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Abstract—The Rényi cross-entropy measure between two dis-
tributions, a generalization of the Shannon cross-entropy, was
recently used as a loss function for the improved design of
deep learning generative adversarial networks. In this work,
we examine the properties of this measure and derive closed-
form expressions for it when one of the distributions is fixed and
when both distributions belong to the exponential family. We
also analytically determine a formula for the cross-entropy rate
for stationary Gaussian processes and for finite-alphabet Markov
sources.

Index Terms—Rényi information measures, cross-entropy,
exponential family distributions, Gaussian processes, Markov
sources.

I. INTRODUCTION

The Rényi entropy [1] of order α of a discrete distribution
(probability mass function) p with finite support S, defined as

Hα(p) =
1

1− α
ln
∑
x∈S

p(x)α

for α > 0, α ̸= 1, is a generalization of the Shannon entropy,1

H(p), in that limα→1 Hα(p) = H(p). Similarly, the Rényi
divergence (of order α) between two discrete distributions p
and q with common finite support S, given by

Dα(p||q) =
1

α− 1
ln
∑
x∈S

p(x)αq(x)1−α,

reduces to the KL divergence, D(p∥q), as α → 1.
Since the introduction of these measures, several other

Rényi-type information measures have been put forward, each
obeying the condition that their limit as α goes to one reduces
to a Shannon-type information measure (e.g., see [2] and the
references therein for three different order α extensions of
Shannon’s mutual information due to Sibson, Arimoto and
Csiszár.)

Many of these definitions admit natural counterparts in the
(absolutely) continuous case (i.e., when the involved distribu-
tions have a probability density function (pdf)), giving rise to
information measures such as the Rényi differential entropy
for pdf p with support S,

hα(p) =
1

1− α
ln

∫
S
p(x)α dx,
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1For ease of reference, a table summarising the Shannon entropy and cross-

entropy measures as well as the Kullback-Liebler (KL) divergence is provided
in Appendix A.

and the Rényi (differential) divergence between pdfs p and q
with common support S,

Dα(p||q) =
1

α− 1
ln

∫
S
p(x)αq(x)1−α dx.

The Rényi cross-entropy between distributions p and q
is an analogous generalization of the Shannon cross-entropy
H(p; q). Two definitions for this measure have been suggested.
In [3], mirroring the fact that Shannon’s cross-entropy satisfies
H(p; q) = D(p∥q) + H(p), the authors define Rényi cross-
entropy as

H̃α(p; q) := Dα(p||q) +Hα(p). (1)

In contrast, prior to [3], the authors of [4] introduced the Rényi
cross-entropy in their study of the so-called shifted Rényi
measures (expressed as the logarithm of weighted generalized
power means). Specifically, upon simplifying Definition 6
in [4], their expression for the Rényi cross-entropy between
distributions p and q is given by

Hα (p; q) :=
1

1− α
ln
∑
x∈S

p (x) q (x)
α−1

. (2)

For the continuous case, the definition in (2) can be readily
converted to yield the Rényi differential cross-entropy between
pdfs p and q:

hα(p; q) :=
1

1− α
ln

∫
S
p(x)q(x)α−1 dx. (3)

As the Rényi differential divergence and entropy were
already calculated for numerous distributions in [5] and [6],
respectively, determining the Rényi differential cross-entropy
using the definition in (1) is straightforward. As such, this
paper’s focus is to establish closed-form expressions of the
Rényi differential cross-entropy as defined in (3) for various
distributions, as well as to derive the Rényi cross-entropy rate
for two important classes of sources with memory, Gaussian
and Markov sources.

Motivation for determining formulae for the Rényi cross-
entropy extends beyond idle curiosity. The Shannon differen-
tial cross-entropy was used as a loss function for the design
of deep learning generative adversarial networks (GANs) [7].
Recently, the Rényi differential cross-entropy measures in
(3) and (1), were used in [8], [9] and [3], respectively, to
generalize the original GAN loss function. It is shown that
in [8] and [9] that the resulting Rényi-centric generalized



loss function preserves the equilibrium point satisfied by the
original GAN based on the Jensen-Rényi divergence [10], a
natural extension of the Jensen-Shannon divergence [11]. In
[3], a different Rényi-type generalized loss function is obtained
and is shown to benefit from stability properties. Improved
stability and system performance are shown in [8], [9] and [3]
by virtue of the α parameter that can be judiciously used to
fine-tune the adopted generalized loss functions which recover
the original GAN loss function as α → 1.

The rest of this paper is organised as follows. In Section II,
basic properties of the Rényi cross-entropy are examined. In
Section III, the Rényi differential cross-entropy for members
of the exponential family is calculated. In Section IV, the Rényi
differential cross-entropy between two different distributions
is obtained. In Section V, the Rényi differential cross-entropy
rate is derived for stationary Gaussian sources. Finally in
Section VI, the Rényi cross-entropy rate is established for
finite-alphabet time-invariant Markov sources.

II. BASIC PROPERTIES OF THE RÉNYI CROSS-ENTROPY
AND DIFFERENTIAL CROSS-ENTROPY

For the Rényi cross-entropy Hα(p; q) to deserve its name it
would be preferable that it satisfies at least two key properties:
it reduces to the Rényi entropy when p = q and its limit
as α goes to one is the Shannon cross-entropy. Similarly, it
is desirable that the Rényi differential cross-entropy hα(p; q)
reduces to the Rényi differential entropy when p = q and its
limit as α tends to one yields the Shannon differential cross-
entropy. In both cases, the former property is trivial, and the
latter property was proven in [9] for the continuous case under
some finiteness conditions (in the discrete case, the result holds
directly via L’Hôpital’s rule).

It is also proven in [9] that the Rényi differential cross-
entropy hα(p; q) is non-increasing in α by showing that
its derivative with respect to α is non-positive. The same
monotonicity property holds in the disrcrete case.

Like its Shannon counterpart, the Rényi cross-entropy is
non-negative (Hα(p; q) ≥ 0); while the Rényi differential
cross-entropy can be negative. This is easily verified when,
for example, α = 2 and p and q are both Gaussian (normal)
distributions with zero mean and variance 1/(8

√
π), and

parallels the same lack of non-negativity of the Shannon
differential cross-entropy.

We close this section by deriving the cross-entropy limit,
limα→∞ Hα(p; q). To begin with, for any non-zero constant
c̃, we have

lim
α→∞

1

1− α
ln
∑
x∈S

c̃q (x)
α−1

= lim
α→∞

1

1− α
ln c̃+ lim

α→∞

1

1− α
ln
∑
x∈S

q (x)
α−1

= lim
β→∞

1− β

−β

1

1− β
ln
∑
S

q (x)
β

(β = α− 1)

= lim
β→∞

Hβ(q) = − ln qM , (4)

where qM := maxx∈S q(x) and where we have used the fact
that for the Rényi entropy, limα→∞ Hα(q) = − ln qM . Now,
denoting the minimum and maximum values of p(x) over S
by pm and pM , respectively, we have that for α > 1,

1

1− α
ln
∑
x∈S

pmq (x)
α−1 ≤ 1

1− α
ln
∑
x∈S

p(x)q (x)
α−1

and
1

1− α
ln
∑
x∈S

p(x)q (x)
α−1 ≤ 1

1− α
ln
∑
x∈S

pMq (x)
α−1

,

and hence by (4) we obtain

lim
α→∞

Hα (p; q) = − ln qM . (5)

III. RÉNYI DIFFERENTIAL CROSS-ENTROPY FOR
EXPONENTIAL FAMILY DISTRIBUTIONS

A probability distribution on R or Rn with parameter θ is
said to belong to the exponential family (e.g., see [12]) if on
its support S it admits a pdf of the form

f(x) = c(θ)b(x) exp (η(θ) · T (x)) , x ∈ S, (6)

for some real-valued (measurable) functions c, b, η and T .2

Here η is known as the natural parameter of the distribution,
T (x) is the sufficient statistic and c(θ) is the normalization
constant in the sense that for all θ within the parameter space∫

S
b(x) exp (η(θ) · T (x)) dx = c(θ)−1.

The pdf in (6) can also be written as

f(x) = b(x) exp (η · T (x) +A(η)), (7)

where A (η(θ)) = ln c(θ). Examples of distributions in the
exponential family include the Gaussian, Beta, and exponential
distributions.

Lemma 1. Let f1(x) and f2(x) be pdfs of the same type
in the exponential family with natural parameters η1 and η2,
respectively. Define fh(x) as being of the same type as f1 and
f2 but with natural parameter ηh = η1 + (α− 1)η2. Then

hα (f1; f2) =
A (η1)−A (ηh) + lnEh

1− α
−A (η2) , (8)

where Eh = Efh

[
b(X)α−1

]
=
∫
b(x)α−1fh(x) dx

Proof. Using (7), we have

f1 (x) f2 (x)
α−1

= b (x) exp
(
η1 · T (x) +A (η1)

)
·
(
b (x) exp

(
η2 · T (x) +A (η2)

))α−1

= b (x)
α
exp ((η1 + (α− 1)η2) · T (x))

· exp (A (η1) + (α− 1)A (η2))

2Note that θ and consequently T (x) can be vectors in cases where the
distribution admits multiple parameters.



= b (x)
α
exp (ηh · T (x) +A (ηh))

· exp (A (η1) + (α− 1)A (η2)−A (ηh))

= b (x)
α−1

fh (x) exp (A (η1) + (α− 1)A (η2)−A (ηh)) .

Thus, ∫
S
f1 (x) f2 (x)

α−1
dx

=

∫
S
b (x)

α−1
fh (x) dx

· exp (A (η1) + (α− 1)A (η2)−A (ηh))

= exp (A (η1) + (α− 1)A (η2)−A (ηh))Eh,

and therefore,

hα (f1; f2) =
A (η1)−A (ηh) + lnEh

1− α
−A (η2) .

Remark. If b(x) = b is a constant for all x ∈ S, then

lnEh

1− α
= − ln b.

In many cases, we have that b(x) = 1 on S, and thus the lnEh

1−α
term disappears in (8).

Table I lists Rényi differential cross-entropy expressions we
derived using Lemma 1 for some common distributions in
the exponential family (which we describe in Appendix B for
convenience). In the table, the subscript of i is used to denote
that a parameter belongs to pdf fi, i = 1, 2.

TABLE I
RÉNYI DIFFERENTIAL CROSS-ENTROPIES FOR COMMON CONTINUOUS

DISTRIBUTIONS

Name hα(f1; f2)

Beta lnB(a2, b2) +
1

α− 1
ln

B(ah, bh)

B(a1, b1)
ah := a1 + (α− 1)(a2 − 1),
bh := b1 + (α− 1)(b2 − 1)

χ2 1

1− α

(ν1
2

ln (α)− ln Γ
(ν1

2

)
+ lnΓ

(νh
2

))
+
2− ν2

2
ln (α) + ln 2Γ

(ν2
2

)
νh := ν1 + (α− 1)(k − 2)

Exponential
1

1− α
ln

λi

λh
− lnλ2

λh := λ1 + (α− 1)λ2

Gamma ln Γ(k2) + k2 ln θ2

+
1

1− α

(
ln

Γ(kh)

Γ(k1)
− kh ln θh − k1 ln θ1

)
θ∗α :=

θ1+(a−1)θ2
(α−1)θ1θ1

, kh := ki + (α− 1)k2

Gaussian
1

2

(
ln(2πσ2

2) +
1

1− α
ln

(
σ2
2

(σ2)∗h

)
+

(µ1 − µ2
2

(σ2)∗h

)
(σ2)∗h := σ2

2 + (α− 1)σ2
1

Laplace ln(2b2) +
1

1− α
ln

(
b2

2bh

)
(µ1 = µ2) bh := b2 + (1− α)b1

IV. RÉNYI DIFFERENTIAL CROSS-ENTROPY BETWEEN
DIFFERENT DISTRIBUTIONS

Let p and q be pdfs with common support S ⊆ R. Below
are some general formulae for the differential Rényi cross-
entropy between one specific (common) distribution and any
general distribution. If S is an interval below, then |S| denotes
its length.

A. Distribution q is uniform

Let q be uniformly distributed on S. Then

hα(p; q) =
1

1− α
ln

∫
S
p(x)q(x)α−1dx = ln |S|.

B. Distribution p is uniform

Now suppose p is uniformly distributed on S. Then

hα(p; q) =
1

1− α
ln

∫
S
p(x)q(x)α−1dx

=
1

1− α
ln

1

|S|
− hα−1(q).

C. Distribution q is exponentially distributed

Suppose the S = R+ and q is exponential with parameter
λ. Suppose also that the moment generating function (MGF)
of p, Mp(t) exists. We have

hα(p; q) =
1

1− α
ln

∫
S
p(x)q(x)α−1dx

=
1

1− α
lnEp

[
q(x)α−1

]
=

1

1− α
lnEp

[
(λ exp (−λx))

α−1
]

= − lnλ+
1

1− α
lnMp (λ(1− α)) .

D. Distribution q is Gaussian

Now assume that q is a (normal) Gaussian N (µ, σ2) dis-
tribution and that the MGF of Y := (X − µ)2, MY , exists,
where X is a random variable with distribution p. Then

hα(p; q) =
1

1− α
lnEp

[
q(X)α−1

]
=

1

1− α
lnσ(

√
2π)1−αE

(
exp

(
(1− α)

Y

2σ2

))
= lnσ

√
2π +

1

1− α
lnMY

(
1− α

2σ2

)
.

The case where q is a half-normal distribution can be directly
derived from the above. Given q is a half-normal distribution,
on its support its pdf is the same as that of a normal
N (0, σ2) distribution times 2. Hence if p’s support is R+,
then hα(p; q) = lnσ

√
π
2 + 1

1−α lnMY

(
1−α
2σ2

)
.



V. RÉNYI DIFFERENTIAL CROSS-ENTROPY RATE FOR
STATIONARY GAUSSIAN PROCESSES

Lemma 2. The Rényi differential cross-entropy between two
zero-mean multivariate dimension-n Gaussian distributions
with invertible covariance matrices Σ1 and Σ2, respectively,
is given by

hα(p; q) =
ln |Σ1||S|
2α− 2

+
1

2
ln |Σ2|+

n

2
ln 2π, (9)

where S := Σ−1
1 + (α− 1)Σ−1

2 .

Proof. Recall that the pdf of a multivariate Gaussian with
mean 0 = (0, 0..., 0)T and invertible covariance matrix Σ is
given by:

f(x) =
exp(−1

2 xTΣ−1x)
(2π)k/2|Σ|1/2

for x ∈ Rn. Note that this distribution is a member of the
exponential family, where T (x) = x, η = 1

2Σ
−1, A(η) =

1
2 ln | − 2η| and b(x) = (2π)

−n
2 . Hence the Rényi differential

cross-entropy between two zero-mean multivariate Gaussian
distributions with covariance matrices Σ1 and Σ2, respectively,
is

hα(p; q) =
1

1− α

(
1

2
ln

∣∣∣∣2Σ−1
1

2

∣∣∣∣
−1

2
ln

∣∣∣∣2Σ−1
1 + (α− 1)Σ−1

2

2

∣∣∣∣)
− 1

2
ln

∣∣∣∣2Σ−1
2

2

∣∣∣∣− ln(2π)
−n
2

=
ln |Σ1||S|
2α− 2

+
1

2
ln |Σ2|+

n

2
ln 2π.

Let {Xj}∞j=1 and {Yj}∞j=1 be stationary zero-mean Gaus-
sian processes. For a given n, Xn := (X1, X2, ..., Xn) and
Y n := (Y1, Y2, ..., Yn) are multivariate Gaussian random
variables with mean 0 and covariance matrices ΣXn and
ΣY n , respectively. Since {Xj} and {Yj} are stationary, their
covariance matrices are Toeplitz. Furthermore, Bn := ΣY n +
(α− 1)ΣXn is Toeplitz.

Lemma 3. Let f̃(λ), g̃(λ) and h̃(λ) be the power spectral
densities of {Xj}, {Yj} and the zero-mean Gaussian process
with covariance matrix Bn, respectively.

Then the Rényi differential cross-entropy rate between {Xj}
and {Yj}, limn→∞

1
nhα(X

n;Y n), is given by

ln 2π

2
+

1

4π(1− α)

∫ 2π

0

[
(2− α) ln g̃(λ)− ln h̃(λ)

]
dλ.

Proof. From Lemma 2, we first note that S = Σ−1
XnBnΣ

−1
Y n .

With this in mind the Rényi differential cross-entropy can be
rewritten using (9) as

1

n

(
ln |ΣXn ||Σ−1

XnBnΣ−1
Y n |

2(α− 1)
+

1

2
ln |ΣY n |+ n

2
ln 2π

)

=
ln 2π

2
+

1

2n

(
ln |ΣXn ||Σ−1

Xn ||Bn||Σ−1
Y n |

(α− 1)
+ ln |ΣY n |

)
=

ln 2π

2
+

1

2n

(
ln |Bn| − ln |ΣY n |

(α− 1)
+ ln |ΣYn |

)
=

ln 2π

2
+

1

2n(1− α)
((2− α) ln |ΣY n | − ln |Bn|) .

It was proven in [13] that for a sequence of Toeplitz matrices
Tn with spectral density t(λ) such that ln t(λ) is Reimann
integrable, one has

lim
n→∞

ln |Tn| = 1

2π

∫ 2π

0

ln t(λ) dλ.

We therefore obtain that the Rényi differential cross-entropy
rate is given by

ln 2π

2
+

1

4π(1− α)

∫ 2π

0

[
(2− α) ln g̃(λ)− ln h̃(λ)

]
dλ.

Note that h̃(λ) = g̃(λ) + (α− 1)f̃(λ).

VI. RÉNYI CROSS-ENTROPY RATE FOR MARKOV SOURCES

Consider two time-invariant Markov sources {Xj}∞j=1 and
{Yj}∞j=1 with common finite alphabet S and with transition
distribution P (·|·) and Q(·|·), respectively. Then for any in =
(i1, . . . , in) ∈ Sn, their n-dimensional joint distributions are
given by

p(n)(in) = P (in|in−1)P (in−1|in−2)...P (i2|i1)q(i1)

and

q(n)(in) = Q(in|in−1)Q(in−1|in−2)...Q(i2|i1)p(i1),

respectively, with arbitrary initial distributions, p(i1) and q(i1),
i1 ∈ S. For simplicity, we assume that p(i), q(i), Q(j|i) > 0
for all i, j ∈ S. Define the Rényi cross-entropy rate between
{Xj} and {Yj} as

lim
n→∞

1

n
Hα(X

n;Y n)

= lim
n→∞

1

n

1

1− α
ln

( ∑
in∈Sn

p(n)(in)q(n)(in)α−1

)
.

Note that by defining the matrix R using the formula

Rij = P (j|i)Q(j|i)α−1

and the row vector s as having components si = p(i)q(i)α−1,
the Rényi cross-entropy rate can be written as

lim
n→∞

1

n

1

1− α
ln sRn−11, (10)

where 1 is a column vector whose dimension is the cardinatliy
of the alphabet S and with all its entries equal to 1.

A result derived by [14] for the Rényi divergence between
Markov sources can thus be used to find the Rényi cross-
entropy rate for Markov sources.



Lemma 4. Let P , Q, s and R be defined as above. If R is
irreducible, then

lim
n→∞

1

n
Hα(X

n;Y n) =
lnλ

1− α
, (11)

where λ is the largest positive eigenvalue of R.

Proof. Since the non-negative matrix R is irreducible, by the
Frobenius theorem (e.g., cf. [15], [16]), it has a largest positive
eigenvalue λ with associated positive eigenvector b. Let bm
and bM be the minimum and maximum elements, respectively,
of b. Then due to the non-negativity of s,

λn−1s · b = sRn−1b ≤ sRn−11bM ,

where · denotes the Euclidean inner product. Similarly, λn−1s·
b ≥ sRn−11bm. As a result,

1

n
ln

λn−1s · b
bM

≤ 1

n
ln sRn−11 ≤ 1

n
ln

λn−1s · b
bm

.

Note that for all n, s·b
bM

is a constant. Thus

lim
n→∞

1

n
ln

λn−1s · b
bM

= lim
n→∞

n− 1

n
lnλ+ lim

n→∞

1

n
ln

s · b
bM

= lnλ.

Similarly, we have limn→∞
1
n ln λn−1s·b

bm
= lnλ. Hence,

lim
n→∞

1

n
Hα(X

n;Y n) = lim
n→∞

1

n
ln

λn−1s · b
(1− α)bm

=
lnλ

1− α
.

Another technique can be borrowed from [14] to generalize
Lemma 4 to the case where R is reducible. First R is rewritten
in the canonical form detailed in Proposition 1 of [14]. Let λk

be the largest positive eigenvalue of each self-communicating
sub-matrix of R, and let λ̃ be the maximum of these λk’s.
For each inessential class Ci, let λj be the largest positive
eigenvalue of the sub-matrix of each class Cj that is reachable
from Ci, and let λ† be the maximum of these λj’s. Define
λ = max{λ̃, λ†}. Then (11) holds.

APPENDIX A: SHANNON-TYPE INFORMATION MEASURES

Name Definition
Shannon
Entropy H(p) = −

∑
x∈S

p(x) ln p(x)

Shannon
Differential

Entropy
h(p) = −

∫
S
p(x) ln p(x) dx

Shannon
Cross-Entropy H(p; q) = −

∑
x∈S

p(x) ln q(x)

Shannon
Differential

Cross-Entropy
h(p; q) = −

∫
S
p(x) ln q(x)dx

KL Divergence,
(Discrete) D(p∥q) = −

∑
x∈S

p(x) ln
p(x)

q(x)

KL Divergence,
(Continuous) D(p∥q) = −

∫
S
p(x) ln

p(x)

q(x)
dx

APPENDIX B: DISTRIBUTIONS LISTED IN TABLE I

Name PDF f(x)
(Parameters) (Support)

Beta B(a, b)xa−1(1− x)b−1

(a > 0, b > 0) S = (0, 1)

χ2 1

2
ν
2 Γ
(
ν
2

)x ν
2
−1e−

x
2

(ν ∈ Z+) S = R+

Exponential λe−λx

(λ > 0) S = R+

Gamma
1

θkΓ (k)
xk−1e−

k
θ

(k > 0, θ > 0) S = R+

Gaussian
1

√
2πσ2

e
− 1

2

(
x−µ
σ

)2

(µ, σ2 > 0) S = R

Laplace
1

2b
e−

|x−µ|
b

(µ, b2 > 0) S = R

Notes

• B(a, b) =

∫ 1

0

ta−1(1− t)b−1 dt is the Beta function.

• Γ(z) =

∫ ∞

0

xz−1e−x dx is the Gamma function.
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