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Abstract—A channel optimized vector quantizer (COVQ) performance of the coding system) relative to hard-degisio
scheme is studied and evaluated for a recently introduced dérete  decoding for several channel models [7]-[9]. Furthermore,
binary-input 2%-ary-output channel with Markovian ergodic i s known that for uncoded Gaussian channels (with or
noise based on a finite queue. This channel can effectively . . . . \ . .
model binary-modulated correlated Rayleigh fading channés without fa?"”g)' 'ncreas'ng_the _Cha””‘?'s mutual inforioat
with output quantization of resolution q. It is shown that the s a function of signal-to-distortion ratio (SNR) decreatie
system can successfully exploit the channel’s memory andfso system’s minimum mean-square-error (MSE) distortion.(e.g
decision information. Signal-to-distortion gains of up to 2.3 cf, [10]). Although the channel model employed here is not
dB are obtained for only 2 bits of soft-decision quantizatio identical (as it is coded and its output is quantized), weeoles

over COVQ schemes designed for a hard-decisiong(= 1) de- . L . . .
modulated channel. Furthegrmore, gains as high as 4(1.6 (),B can Numerically that a similar relationship holds in the serfsa t

be achieved for a highly correlated channel, in comparison increasing the channel’s capacity using the channel’'s mgmo
with systems designed for the ideally interleaved (memorglss) and soft-decision information, improves the system’s aign
channel. Finally, the queue-based noise model is validateas an  to-distortion ratio (SDR) performance.

effective approximation of correlated fading channels by ¢sting a

COVQ trained using this model over the Rayleigh fading chanel. In this work, we design and implement a COVQ for the

recently introduced channel model in [11] to exploit both
the channel's memory and soft-decision information. This
I. INTRODUCTION channel model is called the non-binary noise discrete atlann

In the presence of complexity and delay constraints, Shaf\BNDC). We use the queue-based noise introduced in [11]

non’s separate treatment of source and channel codingZ[i], fS the noise process in the NBNDC model to provide closed
is no longer optimal and the need arises for more efficieff'™m €xpressions for the channel transition distributiand

joint source-channel coding (JSCC) schemes. Channel offgen Use the obtained model as an alternative represemgitio
mized vector quantization (COVQ) is a well-known Iow-dela;EPRayle'gh discrete fading channel (DFC). Note that in csitr
robust lossy JSCC scheme which incorporates the chann&pdhe NBNDC with queue-based noise model (which we refer
statistics in the vector quantization design without the ud® @ NBNDC-QB), for the Rayleigh DFC no closed form
of explicit (algebraic) channel coding [3] . It is also knowriransition distribution expression can be provided forcklo

that memory increases capacity for a well-behaved (eryodigndths of greater than 3, so that it can only be determined
channel in the sense that the capacity of such a chanf@ numerical methods. We test the system designed for the
is strictly larger than that of the corresponding memoryleNBNDC model over the equivalent correlated Rayleigh DFC
channel (with identical one-dimensional transition diattion) t© Simulate its performance in wireless communications. To
realized under ideal (infinite) interleaving [4], [5]. Ines, 9eSign the COVQ, we adapt the algorithm introduced in [12],

it has been observed in [6] that incorporating the channel&3] @nd improved in [14].

memory into the COVQ design for the case of binary (hard- The rest of the paper is organized as follows. In Section II,
demodulated) channels can significantly improve perfogaarthe channel models are explained. In Section IIl, the proble
over the case where the channel’'s memory is ignored and ifedefined and the details of the system implementation are
COVQ is designed for the interleaved memoryless channel. @fpvided. Section IV is devoted to numerical results. Concl
the other hand, it has been shown that using the channet’s séfons are given in Section V.

decision information improves capacity (and potentiate t
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A. NBNDC with queue-based noise Fig. 1. Block Diagram of a COVQ system

The NBNDC-QB model has binary-input agé@-ary-output. v € RF
Its noise is modeled via &%-ary M"-order Markovian
stationary ergodic process wifli+ 2 independent parameters.
Note that the number of model parameters is independent of
the memory ordei/, which is key to keep the complexity of
the model low for arbitrarily large memory (typical values f
the soft-decision resolution areq = 2 andq = 3).
Specifically, the input data bits are affected by noise vé th
relation

CovQ x € {0,1}"
Encoder |

OdNgN

CcovQ
) ¥ € RF Decoder | y € {0,1,...,29 —1}"

Y= (27 - 1)X; + (-1)% 7,

Y;, Z; € {0,1,...,29 — 1} for j = 1,2,..., where{Y}} is

the channel output procesgX;} denotes the channel inputcomplex wide-sense stationary Rayleigh process with auto-
binary process, andZ,} is the noise process assumed teorrelation function given byR[k] = Jo(27fpT|k|) from

be independent of X;}. To calculate then-fold transition Clarke’s model [16], wherg'pT is the normalized maximum
probability distribution, note that since the noise preces doppler frequency and,(-) is the zeroth-order Bessel function
independent of X }, of first kind. Therefore A, is Rayleigh distributed, with unit
second moment. The fading procesd;} is assumed to be

PY" =y" | X" =2") = P(Z" = 2") 2) independent of the noise and input processes. The channel
where, according to (1), SNR is given by SNR: E /No.
— (20— 1)z The output Ry is then fed to a uniform soft-decision
zp = yk—zk, k=1,2,...,n. quantizer of resolutiony-bits with step-sizeA to yield the
(=1)= discrete channel output
Therefore, one only needs to calculate théold noise distri- . , ,
bution :P,\(IE.LDC(ZH) = PNBNDC{Zl = 21, Ly = 29y, Ly = Vi = % if Ry € ( -j_l’Tj)’

zn}. The noise process is a non-binary generalization of tiMhere T/ are uniformly spaced thresholds with step-sixe
gueue-based (QB) noise in [5], where the noise symbol ssch that

either selected from an urn witk? different colors of balls —0 if j=-1
(represgnting d?ffer_ent error symbols) and gc_cording te th T; = (+1-20YHA, if j=0,1,...,20—2
probability distribution(pg, p1, ..., p2¢-1), Or it is selected 0, if =20 1.

from a finite queue of length\/, which is updated every

time a noise symbol is generated (see [5], [11] for a detailé@t 0 _é A/VE; and T; £ Tj/VE,. The channel block
description of the procedure). The resulting QB noise psceconditional probability for the DFC,

is a stationaryMth order Markov process described by only () m | my B n_ n|vn_ n

29 4+ 2 independent parameters: the size of the quéiiethe Porc(y” | 2") = Pr(Y" =y" | X" = 2"), (3)
probability distribution of the balls in the urn, and coen can be calculated via (2) in [11]. For < 3, Péﬁzj(y” | z™)

parameterd) < ¢ < 1 anda > 0. The channel transition can be calculated in closed form. Fer> 3, since the joint
probability is given in (17) of [11] and the channel corredat probability density function of arbitrarily correlated YReigh
is given by (9) of [15]. and Rician random variables is not known in closed form,
B. DEC. it can only be determined via numerical methods. It can be

i ) ) ~ shown that the DFC is actually an NBNDC as given by
Consider a discrete fading channel composed of a bma{@ with a stationary ergodic noise process [11]. To model

phase-shift keying (BPSK) modulator, a time-correlated flg given Rayleigh DFC via the NBNDC-QB, we match the

Rayleigh fading channel with AWGN, and gbit Soft- ngise one-dimensional probability distributions by sef; =
quzintlzed demodglator. Let the input and output alphapetspé1%c(j), wherej — w(ﬁjp €Y and Pg%c(j) is given
X ={0,1}andy = {1,2,...,29—1}, respectively. Denoting by (3)

h bi . h ved in [11], in terms ofj, ¢, and SNR, and match the noise
the DFC binary input ‘."‘S{Xk}’ k=12, the receved .,ejation coefficients. The remaining QB parametéis )
channel symbols are given by

are estimated by minimizing the Kullback-Leibler divergen

Ry = \/EsApSy, + Ny, k=1,2,... rate between the twa2{-ary) noise processes.
where E, is the energy of signal sent over the channel, 1. COVQ FOR THENBNDC-QB MODEL

Sk = 2X, — 1 € {—1,1} is the BPSK modulated signal, Consider the communication system depicted in Fig 1. The
and Ny is a white Gaussian noise with varian®® /2 and input source to the COVQ encoder is a real-valued stationary
independent of the input procegsi; } is the channel's fading and ergodic proces§V;}2°,. The encoder mapping takes
process withA; = |G|, where G} is a time-correlated a vector ofk source symbols, € RF and outputs a binary



vectorx € {0,1}", such thaty(v) = x if v € S, where DFC (with fixed SNR andfpT) andg, we choose the value
{Sx : x € {0,1}"} is a partition ofR*. Thenx is sent over of § that maximizes the DFC’s capacity. We also choose
the NBNDC-QB. the parameters of the NBNDC-QRpo, p1, -+ , p20—1),M e
The decoder is a mappingthat maps the receivedtuple and «, so that the two channel models are as close to each
24-ary blocksy to code-levels of the quantizer codebook: other as possible. We have used the values given in [15] in
- & q n which the Kullback-Leibler divergence rate between the two
Bly) =cy, ey €RY, y €{0,1,...,29 —1}". channel 2%-ary) noise processes is minimized ovéf, e, «
The COVQ training algorithm aims to select the codebodkr fpT € {0.005,0.01}, SNRy5) € {2.0,5.0,10.0,15.0},
C={ei. i€ {0,1,...,27~1}"} and the partition seP = ¢ = 2, p; = PY).(j) from (3), and thes value which
{8, i € {0,1}"} so that to minimize the following distortion- maximizes the capacity.
per-sample measure: For each source model, the COVQ was trained using
1 ) 500,000 source vectors. The resulting channel optimizet-qu
D(C,P) = A ZZP(Y | X)/S PMVIlv —eyldv, (4)  tizers performance was then tested over the aforemertione
x v * DFC channel. For generating the fading coefficients, we used
where P(y | x) is calculated via (17) in [11] ang(v) is the modified Clarke’s method introduced in [17]. Traininglan
the source probability density function. Lettirfg* = {S%} simulation results (over the NBNDC-QB and Rayleigh DFC
be the optimal partition for a gived, andC* the optimal channels) in terms of SDR are shown in Tables | and Il for
partition for a giverP, the optimal distortion is minimized by an i.i.d. Gaussian source and in Table Ill for an i.i.d Laplac
satisfying the following two (necessary) optimality cotmaiis source . The channel parameters used for training/siroulati
iteratively: are given in Table Il of [15].
Table | depicts COVQ training results for a memoryless
} and highly correlated NBNDC-QB. Note that for the mem-

Sx = {v:ZP(yIX)IIv—cyI2SZP(yIi)Iv—cyl2 : for the
oryless case (with Cor=0), the NBNDC-QB is identical to

y y
_ _ _ (5) the DFC. Comparing Tables | with Cot 0 and Il (where
which can be directly obtained from (4), and Cor = 0.35,0.32,0.29,0.22 for SNR= 15,10, 5,2 respec-
YL Pyx) [s vi(v)dv tively), one can see that interleaving (as a means to realize

c, = (6) the memoryless channel) may outperform the low correlated
Y 2 Plylx) fsx F(v)dv channels, especially when the channel SNR is low and block
from [14]. It can be shown that the algorithm will alwaydengthn is high. Since the capacity of the correlated channel
converge to a local optimum. To select the initial codebauk ais strictly higher than that of the memoryless channel, this
assigning indices to code levels, we have used the spldimg degradation may be due to poor selection of initial points fo
the simulated annealing algorithms respectively, as ssigde the vector quantizer. Nevertheless, it can be seen in Tabkt |
in [3]. To be more specific, at first we consider the errdor a highly correlated NBNDC-QB, except for rafe = 1
free channel and train the COVQ with the initial codeboolind k¥ = 1,2, the resulting COVQ consistently outperforms
obtained from the splitting algorithm, followed by simddt the memoryless case, with the maximum gains obtained for
annealing for a locally optimum index assignment. Then whe case of; = 1, R = 3, k = 3. Note that since the COVQ
use the resulting codebook as the initial state for a chanmeglly makes use of intra-block memory, for rake= 1 and
with high SNR. Afterwards, we gradually decrease the chenrlew dimensionsk, the block length is so small that there is
SNR while each time we set the previously found codebo@it much channel memory to be harnessed. Additionally, it is
(for higher SNR) as the current initial state, until we evaly observed in Table | that the system considerably outperorm
reach the desired channel SNR. hard-quantizationg(= 1), by as much as 2.3 dB faRk = 3,
Note that the training is off-line and after finding the opdiim % = 1, Cor = 0 when using only a 2-bit soft-decision quantizer
mappingsy andg, the system will perform with the only delay (¢ = 2).
of receivingk symbols from source, mapping it to binary ~ Comparing the training and simulation performance of the
digits, and then mapping eadi-ary n-tuple received at the COVQ (see Tables Il and Ill), we observe that there is
output of the NBNDC ontd: real-valued symbols to yield thea good conformity between the results of the two channel
reconstruction vector. models, where the NBNDC-QB is used for training and the
Rayleigh DFC for testing. However, for higher rates, some
degradation between the simulation and training results is

We herein present the numerical results obtained using f\¢served. Similar matching results were also observed for
training algorithm and channel model described in the p&yi 55,,s5-Markov sources.

sections.

Several source distributions were tested, including iedep
dent and identically distributed (i.i.d.) Gaussian andlhajan
sources and correlated Gauss-Markov sources. All of theThe performance results show that the COVQ system can
source models had zero mean and unit variance. For a giwerccessfully exploit the channel's memory and soft-denisi

IV. RESULTS AND COMPARISON

V. CONCLUSION



TABLE | TABLE Il

COVQ TRAINING SDRRESULTS(IN DB) FORMEMORYLESS COVQTRAINING RESULTS(FORDFC-FITTED NBNDC-QB)AND
NBNDC-QBAND HIGHLY CORRELATED NBNDC-QBWITH PARAMETERS SIMULATION RESULTS(FORRAYLEIGH DFC)IN TERMS OFSDR (DB);
a=1, M =1, e =0.9; MEMORYLESSGAUSSIAN SOURCE MEMORYLESSLAPLACIAN SOURCE fpT = 0.01
SNR (dB) SNR (dB)
q| R=| k Memoryless (Cor=0) Cor=0.9 q| R=| k Training Simulation
n/k 15 10 5 2 15 10 5 2 n/k 15 10 5 2 15 10 5 2
1| 4.18| 3.77| 2.88| 2.16| 4.18| 3.77| 2.88| 2.16 1| 2.87| 2.63| 2.07| 1.59| 2.87| 2.63| 2.07| 1.59
1 2| 416| 3.75| 2.87| 2.15| 4.16| 3.75| 2.87| 2.15 1 2| 347| 312 242| 1.84| 3.46| 3.12| 241 | 1.84
3| 423| 3.78| 2.87| 2.15| 4.27| 3.88| 3.64| 3.26 3| 415| 3.63| 2.64| 1.88| 4.06| 3.45| 2.39| 1.70
1] 816 6.58| 423 2.84] 835 7.05| 5.24| 5.70 1] 6.67| 546 3.62| 2.46| 6.71| 5.45| 3.58| 2.42
1|2 2| 833| 6.73| 482| 3.66| 855 7.33| 6.82| 6.18 1|2 2| 7.69]| 6.22| 414 290| 7.71| 6.20| 4.10| 2.89
3| 857| 7.13| 5.12| 3.79| 8.81| 8.29| 7.37| 6.76 3| 821| 6.62| 456| 3.21| 8.17| 6.53| 4.50| 3.17
1| 11.12 8.10| 4.83| 4.45| 11.71 9.68| 9.45| 8.04 1] 9.65| 7.14| 440| 291] 9.73| 7.15| 4.30| 2.83
3 2| 11.64 9.28| 6.64| 4.92| 12.09 11.50 10.0Q 8.83 3 2| 10.78 8.20| 5.31| 3.93| 10.79 8.19| 5.26| 3.94
3| 11.99 9.77| 6.90| 5.09| 12.54 12.43 10.76 9.68 3| 11.16 8.69| 5.92| 4.24| 10.95 8.60| 5.89| 4.27
1| 421| 3.84| 3.04| 2.36| 4.21| 3.84| 3.04| 2.36 1] 290| 270 221 1.77] 290 270 2.21| 1.77
1 2| 419| 3.82| 3.03| 2.35| 4.19| 3.83| 3.03| 2.35 1 2| 351| 3.23| 260| 2.06| 3.50| 3.22| 2.59| 2.06
3| 426| 3.86| 3.04| 2.35| 430 3.95| 3.74| 3.38 3| 421| 3.78| 286| 2.13| 4.15| 3.62| 2.62| 1.94
1] 829 6.84| 461 3.21| 847 7.27| 5.51| 6.00 1] 6.89] 588 409] 2.89] 6.96| 5.98] 4.21| 2.97
2|2 2| 846| 6.98| 535| 4.18| 8.68| 7.54| 7.31| 6.40 2| 2 2| 797| 6.69| 475| 3.57| 8.01| 6.76 | 4.76 | 3.53
3| 870| 7.47| 569| 4.30| 8.93| 7.67| 7.52| 6.97 3| 850| 7.08| 5.15| 3.89| 8.46| 7.04| 4.95| 3.66
1| 1145 854 7.13| 5.25| 11.9§ 11.1Q 9.44| 8.27 1] 1048 8.00| 5.01] 4.19] 10.64 8.28] 5.18| 4.03
3 2| 12.36 10.31 7.61| 5.82| 12.2§ 11.31 10.0Q 8.91 3 2| 1150 9.16 | 6.60| 4.97 | 11.48 8.95| 6.08| 4.55
3| 12.52 10.69 7.91| 5.95| 13.02 12.11 11.02 10.14 3| 1195 9.87| 7.25| 5.41| 11.49 8.87| 6.18| 4.67

TABLE Il
COVQ TRAINING RESULTS(FORDFC-FITTED NBNDC-QB)AND
SIMULATION RESULTS(FORRAYLEIGH DFC) IN TERMS OFSDR (DB);
MEMORYLESSGAUSSIAN SOURCE fpT = 0.005
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