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Abstra
t | We introdu
e a binary 
ommuni
ation


hannel with memory whose noise is generated by

a queue of length K. The queue is operated under

two modes: uniform and non-uniform. The result-

ing noise pro
ess is shown to be a stationary and er-

godi
 Markov sour
e of order K. Analyti
 expres-

sions for the noise stationary distribution, 
apa
ity

and burst frequen
y of the uniform queue-based 
han-

nel are presented. For the non-uniform queue-based


hannel, only numeri
al results are provided. Next,

the 
apa
ity and burst frequen
y of the uniform and

non-uniform queue-based 
hannels are 
ompared with

those of the �nite-memory Polya 
ontagion 
hannel

and the Gilbert-Elliott 
hannel.

1 Introdu
tion

We introdu
e a binary 
ommuni
ation 
hannel with mem-

ory whose noise pro
ess is based on a �nite queue of length

K. More spe
i�
ally, we 
onsider the 
hannel in two


ases: a uniform queue-based mode where we experiment

on the 
ells of the queue with equal probability, and a

non-uniform queue-based mode where we experiment on

the 
ells of the queue with di�erent probabilities.

The statisti
al properties of the uniform queue-based


hannel are �rst investigated. The resulting 
hannel noise

is a stationary and ergodi
 Markov sour
e of order K.

Expressions for the noise stationary distribution, 
hannel


apa
ity and noise burst frequen
y are presented in terms

ofK. For the non-uniform queue-based 
hannel, the noise

is also stationary, ergodi
 and Markovian of orderK. But

we have no 
losed-form expression for the noise stationary

distribution; hen
e, only numeri
al results are provided.

Next, the 
apa
ity and burst frequen
y of the uniform and

non-uniform queue-based 
hannels are 
ompared with

those of the �nite-memory Polya 
ontagion 
hannel [1℄

and the Gilbert-Elliott 
hannel [3℄. It is shown (both an-

alyti
ally and numeri
ally) that, surprisingly, the uniform

queue-based 
hannel and the �nite-memory Polya 
onta-

gion 
hannel have an identi
al blo
k transition probability

when they have the same memory, bit error rate (BER)

and 
orrelation 
oeÆ
ient; hen
e, they have identi
al 
a-
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pa
ities and burst frequen
ies. When q

1

! 1, the non-

uniform 
ase 
onverges to the uniform 
ase with memory

K = 1. The non-uniform queue-based 
hannel has lower

burst frequen
ies than the uniform 
hannel for low 
or-

relation 
oeÆ
ients, and it has higher burst frequen
ies

for high 
orrelation 
oeÆ
ients. Finally, the non-uniform

queue-based 
hannel has larger 
apa
ities than the uni-

form 
ase when the queue probability q

1

<

1

K

, and it has

smaller 
apa
ities than the uniform 
ase when q

1

>

1

K

.

2 A Queue-Based Channel with Memory

In most real-world 
ommuni
ations 
hannels, noise dis-

tortion may produ
e errors in a bursty fashion; i.e., er-

rors o

ur in 
lusters or bun
hes separated by fairly long

error-free segments of data. This phenomenon is 
om-

monly know as \memory" [2℄. In the quest to develop

models that adequately represent real 
hannel behavior

and that are mathemati
ally tra
table, we present a bi-

nary 
hannel with additive bursty noise based on a �nite

queue. It o�ers an interesting alternative to the Gilbert

model and others.

Consider the binary 
hannel given by Y

i

= X

i

�Z

i

, where

X

i

, Z

i

, and Y

i

are, respe
tively, the i

th

input, noise, and

output of the 
hannel. We assume that the input and

noise sour
es are independent of ea
h other. Consider

the following two par
els.

� Par
el 1 is a queue of length K, that initially 
on-

tains K balls.

-

A

i1

A

i2

A

i3

� � �

A

iK

-

Let A

ij

(i is a time index referring to the i

th

experi-

ment), j = 1; 2; � � � ;K, indi
ate the 
olor of the ball

in the 
orresponding 
ell of the queue at time i:

A

ij

=

�

1; if the j

th


ell 
ontains a red ball,

0; if the j

th


ell 
ontains a bla
k ball:

� Par
el 2 is an urn that 
ontains a very large number

of balls where the proportion of bla
k balls is 1 � p

and the proportion of red balls is p, where p 2 (0; 1);

usually p� 1=2.

Let the probability of sele
ting par
el 1 (the queue) be "

and the probability of sele
ting par
el 2 (the urn) be 1�";



where " 2 (0; 1). The noise pro
ess fZ

i

g is generated by

one of the following me
hanisms.

Me
hanism 1 Uniform queue-based 
hannel with

memory: By 
ipping a biased 
oin (with P (Head)="),

we sele
t one of the 2 par
els (sele
t the queue if Head

and the urn if Tail). Then a pointer randomly points at

a ball from the sele
ted par
el, and identi�es its 
olor.

Me
hanism 2 Non-uniform queue-based 
hannel

with memory: By 
ipping a biased 
oin (with

P (Head)="), we sele
t one of the 2 par
els (sele
t the

queue if Head and the urn if Tail). If par
el 1 (the queue)

is sele
ted, then a pointer points at the ball in 
ell 1 with

probability q

1

and points at the ball in 
ell l with prob-

ability q

l

= (1 � q

1

)=(K � 1), for l = 2; 3; � � � ;K, and

identi�es its 
olor. If par
el 2 (the urn) is sele
ted, a

pointer randomly points at a ball, and identi�es its 
olor.

If the sele
ted ball is red, we introdu
e a red ball in 
ell

1 of the queue, pushing the last ball in 
ell K out. If the

sele
ted ball is bla
k, we introdu
e a bla
k ball in 
ell 1 of

the queue, pushing the last ball in 
ell K out. The noise

pro
ess fZ

i

g is then modeled as follows:

Z

i

=

�

1; if the i

th

experiment points at a red ball;

0; if the i

th

experiment points at a bla
k ball:

De�nition 1 For a given me
hanism, de�ne the state

of the 
hannel to be S

i

4

=(A

i1

; A

i2

; � � � ; A

iK

); the bi-

nary K�tuple in the queue after the i

th

experiment is


ompleted. Note that, in terms of the noise pro
ess,

the 
hannel state at time i 
an be written as S

i

=

(Z

i

; Z

i�1

; � � � ; Z

i�K+1

), for i � K.

2.1 Uniform Queue-Based Channel

Noise Properties: We now investigate the properties of

the binary noise pro
ess fZ

n

g

1

n=1

. We �rst observe that

fZ

n

g

1

n=1

is a homogeneous Markov pro
ess of order K,

sin
e for n � K + 1,

Pr[Z

n

= 1jZ

n�1

= a

n�1

; � � � ; Z

1

= a

1

℄

= "

a

n�1

+ � � �+ a

n�K

K

+ (1� ")p

= Pr[Z

n

= 1jZ

n�1

= a

n�1

; � � � ; Z

n�K

= a

n�K

℄;

where a

j

2 f0; 1g, j = 1; � � � ; n:

Throughout this work, we 
onsider the 
ase where the

initial distribution of the Markov noise fZ

n

g is drawn a
-


ording to its stationary distribution; hen
e the noise pro-


ess fZ

n

g is stationary. fS

n

g is a homogeneous Markov

pro
ess with stationary (or initial) distribution [4℄

�

i

=

1

Q

K

m=1

(1� "

m

K

)

K�1�!(i)

Y

j=0

["

j

K

+ (1� ")(1� p)℄

!(i)�1

Y

l=0

["

l

K

+ (1� ")p℄;

for i = 0; 1; 2; � � � ; 2

K

� 1, where !(i) is the number

of \ones" in the binary representation of the de
imal

integer i and

Q

a

i=0

(�)

4

=1, if a < 0.

Blo
k Transition Probability: For an input blo
k

X = [X

1

; � � � ; X

n

℄ and an output blo
k Y = [Y

1

; � � � ; Y

n

℄,

where n is the blo
k length, the blo
k transition proba-

bility of the resulting binary 
hannel is as follows [4℄.

� For blo
k length n � K,

Pr(Y = yjX = x) =

1

Q

K

l=K�n+1

(1� "

l

K

)

n�d�1

Y

s=0

["

s

K

+ (1� ")(1� p)℄

d�1

Y

t=0

["

t

K

+ (1� ")p℄;

where d is the number of \ones" in x� y.

� For blo
k length n � K + 1,

Pr(Y = yjX = x) = L

n

Y

i=K+1

�

"

�

i�1

K

+ (1� ")p

�

a

i

�

"

K � �

i�1

K

+ (1� ")(1� p)

�

1�a

i

;

where L =

Q

K�1��

K

j=0

["

j

K

+ (1 � ")(1 � p)℄

Q

�

K

�1

l=0

["

l

K

+ (1 � ")p℄=

Q

K

t=1

(1 � "

t

K

),

Q

a

i=0

(�)

4

=1,

if a < 0, �

i�1

= a

i�1

+ � � �+ a

i�K

, and a

i

= x

i

� y

i

.

Capa
ity: The uniform queue-based 
hannel with mem-

ory is a 
hannel with stationary ergodi
 Markov additive

noise of memory K and BER p. The 
hannel 
apa
ity

C

K

is positive and non-de
reasing in K and is given by

C

K

= 1�

K

X

i=0

�

K

i

�

L

i

h

b

�

"

i

K

+ (1� ")p

�

where L

i

=

Q

K�1�i

j=0

["

j

K

+(1�")(1�p)℄;

Q

i�1

l=0

["

l

K

+(1�

")p℄=

Q

K

m=1

(1 � "

m

K

); and

Q

a

t=0

(�)

4

=1 if a < 0, and h

b

(�)

is the binary entropy fun
tion.

Burst Frequen
y: Noise sequen
es of 1s between two

0s are 
alled error bursts. The length of a burst is de�ned

as one plus the total number of 1s in the noise sequen
e

between two 0s. If B

n

denotes the length of an error burst

starting at time n and 
onditioned on Z

n

= 0, then we

obtain the following (
f. [4℄).

� For 1 � l � K � 1, where K > 1,

Pr[B

n

= l℄ =

1

1� p

�

1

Q

K

u=K�l

(1� "

u

K

)

1

Y

s=0

["

s

K

+ (1� ")(1� p)℄

l�2

Y

t=0

["

t

K

+ (1� ")p℄:



� For l = K,

Pr[B

n

= K℄ =

K�2

Y

t=0

["

t

K

+ [(1� ")p℄

[(1� ")(1� p)℄ � ["

1

K

+ (1� ")(1� p)℄

(1� p)

Q

K

u=1

(1� "

u

K

)

:

� For l � K + 1,

Pr[B

n

= l℄ =

Q

K�2

t=0

["

t

K

+ [(1� ")p℄

(1� p)

Q

K

u=1

(1� "

u

K

)

[(1� ")(1� p)℄ � ["

K � 1

K

+ (1� ")p℄

�["+ (1� ")p℄

l�K�1

� [(1� ")(1� p)℄:

2.2 Non-Uniform Queue-Based Channel

For the non-uniform queue-based 
hannel, the noise is

also stationary, ergodi
 and Markovian of order K. But

we have no analyti
al expression for the noise stationary

distribution in terms of K; hen
e, only numeri
al results

are given for spe
i�
 values of K.

Capa
ity: We take K = 3 as an example.

C

3

= 1� [�

7

X

i;j=0

�

i

p

ij

log

2

p

ij

℄;

where [p

ij

℄ is the noise transition probability matrix.

Burst Frequen
y: We take K = 2 as an example.

� For l = 1, Pr[B

n

= l℄ =

�

0

1�p

:

� For l = 2,

Pr[B

n

= l℄ =

�

2

1� p

� ["(1� q

1

) + (1� ")(1� p)℄:

� For l � 3,

Pr[B

n

= l℄ =

�

2

1� p

� ["q

1

+ (1� ")p℄

�["+ (1� ")p℄

l�3

� [(1� ")(1� p)℄:

3 Comparisons with other Channels

We next 
ompare the uniform queue-based 
hannel with

the Polya 
ontagion [1℄ and Gilbert-Elliott [3℄ 
hannels in

terms of 
apa
ity and burst frequen
y. Similar 
ompar-

isons are made for the non-uniform queue-based 
hannel.

We �rst observe that it 
an be shown analyti
ally [4℄

that the �nite-memory 
ontagion 
hannel and the uni-

form queue-based 
hannel are surprisingly identi
al; i.e.,

they have the same blo
k transition probability for the

same memory K, BER and noise 
orrelation 
oeÆ
ient

Cor. Therefore the two 
hannels have identi
al 
apa
ities

and burst frequen
ies under the above 
onditions.

In Figs. 1-6, 
apa
ity and burst frequen
y results are pre-

sented for the four 
hannels under various 
hannel 
on-

ditions. For the Gilbert-Elliott 
hannel the parameter

p

G

represents the 
hannel BER when the 
hannel is in a

good state, while p

B

denotes the BER under a bad 
han-

nel state. Throughout these �gures, we let p

G

= 2�10

�5

and p

B

= 0:92. For the non-uniform queue-based 
han-

nel, the 
ell probability q

1

= 0:9 was used.

We note that 
apa
ity in
reases as Cor in
reases (Figs. 1-

2) and as BER de
reases (Fig. 3), as expe
ted. For the

uniform queue-based and the 
ontagion 
hannels, 
apa
-

ity also in
reases with K (Figs. 1-2). When Cor = 0:1,

the 
apa
ities of the uniform queue-based and 
ontagion


hannels are always larger than that of the Gilbert-Elliott


hannel for any K (Fig. 1). But as Cor in
reases, the 
a-

pa
ity of the Gilbert-Elliott 
hannel grows faster. When

Cor = 0:9, the uniform queue-based 
hannel and the 
on-

tagion 
hannel have lower 
apa
ities than the Gilbert-

Elliott 
hannel for small Ks and have higher 
apa
ities

for large Ks (Fig. 2).

It is 
lear from Fig. 3 and Fig. 4 that the three 
hannels

have almost equal 
apa
ities and burst frequen
ies when

K = 1. This means that in these 
ases we 
an repla
e the

Gilbert-Elliott 
hannel with the (less 
omplex) uniform

queue-based 
hannel (or the 
ontagion 
hannel) if our tar-

get is to a
hieve an error burst behavior and 
apa
ity that

are 
lose to those of the Gilbert-Elliott 
hannel.

The non-uniform queue-based 
hannel has lower burst fre-

quen
ies than the uniform 
hannel for low values of Cor

(Fig. 5). But it has higher burst frequen
ies for high val-

ues of Cor and burst length � 3 (Fig. 6). But the burst

frequen
ies of the non-uniform 
hannel de
reases faster

than those of the uniform 
hannel; thus the former even-

tually has lower burst frequen
y when the burst length

is big enough. We noti
e that the non-uniform 
hannel

has similar burst frequen
y as the Gilbert-Elliott 
han-

nel. This is be
ause the non-uniform 
hannel was used

with q

1

= 0:9, and as q

1

! 1 the 
hannel 
onverges to

the uniform 
ase with K = 1 (see Fig. 4).

Finally, we observe (see [4℄) that the non-uniform queue-

based 
hannel has larger 
apa
ities than the uniform 
ase

when the queue probability q

1

<

1

K

, and it has smaller


apa
ities than the uniform 
ase when q

1

>

1

K

.
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Figure 1: Capa
ity vs. K for BER=0.001 and Cor=0.1.
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Figure 2: Capa
ity vs. K for BER=0.001 and Cor=0.9.
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Figure 3: Capa
ity vs. BER for K = 1 and Cor=0.1.
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Figure 4: Burst frequen
y vs. burst length for K = 1,

BER=0.001 and Cor=0.1.
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Figure 5: Burst frequen
y vs. burst length for K = 2,

BER=0.001 and Cor=0.0990991.
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Figure 6: Burst frequen
y vs. burst length for K = 2,

BER=0.001 and Cor=0.8999.


