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Abstract—We develop a novel method for ensuring fairness in
machine learning which we term as the Rényi Fair Information
Bottleneck (RFIB). We consider two different fairness constraints
- demographic parity and equalized odds - for learning fair
representations and derive a loss function via a variational
approach that uses Rényi’s divergence with its tunable parameter
α and that takes into account the triple constraints of utility,
fairness, and compactness of representation. We then evaluate
the performance of our method for image classification using
the EyePACS medical imaging dataset, showing it outperforms
competing state of the art techniques with performance measured
using a variety of compound utility/fairness metrics, including
accuracy gap and Rawls’ minimal accuracy.

I. INTRODUCTION

The problem of fairness in machine learning is to obtain
accurate predictions of a target of interest while remaining free
of bias due to sensitive information such as gender, race, age,
or other similar attributes. Representing input data as random
variable X ∈ X , prediction target as random variable Y ∈ Y ,
and sensitive information as random variable S ∈ S, the goal
is to predict Y from X in a way that is uninfluenced by S.

One solution to this problem is to learn fair representations,
finding an intermediate representation Z ∈ Z that can then be
used instead of X with existing machine learning architectures
to make predictions, as done by [1], [2]. The new represen-
tation Z must simultaneously preserve information from X
relevant to predicting Y while removing sensitive information
that could lead to bias.

Learning fair representations can be done both by ad-
versarial methods, such as [3]–[5], and through variational
approaches such as [6], [7] that maximize and minimize
different mutual information terms to ensure the representation
is both expressive and fair. These approaches are related to
the information bottleneck (IB) method [8] and its variational
approximations [9]–[11] which aim to find a representation
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that maximally compresses X while remaining informative
about Y.

We develop a related variational IB method for fairness
using Rényi divergence due to the extra degree of freedom
provided by its tunable α parameter, rather than the more
commonly used Kullback-Leibler divergence. We learn rep-
resentations that fulfill three criteria: the representation is
compact, expressive about Y in order to improve classification
accuracy, and free from information that can lead to bias.
Unlike most prior work that focuses on a single definition
of fairness, we consider how to jointly address and balance
two of arguably the most important measures for fairness,
demographic parity and equalized odds, with possible benefits
for ethicists and policy makers to translate policies into actual
engineering systems.

Recent work based on Rényi information measures (and
its variants) include an IB problem under a Rényi entropy
complexity constraint [12], bounding the generalization error
in learning algorithms [13], Rényi divergence variational infer-
ence [14], Rényi differential privacy [15] and the analysis and
development of deep generative adversarial networks [16]–
[19].

The rest of the paper is organized as follows. In Section
II we derive a cost function for our method to be minimized
and then in Section III present experimental results using our
method to classify retinal fundus images from the EyePACS
dataset. Finally, we conclude with a discussion in Section IV.

II. RÉNYI FAIR INFORMATION BOTTLENECK

We adopt a variational approach which we call Rényi Fair
Information Bottleneck (RFIB) to encode data X into a new
representation Z that can be used to draw inferences about Y
free from bias due to S. In light of our model, we assume
that the Markov chain (Y, S) → X → Z holds. To simplify
notation, we assume in this section that all random variables



are discrete, though a similar derivation holds for a mix of
continuous and discrete random variables.

A. Fairness Defined

Among the three principal definitions of fairness – demo-
graphic parity, equalized odds, and equality of opportunity –
we focus on addressing both demographic parity and equalized
odds since a) equalized odds is related to, but a stronger
constraint than, equality of opportunity, and b) demographic
parity, also called statistical parity, is an altogether different
type of constraint compared to the former two constraints in
that the requirement of independence does not involve the
actual target label value.

For demographic parity, the goal is for the model’s predic-
tion Ŷ to be independent of the sensitive variable S, i.e.,

P (Ŷ = ŷ) = P (Ŷ = ŷ | S = s), ∀s, ŷ, (1)

while for equalized odds the goal is to achieve this indepen-
dence by conditioning on the actual target Y, i.e.,

P (Ŷ = ŷ | Y = y) = P (Ŷ = ŷ | S = s, Y = y),∀s, ŷ, y.
(2)

B. Lagrangian Formulation

To encourage equalized odds, we minimize I(Z;S|Y );
i.e., we minimize the average amount of information that
Z has about S given Y. To both obtain good classification
accuracy and help promote demographic parity, we maximize
I(Z;Y |S). Maximizing mutual information between Z and Y
ensures the representation will be expressive about its target
while the conditioning on S ensures that Z does not keep
information shared by S, encouraging demographic parity.

In addition, we minimize I(Z;X|S, Y ), a compression term
similar to one from the IB problem [9]. This minimization
further encourages Z to discard information irrelevant for
drawing predictions about Y, hence improving generalization
capability and reducing the risk of keeping nuisances. Finally,
we maximize the utility term I(Z;Y ); this optimization,
similar to the IB problem, solely ensures the representation
is maximally expressive of the target Y.

Combining these terms leads to a Lagrangian, L, that we
seek to minimize over the encoding conditional distribution
PZ|X . The Lagrangian is given by

L = I(Z;S|Y ) + I(Z;X|S, Y )− λ1I(Z;Y )

−λ2I(Z;Y |S), (3)

where λ1 and λ2 are hyperparameters. Reworking this La-
grangian, we have that:

L = H(Z|Y )−H(Z|S, Y ) +H(Z|S, Y )

−H(Z|X,S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S)
= H(Z|Y )−H(Z|X)− λ1I(Z;Y )− λ2I(Z;Y |S)
= H(X)−H(Z,X)− [H(Y )−H(Z, Y )]

− λ1I(Z;Y )− λ2I(Z;Y |S)
= I(Z;X)− I(Z;Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= I(Z;X)− (λ1 + 1)I(Z;Y )− λ2I(Z;Y |S), (4)

where H(·) denotes entropy, and the second equality follows
from the Markov chain assumption (Y, S)→ X → Z. Hence,
we have shown that the Langrangian L admits a simpler
equivalent expression given by

L = I(Z;X)− β1I(Z;Y )− β2I(Z;Y |S), (5)

where β1 = λ1 + 1 and β2 = λ1. This simpler Lagrangian is
easier to compute while maintaining similar properties to the
original one. It also reveals a direct relation of the original
Lagrangian with the first two terms being exactly equivalent
to the “classical IB” formulation. The two hyperparameters β1
and β2 control trade-offs between accuracy and fairness, with
higher β values corresponding to a higher priority on accuracy
and lower β values giving more influence to the compression
term I(Z;X) that discards unwanted information, potentially
improving fairness at the expense of accuracy. As I(Z;Y ) is
partially derived from the I(Z;S|Y ) term designed to improve
equalized odds, using a higher β1 over β2 should give more
priority to improving equalized odds, whereas a higher β2
should result in improved demographic parity. This allows
for more nuanced outcomes compared to other methods that
focus rigidly on a single fairness metric. It is also possibly
an interesting tool for policy makers to translate those more
balanced and nuanced versions of fairness into an “engineered
system.”

C. Variational Bounds

We use a variational approach to develop bounds on the
three terms in the Lagrangian in (5), finding lower bounds
for the terms to be maximized and an upper bound for the
term to be minimized. The Markov chain property (Y, S) →
X → Z results in the joint distribution PSY XZ factoring as
as PSY XPZ|X .

The distribution PZ|X is a parametric stochastic encoder to
be designed while all other distributions are fully determined
by the joint data distribution PS,X,Y , the encoder, and the
Markov chain constraint. To simplify notation, we simply
write PZ|X rather than including the parameter PZ|X,θ, with θ
denoting network weights. Computing the mutual information
terms requires the usually intractable distributions PY |S,Z ,
PY |Z , and PZ so we replace them with variational approx-
imations QY |S,Z , QY |Z and QZ , respectively. We next derive
an upper bound for I(Z;X) with the novel use of Rényi
divergence:

I(Z;X) =
∑

(z,x)∈Z×X

PZ,X(z, x) log
PZ|X(z|x)
PZ(z)

=
∑

(z,x)∈Z×X

PZ,X(z, x) logPZ|X(z|x)

−DKL(PZ ||QZ)−
∑
z∈Z

PZ(z) logQZ(z)

≤
∑

(z,x)∈Z×X

PZ,X(z, x) log
PZ|X(z|x)
QZ(z)



= EPX
DKL

(
PZ|X‖QZ

)
≤ EPX

Dα

(
PZ|X‖QZ

)
, (6)

for α > 1. The first inequality follows from the non-negativity
of Kullback-Leibler (KL) divergence, similar to [2], [6], [9].
For the final step, we take the Rényi divergence Dα(·‖·) of
order α (e.g., see [20]), rather than the KL divergence as
typically done in the literature, where

Dα(P ||Q) =
1

α− 1
log

(∑
x∈X

P (x)αQ(x)1−α

)
(7)

for α > 0, α 6= 1 and distributions P and Q with common
support X .1 Using Rényi divergence gives an extra degree
of freedom and allows more control over the compression
term I(X;Z). As the Rényi divergence is non-decreasing with
α, a higher α will more strongly force the distribution PZ|X
closer to QZ , resulting in more compression.

The upper bound in (6) holds for α > 1 since Dα is
non-decreasing in α and limα→1Dα(P‖Q) = DKL(P‖Q).2

When α < 1, then EPX
Dα

(
PZ|X‖QZ

)
is no longer an upper

bound on I(Z;X); but it can be considered as a potentially
useful approximation that is tunable by varying α.

We can similarly leverage the non-negativity of KL diver-
gence to get lower bounds on I(Z;Y ) and I(Z;Y |S):

I(Z;Y ) ≥ EPY,Z

[
logQY |Z(Y |Z)

]
+H(Y ), (8)

I(Z;Y |S) ≥ EPS,Y,Z

[
logQY |S,Z(Y |S,Z)

]
+H(Y |S). (9)

As the entropy H(Y ) and conditional entropy H(Y |S) of
the labels do not depend on the parameterization they can
be ignored for the optimization.

D. Computing the Bounds

To compute the bounds in practice we use the reparameteri-
zation trick [21]. Modeling PZ|X as a density, we let PZ|XdZ
= PEdE where E is a random variable and Z = f(X,E) is a
deterministic function, allowing us to backpropagate gradients
and optimize the parameter via gradient descent. We use the
data’s empirical densities to estimate PX,S and PX,Y,S .

Considering a batch D = {xi, si, yi}Ni=1 this finally leads
to the following RFIB cost function to minimize:

JRFIB =
1

N

N∑
i=1

[
Dα(PZ|X=xi

||QZ)

− β1EE
[
log
(
QY |Z (yi|f(xi, E))

)]
− β2EE

[
log
(
QY |S,Z (yi|si, f(xi, E))

)] ]
,

(10)

where we estimate the expectation over E using a single
Monte Carlo sample.

1If P and Q are probability density functions, then Dα(P ||Q) =
1

α−1
log
(∫
X P (x)αQ(x)1−α dx

)
.

2For simplicity and by the continuity property ofDα, we define its extended
orders at α = 1 and α = 0 [20] as D1(P‖Q) := DKL(P‖Q) and
D0(P‖Q) := limα→0Dα(P‖Q) = − logQ(x : P (x) > 0), which is
equal to 0 when P and Q share a common support.

We note that depending on the choice of α, β1, and β2, from
our method we can recover both the IB [9] and conditional
fairness bottleneck (CFB) [6] schemes to which we compare
our results. Letting α = 1 and β2 = 0 corresponds to IB,
while setting α = 1 and β1 = 0 corresponds to CFB.

III. EXPERIMENTS

We present experimental results on the EyePACS dataset of
retinal images.

A. Data

The EyePACS dataset [22] is sourced from the Kaggle
Diabetic Retinopathy challenge. It consists of 88,692 reti-
nal fundus images of individuals potentially suffering from
diabetic retinopathy (DR), an eye disease associated with
diabetes that is one of the leading causes of visual impairment
worldwide. The dataset contains 5 categories of images based
on the severity of the disease, with 0 being completely healthy
and 4 being the most severe form of the disease. Similar to
[23], we binarize this label into our prediction target Y, with
Y = 1 corresponding to categories 1-4, considered a positive,
referable case for DR, and Y = 0 corresponding to category
0, a healthy eye with no disease.

We are interested in skin tone for our sensitive variable S
with S = 0 representing light skin and S = 1 dark. However,
as skin tone is not included in the dataset, we instead use the
Individual Topology Angle (ITA) [24] as a proxy, which was
found to correlate with the Melanin Index, frequently used in
dermatology to classify human skin on the Fitzpatrick scale.
As in [23], [25], we compute ITA via

ITA =
180

π
arctan

(
L− 50

b

)
(11)

where L is luminescence and b is “yellowness” in CIE-Lab
space. We then binarize ITA where an ITA of ≤ 19 is taken
to mean dark skin, as done in [23], [26]. Using ITA as a proxy
for skin tone has the advantage of being significantly easier to
determine compared to the potential issues arising in having
a clinician manually annotate images as done in [27]. Sample
images from the EyePACS dataset are shown in Fig. 1.

Fig. 1. Examples of retinal fundus images from the EyePACS dataset. For
the left image (Y, S) = (1, 0), for the middle (Y, S) = (0, 0), and for the
right (Y, S) = (0, 1).

B. Metrics

We use the following metrics to evaluate how well the model
performs:

1) Measure of Utility: We use the overall classification
accuracy (later denoted acc).



2) Measures of Fairness: We measure this in multiple
ways: a) using the gap in accuracy (denoted accgap) between
favored and protected subpopulations; and b) reporting the
minimum accuracy across subpopulations (denoted as accmin),
which is based on the Rawlsian principle of achieving fairness
by maximizing accmin [28]. Also echoing [6], we measure: c)
the adherence to demographic parity via its gap dpgap; and
adherence to d) equalized odds via its gap eqoddsgap. The
latter two metrics are respectively given by:

dpgap =
∣∣P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)

∣∣ (12)

and

eqoddsgap = max
y∈{0,1}

|P (Ŷ = 1|S = 0, Y = y)

−P (Ŷ = 1|S = 1, Y = y)|.
(13)

3) Joint Utility-Fairness Measure: Echoing and comparing
with the work in [23], we use a single metric that jointly
captures utility and fairness, the Conjunctive Accuracy Im-
provement (CAIλ) measure:

CAIλ = λ(accbgap − accdgap) + (1− λ)(accd − accb) (14)

where 0 ≤ λ ≤ 1, and accb and accd are the accuracy for
baseline and debiased algorithms, respectively, while accbgap
and accdgap are gap in accuracy for the baseline and debiased
algorithms. In practice, one uses either λ = 0.5 for equal
balance between utility and fairness or λ = 0.75 to emphasize
fairness.

C. Additional Implementation Details

We use an isotropic Gaussian distribution for the encoder
with mean and variance learned by a neural network, PZ|X =
N (Z|µenc(X), σ2

enc(X)Id), where the mean and variance are
two outputs of the encoder, d is the dimension of Z, and Id is
the d-dimensional identity matrix. The representation is then
computed as Z = µenc(X) + σencN (0, Id), where 0 is the
all-zero vector of size d.

We model the approximation of the representation’s
marginal as a d-dimensional spherical Gaussian, QZ =
N (Z|0, Id). As a result, we calculate the Rényi divergence in
(10) between the multivariate Gaussians PZ|X and QZ using
the closed-form expression derived in [29], [30]).

Finally, as we only use binary values for Y , we model QY |Z
with Bernoulli distributions, QY |Z = Bernoulli(Y ; f(Z)) and
QY |Z,S = Bernoulli(Y ; g(Z, S)) where f and g are auxiliary
fully connected networks.

We use ResNet50 as the encoder network while f and g
consist of two linear layers followed by a Sigmoid layer. After
creating the representation Z, we use a logistic regression
classifier with default settings to predict Y from Z. We
evaluate accuracy and fairness on these predictions.

D. Results

We predict Y = DR Status while using S = ITA as
the sensitive attribute. We consider the case of an extreme
data imbalance where training data is completely missing

for one protected subgroup (dark skin individuals) and for
a specific value of Y = 1 (DR-referable individuals). We
create a training partition containing both images referable
and non-referable for DR of light skin individuals but only
non-referable images of dark skin individuals. The goal is for
predictions on the missing subgroup to be just as accurate as
on the group with adequate training data. This is a problem
of both fairness and also domain adaptation, and matches
an important real world problem where data for dark skin
individuals is lacking compared to light skin individuals.

For a fair assessment of our method’s performance we
evaluate on a balanced test set with an equal number of
positive and negative examples for both dark and light skin
individuals. We use the same partition as in [23] to compare
with their method. For their method, we report their original
CAI scores calculated with respect to their baseline whereas
we calculate our CAI scores with respect to results from our
own baseline, a ResNet50 network.

Hyper-parameter tuning: We use various combinations of
hyperparameters β1 and β2 varied linearly from 1 to 50 and
α varied linearly from 0 to 1, where α = 1 signifies KL
divergence instead of Rényi divergence. As values of α = 1
and β2 = 0 correspond to the IB method, to compare it with
our method we first find an intermediate value of β1 that
performs well for the IB method, then fix our value of β1 to
the same value and vary α and β2. We compare our method
to the CFB in the same way, fixing a value of β2 that we use
for both the CFB and our method, and then varying α and
β1. We implement these methods ourselves and also compare
to two methods with results taken from [23]: adversarial
independence (AD) that minimizes conditional dependence
of predictions on sensitive attributes with an adversarial two
player game and intelligent augmentation (IA) that generates
synthetic data for underrepresented populations and performs
data augmentation to train a less biased model.

As seen in Table I, our method mostly outperforms all other
methods, showing improvements in accuracy and fairness
across nearly all metrics. Usual caution should be exercised
in interpretations since – despite our aligning with data parti-
tioning in [23] – other variations may exist with [6], [9], [23]
due to non-determinism, parameter setting or other factors.

IV. DISCUSSION

This study proposed RFIB, a new variational approach that
encodes trade-offs between different principles of fairness
along with utility and compactness. Compared to prior work
which incorporates a single definition of fairness, our approach
has the potential benefit of allowing ethicists and policy mak-
ers to specify softer and more balanced fairness requirements
that may lie between multiple hard fairness requirements. Our
work opens the way to more future studies expanding on this
idea.

In additional experiments we evaluated the performance
of our method when the fairness model for EyePACS was
developed vis-a-vis the ITA protected factor but was then
tested on a dataset where the protected factor was race, as



TABLE I
RESULTS FOR DEBIASING METHODS ON EYEPACS

Methods acc ↑ accgap ↓
accmin ↑
(subpop.) CAI0.5 ↑ CAI0.75 ↑ dpgap ↓ eqoddsgap ↓

Baseline (from [23]) 70.0 3.5 68.3 - - NA NA
AD (β = 0.5) ( [23]) 76.12 2.41 74.92 (L) 3.61 2.35 NA NA
IA ( [23]) 71.5 1.5 70.16 (D) 1.75 1.875 NA NA
Baseline (ours) 73.37 8.08 69.33 (D) - - 28.25 36.33
IB (β1=30) ( [9]) 74.12 2.08 73.08 (D) 3.37 4.69 18.58 20.67
CFB (β2=30) ( [6]) 77.83 1.66 77.0 (L) 5.84 5.93 10.83 12.5
RFIB (ours)
(α = 0.8, β1 = 36, β2 = 30) 79.42 0.5 79.17 (L) 6.81 7.19 16.17 16.67

RFIB (ours)
(α = 0.8, β1 = 30, β2 = 50) 79.17 0.83 78.75 (L) 6.54 6.91 17.0 17.83

RFIB (ours)
(α = 1.8, β1 = 30, β2 = 17) 78.35 0.25 78.25 (L) 6.41 7.12 15.58 15.83

We predict Y = DR Status, trained on partitioning with respect to S = ITA, and evaluated on a test set balanced across DR status
and ITA. For metrics with an ↑ higher is better whereas for ↓ lower is better. Subpopulation is the one that corresponds to the
minimum accuracy, with (D) indicating dark skin and (L) light skin. Metrics are given as percentages.

annotated by clinicians. The results demonstrate the ability
of our method to perform well in this type of protected factor
domain adaptation problem, where our approach outperformed
all other methods. This is particularly important in a setting
where the actual protected factor is not revealed for privacy
reasons. Regarding addressing methods that are both fair and
private, the type of information blinding approach pursued
here may have implications for models that protect against
attribute inference attack, another possible future direction.

Overall, evaluation of the method showed benefits vis-a-vis
methods of record including IB, CFB, and other augmentation
or adversarial debiasing techniques, with the potential to
further improve results by combining our method with other
post-processing, pre-processing and data intervention methods.
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