2 [0; 1).

Then P (U

n

) = ".

Let D = supfD : F (D) � "g. Then F (D + Æ) > " for

any Æ > 0. Hen
e, (9 
 = 
(Æ) > 0), F (D + Æ) > "+ 
:

By the de�nition of F (D + Æ), (9 N)(8 n > N)

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D + Æ

�

> "+




2

:

Therefore,

�

�

n

(") = Q

�

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+(1� �

n

) �Q

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

� Q

�

D + Æ �

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+(1� �

n

) �Q

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

�

�

P

�

D + Æ �

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+ (1� �

n

)

�P

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

��

� exp f�n(D + Æ)g

=

�

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D + Æ

�

�P

�

1

n

log

P (X

n

)

Q(X

n

)

< �

n

�

��

n

P

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

��

� exp f�n(D + Æ)g

�

�

"+




2

� "

�

exp f�n(D + Æ)g ; for n > N

=




2

exp f�n(D + Æ)g ; for n > N:

:

:

: lim sup

n!1

�

1

n

log �

�

n

(") � D + Æ:

Sin
e Æ 
an be made arbitrarily small,

lim sup

n!1

�

1

n

log �

�

n

(") � D:

Similarly, to prove the lower bound of the mininf of

�(1=n) log �

�

n

("), we �rst note that for any D satisfying

�

F (D) < ", (9 Æ > 0) su
h that

�

F (D) < "� 2Æ; and hen
e,

by the de�nition of

�

F (D), (9 N)(8 n > N),

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

� "� Æ < ":

By following the same pro
edure of (5), we have for n > N ,

�

�

n

(") � exp f�nDg ;

Therefore,

lim inf

n!1

�

1

n

log �

�

n

(") � D;

for any D with

�

F (D) < ".

Then for the proof of the upper bound of the liminf

of �(1=n) log �

�

n

("), let

�

D = supfD :

�

F (D) � "g. Then

�

F (

�

D + Æ) > " for any Æ > 0. Hen
e, (9 
 = 
(Æ) > 0),

�

F (

�

D + Æ) > "+ 
:

By the de�nition of

�

F (

�

D + Æ), (9 a subsequen
e fn

j

g

and N) su
h that for j > N ,

P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

�

�

D + Æ

�

> "+




2

:

Therefore, by following the same pro
edure as (5), we have

for j > N ,

�

�

n

j

(") �




2

exp

�

�n

j

(

�

D + Æ)

	

:

:

: lim inf

n!1

�

1

n

log �

�

n

(") � lim inf

j!1

�

1

n

j

log �

�

n

j

(") �

�

D+Æ:

Sin
e Æ 
an be made arbitrarily small,

lim inf

n!1

�

1

n

log �

�

n

(") �

�

D:

2

Remarks:

� Both

�

F (D) and F (D) are non-de
reasing; hen
e, the

number of dis
ontinuous points for both fun
tions is


ountable.
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� When the normalized log-likelihood ratio 
onverges in

probability to a 
onstant D




under null distribution

whi
h is the 
ase for most dete
tion problems of in-

terest, the type-II error exponent is that 
onstant D




,

and is independent of the type-I error bound ". For

example, in a spe
ial 
ase of i.i.d. data sour
e with

jE

P

[log P (X)=Q(X)℄j <1, both fun
tions degener-

ate to the form

�

F (D) = F (D) = 1 if D > D




�

F (D) = F (D) = 0 if D < D




;

where D




4

= E

P

[log P (X)=Q(X)℄. As a result, for " 2

(0; 1),

lim sup

n!1

�

1

n

log �

�

n

(") = lim inf

n!1

�

1

n

log �

�

n

(") = D




:

� The signi�
an
e of the general type-II error exponent

formula of �xed level be
omes transparent when the

spe
trum (the 
umulative distribution fun
tion) of the

normalized log-likelihood ratio 
onverges in probabil-

ity under P (whi
h is weaker than 
onvergen
e in

mean) to a random variable Z with invertible 
umula-

tive distribution fun
tion F (�). In this 
ase, the type-

II error exponent 
an be expli
itly written as

lim

n!1

�

1

n

log �

�

n

(") = F

�1

(");

for " 2 (0; 1). A more extreme 
ase is that Z is almost

surely a 
onstant whi
h is

lim

n!1

1

n

D (P

X

n

kQ

X

n

) ;

if the limit exists, where D(�k�) is the Kullba
k-Leibler

divergen
e of two probability measures. This result


oin
ides with that obtained from Stein's Lemma.

This is also the 
ounterpart result of the strong 
on-

verse 
ondition (i.e., the "-
apa
ity is independent of

") for dis
rete memoryless 
hannels (DMC) [6℄.

V. Summary

In this paper, we 
onsidered three di�erent problems re-

lated to the work of Verd�u and Han on 
hannel 
apa
ity

[6℄. Pertinent observations 
on
erning the validity of the

strong 
onverse to the 
hannel 
oding theorem, as well as

examples of 
hannels for whi
h the strong 
onverse holds,

were provided. General expressions for the feedba
k 
apa
-

ity of arbitrary 
hannels and the Neyman-Pearson type-II

error exponent of 
onstant test level were also derived.
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