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ABSTRACT

In light of recent results by Verdd and Han on channel
capacity, we examine three problems: the strong converse
condition to the channel coding theorem, the capacity of
arbitrary channels with feedback and the Neyman-Pearson
hypothesis testing type-II error exponent. It is first re-
marked that the strong converse condition holds if and only
if the sequence of normalized channel information densities
converges in probability to a constant. Examples illustrat-
ing this condition are also provided. A general formula
for the capacity of arbitrary channels with output feed-
back is then obtained. Finally, a general expression for
the Neyman-Pearson type-1I error exponent based on ar-
bitrary observations subject to a constant bound on the
type-I error probability is derived.

I. Introduction

In this paper, we investigate three problems inspired by
the recent work of Verdd and Han on the general capac-
ity formula of arbitrary single-user channels [6]. We first
address the strong converse condition obtained in [6] and
provide examples of channels for which the strong converse
holds. We next derive a general capacity formula for arbi-
trary single-user channels with output feedback. Finally,
we analyze the Neyman-Pearson hypothesis testing prob-
lem based on arbitrary observations.

In [6], Verdd and Han give a necessary and sufficient con-
dition for the validity of the strong converse to the channel
coding theorem. They state that the strong converse holds
if and only if the channel capacity is equal to the chan-
nel resolvability. We remark that if there exists an input
distribution Px» achieving the channel capacity, then the
strong converse condition is actually equivalent to the con-
vergence in probability to a constant (or in distribution to
a degenerate random variable) of the sequence of normal-
ized information densities according to a joint input-output
distribution with Px» as its induced marginal. We further-
more note that the expression of the strong capacity, which
will be defined later, is given by the channel resolvability.
We also obtain examples of discrete channels satisfying the
strong converse condition.

The main tool used in [6] to derive a general expression
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for the (nonfeedback) channel capacity is a new approach
to the (weak) converse of the coding theorem based on a
simple lower bound on error probability. We utilize this
result to generalize the capacity expression for channels
with feedback. Feedback capacity is shown to equal the
supremum, over all feedback encoding strategies, of the
input-output inf-information rate which is defined as the
liminf in probability of the normalized information density.

We finally consider the Neyman-Pearson hypothesis test-
ing problem based on arbitrary observations. We derive a
general expression for the type-II error exponent subject
to a fixed bound on the type-I error probability. We ob-
serve that this expression is indeed the dual of the general
e-capacity formula given in [6].

II. The strong converse of the single - user
channel

A. Strong converse condition

Counsider an arbitrary single-user channel with input al-
phabet A and output alphabet B and n-dimensional tran-
sition distribution given by W™ = Pynixn : A" — B";
n=12...

Definition 1 ([6]) An (n,M,e) code has blocklength n,
M codewords, and (average) error probability mot larger
than €. R > 0 is an e-achievable rate if for every v > 0
there exists, for all sufficiently large n, (M, n,€) codes with
rate ] o
0g2
" >R—7.

The mazimum e-achievable rate is called the e-capacity, Ce.
The channel capacity, C, is defined as the mazimal rate
that is e-achievable for all 0 < e < 1. It follows immedi-
ately from the definition that C = lim¢_0 C..

Definition 2 ([6]) A channel with capacity C is said to
satisfy the strong converse if for every 6 > 0 and every
sequence of (n, M, \,) codes with rate

logr M 045
n )

it holds that A\, > 1 as n — oo.
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In [6], Verdd and Han derive a general formula for the
operational capacity of arbitrary single-user channels (not
necessarily stationary, ergodic, information stable, etc.).
The (nonfeedback) capacity was shown to equal the supre-
mum, over all input processes, of the input-output inf-
information rate defined as the liminf in probability of the
normalized information density:

C=sup I(X"Y"), (1)
Xn
where X" = (Xi,...,X5), for n = 1,2,..., is the block
input vector and Y™ = (Y1,...,Y,) is the corresponding
block output vector induced by X™ via the channel.

The symbol I (X";Y"™) appearing in (1) is the inf-
information rate between X" and Y™ and is defined as
the liminf in probability of the sequence of normalized in-
formation densities % ixnyn (X™;Y™), where

Pyrixn(b"|a™)

anYn (a"; b") = 10g2 Pyn (b")

(2)
Likewise, the sup-information rate denoted as I(X™;Y™)
is defined as the limsup in probability of the sequence of
normalized information densities.

The liminf in probability of a sequence [6] of random vari-
ables is defined as follows: If A, is a sequence of random
variables, its liminf in probability is the largest extended
real number « such that for all £ > 0, limsup,,_,  Pr[A, <
a — & = 0. Similarly, its limsup in probability is the
smallest extended real numbers 3 such that for all £ > 0,
limsup,,_, . Pr[A, > B+ &) = 0. Note that these two
quantities are always defined; if they are equal, then the
sequence of random variables converges in probability to a
constant (which is «).

In Theorem 6 in [6], Verdd and Han establish general
expressions for e-capacity. They also give a necessary and
sufficient condition for the validity of the strong converse
(Theorem 7 in [6]), which states that the strong converse
condition is equivalent to the condition

sup L(X™;Y") = sup I(X™;Y™), 3)
Xn xXn

ie. C =8, where 52 supx» I(X™;Y™) denotes the chan-
nel resolvability, which is defined as the minimum number
of random bits required per channel use in order to gen-
erate an input that achieves arbitrarily accurate approxi-
mation of the output statistics for any given input process
[4]. Furthermore, if channel input alphabet is finite, then

C =S = lim sup lI(X";Y”).

n—0o0 xn
Lemma 1 If (3) holds and there exists X™ such that

sup [(X™;Y™) = [(X™; V"),

xXn

then _ L
I(X™Y") =I(X"Y").

Proof: We know that

I(X™Y") =sup (X" V") =sup I(X™;Y") > I(X";Y™).
XxXn XxXn

But I(X™;Y™) < I[(X™;Y™), for all X". Hence
I(X™Y™) =I(X™Y™).

O
Remark: The above lemma states that if (3) holds and
there exists an input distribution that achieves the chan-
nel capacity, then it also achieves the channel resolvabil-
ity. However, the converse is not true in general; i.e.,
if (3) holds and there exists an input distribution that
achieves the channel resolvability, then it does not nec-
essarily achieve the channel capacity.

Observation 1 If we assume that there exists an input
distribution Pxn» that achieves the channel capacity, then
the following two conditions are equivalent:

1. supyn L(X™Y™) =supyn [(X™;Y™).

2. Lixnwn (X" Y™) converges to a constant (which is
the capacity C) in probability according to the joint
input-output distribution Pxnyn, such that its induced
marginal is P~ and the induced conditional distribu-
tion Pyn xn is given by the channel transition distri-
bution.

We will hereafter use the condition stated in the above
observation to verify the validity of the strong converse.
But first, we note the following result.

Define the strong converse capacity (or strong capacity)
Csc as the infimum of the rates R such that for all block
codes with rate R and blocklength n,

lim inf P(™) = 1,

n—o0

where P{™ is probability of decoding error. It follows from
the definition that

Csc = lim C..
e—1

Lemma 2
Csc =supI(X™;Y").
Xn

Proof:

1. Cs¢ > supxn I(X™;Y™): From the definition of the
strong converse capacity, we only need to show that if the
probability of decoding error of a (sequence of) block code
satisfies lim inf,, o Pe(") = 1, its rate must be greater than

supxn I(X™;Y™).

Let X" be the input distribution satisfying f()?"; Y") >
supyn I(X™Y") — ¢, and let M = "R, Also let P\
satisfy liminf, oo P\™ = 1.



From Theorem 1 in [6] (also from Feinsteins’s lemma),
there exists an (n, M, Pe(")) code that satisfies

P™M<p [li~
n

Xnwn

NTL n 1
(X*"v™") < ElogM—i—v]—l—exp{—'yn},
for any y > 0', which implies

(Vy>0) liminfP [l%—
n

n— 00 Xnwn

Xy < R+'y] ~1
The above result is identical to

(Vy>0) liTrLrLsolcl)pP [%i;nwn (X™7") > R—i—'y] =0.
Finally, by the definition of sup-information rate, R must
be greater than I(X™;Y™) > supy. [(X";Y™) — ¢. Since
€ can be made arbitrarily small, we have the desired result.

2. Csc = supyn I(X™y"): If Cse¢ >
supxn» I(X™; Y™), then there exists a code with rate Cs¢ >
R=2LlogM >supy. I(X";Y™) + ¢ such that

liminf P < 1, (4)

n— 00
for some € > 0. From [6,Theorem 4], every (n, M) code

satisfies,

Pé")ZP[liX”wn (X™Y") < S log M — 5] —exp{_—m}:
n n 2 2

where X" places probability mass 1/M on each codeword.
Hence,

1 1 € —en
imi Zixnpn (XY <= B —_=
hnnling[an wn (XY )_nlogM 2} exp{ 5 }
= liminf P [lixnwn (X" Y")<R— 5] —exp{_—m}
> limian[lanwn (X" V™) <E(X™ V™) +5] e
n— 00 n 2
= 1,

which implies lim inf,, Pe(") =1, and contradicts (4). O
It can be easily shown that for any input distribution
X?’L
I(X™;Y") <sup{R: Fx(R) <e} <I(X™Y™),

where

Fx(R) 2 limsup P [lixnwn (X" Y")<R)|.
n

n— 00

1To make it clear, we re-phrase Theorem 1 in [6] as follows.
Fix n and 0 < P < 1, and also fix the input distribution
Pgn on A"™. Then for every v > 0, there exists an (n, M, Pe(n))
code for the given transition probability W™ that satisfies

1
p™<p|-ix
<P —ig,

~ 1
wn (X™y") < —logM-l—'y:I + exp {—yn}.
n

Hence, from Theorem 6 in [6], if we assume that
sup y» sup{R : Fix(R) < ¢} is continuous in &, we obtain
that

C <C.<Csc.

The above equation leads to the following result.

Corollary 1 C =S5 =Csc iff Cc = C for all e € (0,1).

B. Examples of channels satisfying the strong
converse

(i). Additive noise channel

Consider the channel with common input, noise, and out-
put alphabet, A = {0,1,...,q — 1}, described by

Y, =XnEBZn7

where @ denotes addition modulo ¢ and X,,, Z, and Y,
are respectively the input, noise, and output symbols of
the channel at time n, n = 1,2,.... We assume that the
input and noise sequences are independent of each other.
We also assume that the noise process is stationary and
ergodic.

Since the channel is symmetric, the input process
that achieves (3) is uniform ii.d. , which yields a uni-
form i.i.d. output process. It follows from the Shannon-
McMillian theorem that the information spectrum con-
verges to C where C' = logq — H(Zx). Here, H(Z)
denotes the noise entropy rate. Therefore, the strong con-
verse holds, and C. = Csc = C for all € € (0,1).

Observation 2 If the noise process is only stationary,
then the strong converse does not hold in general. Indeed,
by the ergodic decomposition theorem [2], we can show that
the additive noise channel s an averaged channel whose
components are q-ary channels with stationary ergodic ad-
ditive noise. In this case, we obtain using Theorem 6 in
[6], a general e-capacity formula for this channel:

C. = logq— Fy'(1—¢),

where U is a random variable with cumulative distribution
1

function Fy(-)* such that the sequence —Llog P(Z™) con-
verges to U in probability. Furthermore, it is known that
U = H¢(Zy) where Ho(Z) ts the entropy rate of the
ergodic components 0 defined on the space (©,0(0),G)3.
The distribution of U can hence be derived using the mizing
distribution G of the average channel. Finally, we remark

that

liné C. =logq — F;'(1) = logq — esse sup Hp(Zx) = C,
e—

2We assume the CDF Fy (-) admits an inverse. Otherwise,
we can replace F[jl() by

F7 (@) suply : Fu(y) < o

3We assume that the probability space (0, 7(0), G) satisfies
certain regularity conditions [2].



as expected.

(ii). Additive noise channel with input cost
constraints

In general, the use of the channel is not free; we associate
with each input letter z a nonnegative number b(x), that
we call the “cost” of z. The function b(-) is called the cost
function. If we use the channel n consecutive times, i.e.,
we send an input vector z" = (z1,z2,...,ZTn), the cost
associated with this input vector is “additive”; i.e.,

b(a") = b(w:).
i=1
For an input process {X; }§2; with block input distribution
PM(X™ = z™) the average cost for sending X" is defined
by

Eb(X")]=Y_P" (") ba") =Y Eb(X,)].
xn i=1

We assume that the cost function is “bounded”; i.e., there

exists a finite bmax such that b(x) < bmax for all z in the

set {0,...,q—1}.

Definition 3 An n-dimensional input random wvector
X" = (X1,Xa,...,Xn) that satisfies

~EbXM] <5,

s called a B-admaissible input vector. We denote the set of
n-dimensional B-admissible input distributions by 7,(8):

n (@) = { PP LERX™) < 8}

Recall that a channel is said to be stationary if for every
stationary input, the joint input-output process is station-
ary. Furthermore, a channel is said to be ergodic if for
every ergodic input process, the joint input-output pro-
cess is ergodic. It is known that a channel with stationary
mixing additive noise is ergodic [2,5].

Lemma 3 If the noise process is stationary and mizing,
then the strong converse holds:

C.(8) = C(8) = lim Cu(B),
where Cy () s the n’th capacity-cost function given by

A 1
Cr(B)= max = I(X™Y™).
P (Xm)ern(B) T
Proof: Since the channel is a causal, historyless® and
stationary ergodic channel, and the cost function is addi-
tive and bounded, then there exists a stationary ergodic

4Recall that a channel is said to be causal (with no anticipa-
tion) if for a given input and a given input-output history, its
current output is independent of future inputs. Furthermore, a
channel is said to be historyless (with no input memory) if its
current output is independent of previous inputs. Refer to [2]
for more rigorous definitions of causal and historyless channels.

input process that achieves C(8). This follows from the
dual result on the distortion rate function D(R) of sta-
tionary ergodic sources, which states that for a stationary
ergodic source with additive and bounded distortion mea-
sure, there exists a stationary ergodic input-output process
Pxnyn that achieves D(R) such that the induced marginal
Px~ is the source distribution [2,3].

Therefore, if we form the joint input-output process
{(Xn,Yn)}o2, using the stationary ergodic input process
that achieves C(f3), we obtain that {(X,,Y,)}ne; is sta-
tionary ergodic. Hence, Lixnyn(X";Y™) converges to
C(B) in probability. |

II1I. General capacity formula with
feedback

Consider a discrete channel (with input alphabet A and
output alphabet B) with output feedback. By this we mean
that there exists a “return channel” from the receiver to
the transmitter; we assume this return channel is noiseless,
delayless, and has large capacity. The receiver uses the re-
turn channel to inform the transmitter what letters were
actually received; these letters are received at the trans-
mitter before the next letter is transmitted, and therefore
can be used in choosing the next transmitted letter.

A feedback code with blocklength n and rate R consists
of sequence of encoders

fi:{1,2,....2"%"}yx B ' 5 A

for i =1,2,...,n, along with a decoding function

g: B* = {1,2,... 2"},

The interpretation is simple: If the user wishes to con-
vey message V € {1,2,...,2"%} then the first code sym-
bol transmitted is X1 = fi(V); the second code symbol
transmitted is X2 = f2(V,Y1), where Y is the channel’s
output due to X;. The third code symbol transmitted
is X3 = f3(V,Y1,Y2), where Y> is the channel’s output
due to X». This process is continued until the encoder
transmits X, = fn(V,Y1,Y2,...,Y,_1). At this point
the decoder estimates the message to be g(Y"), where
Y™ =[Y1,Ys,...,Y,]

We assume that V is uniformly distributed over
{1,2,...,2"%}. The probability of decoding error is thus
given by:

onR

P= LS Pr{gr) £ VIV = R=Pr{g(™) £ V).

k=1

We say that a rate R is achievable (admissible) if there
exists a sequence of codes with blocklength n and rate R
such that

lim P™ =0.

n—o0 €
We will denote the capacity of the channel with feedback
by Crp. As before, Crp is the supremum of all admissible
feedback code rates.



Lemma 4 The general capacity formula of an arbitrary
channel with feedback is

Crp =supL(V;Y"),
X"

where the supremum is taken over all possible feedback en-
coding schemes.’

Proof:
1. Cre < SUP (£, f0) I(V;Y™).
We first state the following result.

Proposition 1 For a feedback code of blocklength n and
size M, the probability of error satisfies

1 1
P > P[ﬁiwyn(W;Yn) < ElogM—v] —exp {—yn}

for every v > 0, where Pw (W = w) =1/M for all w.

The proof of the proposition is as follows. Let f =
exp {—vyn}. Define

1>

L SMPx YT

SMPx Yt
li (w;d") < llo M — }
Y ; >, g v

- UwM=l{w} X Bw)

{(w,") € {1,2,.. Py (wlb") < B}
{

(w,b") € {1,2,..

where B, = {b" € V" : Pyjy-(w|b”) < B}. By defin-
ing Dy, € Y" be the decoding set corresponding to w, we
obtain

> Pwyn({w} x Bu)

w=1

Pwy(L) =

= Z Pwyn ({w} X (Bw N ,chu))

M

+ Y Pwyn({w} x (Bu N D))

w=1

S

1
= MPY"WV(B“-’ 0D5J|w)
1

w

+ Y Pwyn({w} x (By N D))
1

a7 Py iw (Dalw) + BPyr (Uuly D),

NE

g
Il
-

sup [(V;Y") = sup
xn XP=(F1(V), f2(V,Y1)seoes e (V,Y 1))

I(V;Y™).

I(v;y™)

= sup
(f1.f25esfn)

because D,, are pair—wise disjoint.
< P™4g.

Based on this proposition, we can show that

Cre < sup I(V;Y")

(f1,--5fn)

using proof-by-contradiction [6].

2. Cpp 2sup(y, s L(V3Y™).

This follows directly using Feinstein’s lemma as in [6].
O

IV. General formula for the Neyman-
Pearson hypothesis testing error
exponent

In this section, we consider a Neyman-Pearson hypoth-
esis testing problem for testing a null hypothesis Ho : Pxn
against an alternative hypothesis H; : Qx» based on a se-
quence of random observations X" = (X1,...,X,), which
is supposed to exhibit a probability distribution of either
Pxn or Qxn. Upon receipt of the n observations, a final
decision about the nature of the random observations is
made so that the type-II error probability 3,, subject to a
fized upper bound € on the type-I error probability a,, is
minimized. The type-I error probability is defined as the
probability of accepting hypothesis H; when actually Hp
is true; while the type-II error probability is defined as the
probability of accepting hypothesis Hyp when actually H;
is true [1].

For arbitrary observations (not necessarily stationary,
ergodic), we derive a general formula for the type-II error
exponent subject to a constant upper bound € on the type-I
error probability. This is given in the following lemma.

Lemma 5 Given a sequence of random observations
X" = (Xi,...,X,) which is assumed to have a probability
distribution either Pxn or Qxn, the type-II error exponent
satisfies

sup{D : F(D) <e} < limsup —% log 3, (¢)
n— 00

< sup{D:E(D)<¢},

sup{D: F(D)<e} < liminf —% log 3 (¢)
n—o0

< sup{D:F(D)<¢},

where

min Qxn) <
P(X")
oxn =P } :

and (3;,(¢) represents the minimum type-II error probability
subject to a fized type-I error bound € € (0,1).

F(D) £ liminf P [llog PX™) - D] ,
n

F(D) £ lim sup P {% log

n—o0



Proof: We first prove the lower bound of the limsup

—(1/n)log B, (€). For any D satisfying F(D) < €, there
exists ¢ > 0 such that F(D) < € — 26; and hence, by the
definition of F(D), (3 a subsequence {n;} and N) such
that for j > N,

1 P(XTmi)
« P(XT™i)
an (E) S Q |:_ lOg Q(Xn]) D
P(XT9) _
< P [n_] log Q) D] -exp{—n;D}
< exp{-n;D}.
Therefore,

limsup—%logﬁﬁ(e) > hmsup——logﬁn]() > D,

n—oo Jj—oo nj B

for any D with F(D) < e.

For the proof of the upper bound of the limsup of
—(1/n)log B, (¢), let Uy, be the optimal acceptance region
for alternative hypothesis under likelihood ratio partition,
which is defined as follows.

A [1, PX™ 1. P(X")

U, = ¢ —log <Tp ¢ +nns —log =Tn ¢,
{ no o Q(X") } { noCQX")

for some 7, and possible randomization factor n, € [0,1).

Then P(Uy,) =«.
Let D = sup{D : F(D) < €}. Then F(D + d) > ¢ for
any 6 > 0. Hence, (3v=~(d) >0), F(D+0) >e+7.
By the definition of F(D +46), (3 N)(V n > N)

P[%loggg))ﬁn; SQ+(5] > E+g'

Therefore,

. _ 1. PX")
Bn(s) - Q |:E lOg Q(X") > n:|

+(1—n)-Q {% log ggﬁ:; = n:|
P(X™)
Q(X™)
PX") _

Q(xn) "]
P(X™)

QX™)
[l log gg(:; = Tn:|> x exp{—n(D+4)}
=<P{% log

P(X™) 1. P(X")
Q@) < Q”]‘P{ﬁ e Qe < ]

v

Q{Q+62%log > Ty

+(1—m) Q@ E log

v

(P[Q+62110g >1| + (1 —1n)
n

—n,. P {% log ggii; = Tn:|> x exp{—n(D +9)}
> (6+g—s)exp{—n(g+5)}, forn > N
= 1exp{—n(2+6)}, for n > N.

2

l1msup——logﬂn() < D+

n—o0

Since 0 can be made arbitrarily small,

limsup—%logﬂ;(s) < D.

n—oo

Similarly, to prove the lower bound of the mininf of
—(1/n)log B, (g), we first note that for any D satisfying
F(D) < ¢, (36 > 0) such that F(D) < € — 26; and hence,
by the definition of F(D), (3 N)(V n > N),

P(X)<D <e—-6d < e

llo
n QX =

By following the same procedure of (5), we have for n > N,

B:L(E) S exp{_nD}7

Therefore,
llmlnf—— log Bn(s) > D,

Tn— 00

for any D with F(D) < e.
Then for the proof of the upper bound of the liminf
of —(1/n)log B (¢), let D = sup{D : F(D) < e}. Then
F(D+6) > ¢ for any 6 > 0. Hence, (3 v = () > 0),
F(D+6)>e+7.
By the definition of F(D + 6), (3 a subsequence {n;}
and N) such that for j > N,

L log P(x™)

= Y
— <D —.
- ox) S +40| > 6+2

Therefore, by following the same procedure as (5), we have
for j > N,

{n] }

. liminf —— log Bn(e) < liminf L log B, () <D+4.

n—o0o Jj—oo n;

Bi,(e) 2 Jex

Since 0 can be made arbitrarily small,

1
liminf ——logB,(c) < D.
n— 00 n

Remarks:

e Both F(D) and F(D) are non-decreasing; hence, the
number of discontinuous points for both functions is
countable.



e When the normalized log-likelihood ratio converges in 2. R. M. Gray, Entropy and Information Theory,
probability to a constant D. under null distribution Springer-Verlag New York Inc. (1990).
which is the case for most detection problems of in- 3. R. M. Gray, Source Coding Theory, Kluwer Academic
terest, the type-II error exponent is that constant D, Publishers, Norwell, MA (1990).
and is independent of the type-I error bound e¢. For ’ ’

example, in a special case of i.i.d. data source with 4. T. S. Han and S. Verd, “Approximation Theory of

|Ep [log P(X)/Q(X)]| < 0o, both functions degener- Output Statistics”, IEEE Transactions on Informa-
ate to the form tion Theory, Vol. 39, No. 3, pp. 752-772 (1993).
_ ) 5. M. S. Pinsker, Information and Information Stability
F(D)=E(D)=1 if D> D. of Random Variables and Processes, Holden-Day, San
F(D)=FD)=0 if D < D., Francisco (1964).
A 6. S. Verdd and T. S. Han, “A General Formula for
where D. = Ep [log P(X)/Q(X)]. As aresult, for e € Channel Capacity”, IEEE Transactions on Informa-
(0,1), tion Theory, vol. 40, pp. 1147-1157, July 1994.

lim sup —% log B, () = li,fﬂio%f —% log B, (¢) = D..

Tn— 00

e The significance of the general type-II error exponent
formula of fixed level becomes transparent when the
spectrum (the cumulative distribution function) of the
normalized log-likelihood ratio converges in probabil-
ity under P (which is weaker than convergence in
mean) to a random variable Z with invertible cumula-
tive distribution function F'(-). In this case, the type-
IT error exponent can be explicitly written as

1 . _
lim ——logf,(c) = F 1(6)7
n—oo TN

for € € (0,1). A more extreme case is that Z is almost
surely a constant which is

. 1
lim =D (Px»[|Qxn),
n—oo T

if the limit exists, where D(:||-) is the Kullback-Leibler
divergence of two probability measures. This result
coincides with that obtained from Stein’s Lemma.
This is also the counterpart result of the strong con-
verse condition (i.e., the e-capacity is independent of
¢) for discrete memoryless channels (DMC) [6].

V. Summary

In this paper, we considered three different problems re-
lated to the work of Verdd and Han on channel capacity
[6]. Pertinent observations concerning the validity of the
strong converse to the channel coding theorem, as well as
examples of channels for which the strong converse holds,
were provided. General expressions for the feedback capac-
ity of arbitrary channels and the Neyman-Pearson type-I1
error exponent of constant test level were also derived.
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