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Abstract. We study the maximal mutual information about a random
variable Y (representing non-private information) displayed through an
additive Gaussian channel when guaranteeing that only ε bits of infor-
mation is leaked about a random variable X (representing private infor-
mation) that is correlated with Y . Denoting this quantity by gε(X,Y ),
we show that for perfect privacy, i.e., ε = 0, one has g0(X,Y ) = 0 for any
pair of absolutely continuous random variables (X,Y ) and then derive a
second-order approximation for gε(X,Y ) for small ε. This approximation
is shown to be related to the strong data processing inequality for mu-
tual information under suitable conditions on the joint distribution PXY .
Next, motivated by an operational interpretation of data privacy, we for-
mulate the privacy-utility tradeo� in the same setup using estimation-
theoretic quantities and obtain explicit bounds for this tradeo� when ε is
su�ciently small using the approximation formula derived for gε(X,Y ).
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1 Introduction

The ever increasing growth of social networks has brought major challenges
in terms of data privacy. This paper focuses on a privacy problem which is
relevant for users or designers of social networks: the trade-o� between data
privacy and customized services performance. On the one hand, users want their
private data to remain secret, and on the other hand, they also desire to bene�t
from customized services that require personal information in order to function
properly. In this context, it is reasonable to assume that the user has two kinds of
data: private data such as passport numbers, credit cards numbers, etc; and non-
private data such as gender, age, etc. In general, private and non-private data
are correlated. Thus, it is possible that enough non-private data discloses a non-
negligible amount of private data. Therefore, it is necessary to develop techniques
to provide/store personal data (user's point of view/designer's point of view) that
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yield the best customized services performance without compromising privacy.
The goal of these techniques is to provide displayed data that will be used
by customized services which contains as much non-private data as possible
while revealing as little private data as possible. Also, for security reasons, the
displayed data has to be produced using only non-private data. In general, this
implies that the displayed data should be a randomized version of the non-private
data.

To formulate this problem, we need to specify a privacy function and a utility
function that respectively measure the amount of private and non-private data
leaked into the displayed data. The authors of this paper recently suggested
in [1] to use mutual information as the measure of both utility and privacy.
Let X and Y denote the private and non-private data, respectively. The rate-
privacy function gdisε (X,Y ) for discrete random variables X and Y having �nite
alphabets X and Y, respectively is de�ned for any ε ≥ 0 as the privacy-utility
tradeo�

gdisε (X,Y ) := max
PZ|Y :X(−−Y(−−Z,

I(X;Z)≤ε

I(Y ;Z), (1)

where the auxiliary random variable Z is the privacy-constrained displayed data
and X (−− Y (−− Z denotes that X, Y , and Z form a Markov chain in
this order. The channel PZ|Y is called the privacy �lter. It is shown in [2] that

gdisε (X,Y ) is in fact a corner point of an outer bound on the achievable region
of the "dependence dilution" coding problem which provides an information-
theoretic operational interpretation. It is also shown that if the channel from
Y to X displays certain symmetry properties, then gdisε (X,Y ) can be calculated
in closed form. For instance, if PX|Y is a binary symmetric channel (BSC) and

Y ∼ Bernoulli(0.5), then gdisε (X,Y ) = ε
I(X;Y ) .

As a more practical and operational notion of privacy, estimation-theoretic
formulations of privacy are introduced in [3] and [4]. In particular, Calmon et
al. [3] studied the case where X = Y and de�ned the utility by Pr(Ŷ (Z) = Y )
where Ŷ : Z → Y is the Bayes decoding map satisfying I(Y ;Z) ≤ ε for discrete
Y . Motivated by [5], which suggested the use of maximal correlation ρ2m(X,Z)
to measure the privacy level between X and Z, the authors in [4] recently gener-
alized this model to arbitrary discrete X and Y , with the same utility function
except that Z is required to satisfy ρ2m(X,Z) ≤ ε. It was shown independently
in [1] and [6] that if perfect privacy is required, i.e., Z must be statistically in-
dependent of X, then Z is also independent of Y unless the probability vectors
{PY |X(·|x) : x ∈ X} are linearly dependent (in which case Y is called weakly
independent of X, see [7, Appendix II]). Hence, if Y is not weakly independent
of X, then gdis0 (X,Y ) = 0. Other formulations for privacy have appeared in
[8,9,10,11,12,13].

The setting where (X,Y ) is a pair of absolutely continuous random variables
with X = Y = R is studied in [2] with both utility and privacy being measured
by mutual information, and in [4], where both utility and privacy are measured in
terms of the minimum mean-squared error (MMSE). In both cases, it is assumed
that the privacy �lter is an additive Gaussian channel with signal-to-noise ratio



Almost Perfect Privacy in Additive Gaussian Privacy Filter 3

(SNR) γ ≥ 0, i.e.,

Z = Zγ :=
√
γY +NG, (2)

where NG ∼ N (0, 1) is independent of (X,Y ). In particular, the rate-privacy
function [2] is de�ned as

gε(X,Y ) := max
γ≥0,

I(X;Zγ)≤ε

I(Y ;Zγ). (3)

Letting mmse(U |V ) denote the MMSE of estimating U by observing V and
letting var denote the variance, the estimation-theoretic privacy-utility tradeo�
is de�ned in [4] by the estimation noise-to-signal ratio (ENSR):

sENSRε(X,Y ) := min
mmse(Y |Zγ)

var(Y )
, (4)

where the minimum is taken over all γ ≥ 0 such that mmse(f(X)|Zγ) ≥ (1 −
ε)var(f(X)) for any non-constant measurable function f : X → R. Unlike
gε(X,Y ), sENSRε(X,Y ) has a clear operational interpretation; it is the small-
est MMSE associated with estimating Y given Z from which no non-degenerate
function f of X can be estimated e�ciently. This notion is related to semantic
security [14] in cryptography. An encryption mechanism is said to be seman-
tically secure if the adversary's advantage for correctly guessing any function
of the private data given an observation of the mechanism's output (i.e., the
ciphertext) is required to be negligible. As opposed to the discrete case, perfect
privacy is achieved if and only if γ = 0, which gives rise to g0(X,Y ) = 0 (or
equivalently sENSR0(X,Y ) = 1) for any absolutely continuous (X,Y ).

1.1 Contributions

In this work, we investigate the "almost" perfect privacy regime, that is, when
ε > 0 is close to zero and derive a second-order approximation for gε(X,Y )
(Corollary 2). We also obtain the �rst and second derivatives of the mapping
ε 7→ gε(X,Y ) for ε ∈ [0, I(X;Y )) (Theorem 1). For a pair of Gaussian random
variables (X,Y ), an expression for gε(X,Y ) is derived (Example 1) and it is

shown that the optimal �lter has SNR equal to 22ε−1
1−2−2(I(X;Y )−ε) for all ε < I(X;Y )

and the SNR is in�nity if ε ≥ I(X;Y ). Functional properties of the map ε 7→
gε(X,Y ) are obtained (Proposition 1); in particular, it is shown than although
the map ε 7→ gdisε (X,Y ) is concave [2], the map ε 7→ gε(X,Y ) is neither convex
nor concave, and is in�nitely di�erentiable (Corollary 1). Using a recent result
on the strong data processing inequality by Anantharam et al. [15], a lower
bound is obtained for gε(X,Y ). Assuming PY |X is a convolution with a Gaussian
distribution, i.e., Y = aX+MG, where a 6= 0 andMG ∼ N (0, σ2

M ) is independent
of X, we obtain an inequality relating mmse(Y |Zγ , X) to mmse(Y |Zγ) from
which a stronger version of Anantharam's data processing inequality is derived
for our setup (Theorem 2).
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One main result of this paper is to connect gε(X,Y ) with sENSRε(X,Y )
in the almost perfect privacy regime when X is Gaussian (Theorem 4). This
connection allows us to translate the approximation obtained for gε(X,Y ) to a
lower bound for sENSRε(X,Y ).

1.2 Preliminaries

For a given pair of absolutely continuous random variables (U, V ), we inter-
changeably use PUV to denote the joint probability distribution and also the
joint probability density function (pdf). The MMSE of estimating U given V is
given by

mmse(U |V ) := E[(U − E[U |V ])
2
] = E[var(U |V )],

where var(U |V ) = E[(U − E[U |V ])2|V ]. Guo et al. [16] proved the following
so-called I-MMSE formula relating the input-output mutual information of the
additive Gaussian channel Zγ =

√
γY +NG, where NG ∼ N (0, 1) is independent

of X, with the MMSE of the input given the output:

d

dγ
I(Y ;Zγ) =

1

2
mmse(Y |Zγ). (5)

Since X, Y and Zγ form the Markov chain X (−− Y (−− Zγ , it follows that
I(X;Zγ) = I(Y ;Zγ)− I(Y ;Zγ |X) and hence two applications of (5) yields [16,
Theorem 10]

d

dγ
I(X;Zγ) =

1

2
[mmse(Y |Zγ)−mmse(Y |Zγ , X)] . (6)

The second derivative of I(Y ;Zγ) and I(X;Zγ) are also known via the formula
[17]

d

dγ
mmse(Y |Zγ , X) = −E[var2(Y |Zγ , X)]. (7)

Rényi [18] de�ned the one-sided maximal correlation between U and V (see
also [13, De�nition 7.4]) as

η2V (U) := sup
g
ρ2(U, g(V )) =

var(E[U |V ])

var(U)
, (8)

where ρ(·, ·) is the (Pearson) correlation coe�cient, the supremum is taken over
all measurable functions g, and the equality follows from the Cauchy-Schwarz
inequality. The law of total variance implies that

mmse(U |V ) = var(U)(1− η2V (U)). (9)

In an attempt of symmetrizing η2V (U), Rényi [18] (see also [19] and [20]) de�ned
the maximal correlation as

ρ2m(U, V ) = sup
f,g

ρ2(f(U), g(V )). (10)
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Comparing (8) with (10) reveals that

ρ2(X,Y ) ≤ η2X(Y ) ≤ ρ2m(X,Y ). (11)

Clearly, unlike maximal correlation, ηX(Y ) is asymmetric, i.e., in general ηX(Y ) 6=
ηY (X), and hence according to Rényi's postulates [18], it is not a "proper"
measure of dependence. However, it turns out to be an appropriate measure
of separability between private and non-private information in the almost per-
fect privacy regime (see Corollary 2). On the other hand, maximal correlation
satis�es all the Rényi's postulates [18]. In particular, it is symmetric and for
jointly Gaussian random variables U and V with correlation coe�cient ρ, we
have ρ2m(U, V ) = ρ2.

2 Rate-Privacy Function for Additive Privacy Filters

Consider a pair of absolutely continuous random variables (X,Y ) distributed
according to PXY . Let X and Y represent the private data and the non-private
data, respectively. We think of X as having �xed distribution PX and Y being
generated by the channel PY |X , prede�ned by nature. Now consider the setting
where Alice observes Y and wishes to describe it as accurately as possible to Bob
in order to get a utility from him. Due to the correlation between Y and the
private data X, Alice needs to provide Bob a noisy version Z of Y , such that Z
cannot reveal more than ε bits of information aboutX. In fact, we assume that Z
is obtained via the privacy �lter, Z = Zγ de�ned in (2). The aim is to pick γ ≥ 0
such that Zγ preserves the maximum amount of the information about Y while
satisfying the privacy constraint. The rate-privacy function gε(X,Y ), de�ned in
(3), quanti�es the tradeo� between these con�icting goals [2]. Note that since
I(Y ;Zγ) = I(Y ;Y + 1√

γNG), we can interpret 1
γ as the noise variance. Due to the

data processing inequality, one can restrict ε to the interval [0, I(X;Y )) in the
de�nition of gε(X,Y ) and consequently for any ε ≥ I(X;Y ) the optimal noise
variance must be zero and hence gε(X,Y ) = ∞. The case where the displayed
data is required to carry no information at all about X, i.e., where ε = 0, is
often called perfect privacy.

The maps γ 7→ I(Y ;Zγ) and γ 7→ I(X;Zγ) are strictly increasing over
[0,∞) [2, Lemmas 16, 17] and hence there exists a unique γε ∈ [0,∞) such that
I(X;Zγε) = ε and gε(X,Y ) = I(Y ;Zγε). This observation yields the following
proposition.

Proposition 1. For absolutely continuous random variables (X,Y ), we have

1. The map ε 7→ γε is strictly increasing and continuous, and it satis�es γ0 = 0
and γI(X;Y ) =∞.

2. The map ε 7→ gε(X,Y ) is non-negative, increasing and, continuous on [0, I(X;Y )),
and it satis�es g0(X,Y ) = 0 and gI(X;Y )(X,Y ) =∞.

3. Let D(Y ) denote the "non-Gaussianness" of Y , de�ned as D(Y ) := D(PY ||PYG
)

(here D(·||·) is the Kullback-Leibler divergence) with YG being a Gaussian
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random variable having the same mean and variance as Y . Then we have

1

2
log
(
1 + γε2

−2D(Y )var(Y )
)
≤ gε(X,Y ) ≤ 1

2
log(1 + γεvar(Y )).

Proof. Parts 1 and 2 can be proved directly from continuity and strict mono-
tonicity of the maps γ 7→ I(Y ;Zγ) and γ 7→ I(X;Zγ). The upper bound in
part 3 is a direct consequence of the fact that a Gaussian input maximizes the
mutual information between input and output of an additive Gaussian channel.
The lower bound follows from the entropy power inequality [21, Theorem 17.7.3]
which states that 22h(Zγ) ≥ γ22h(Y ) + 2πe and hence

gε(X,Y ) = I(Y ;Zγε) ≤
1

2
log
(
γε2

2h(Y ) + 2πe
)
− 1

2
log(2πe),

from which and the fact thatD(Y ) = h(YG)−h(Y ), the lower bound immediately
follows. ut

In light of Proposition 1, it is clear that, unless X and Y are independent, Zγ is
independent of X if and only if γ = 0, which implies g0(X,Y ) = 0. As mentioned
in the introduction, this is in contrast with the discrete rate-privacy function (1),
where gdis0 (X,Y ) may be positive (for example, when Y is an erased version of
X, see [2, Lemma 12]).

Example 1. Let (XG, YG) be a pair of Gaussian random variables with zero mean
and correlation coe�cient ρ. Then Zγ is also a Gaussian random variable with
variance γvar(YG) + 1. Without loss of generality assume that YG has unit vari-
ance. Then

I(XG;Zγ) =
1

2
log

(
γ + 1

γ − γρ2 + 1

)
,

and hence for any ε ∈ [0, I(XG;YG)) the equation I(XG;Zγ) = ε has the unique
solution

γε =
1− 2−2ε

2−2ε + ρ2 − 1
.

Thus, we obtain

gε(XG, YG) =
1

2
log(1 + γε) =

1

2
log

(
ρ2

2−2ε + ρ2 − 1

)
=

1

2
log

(
1 +

22ε − 1

1− 2−2(I(XG;YG)−ε)

)
. (12)

The graph of gε(XG, YG) is depicted in Fig. 1 for ρ = 0.5 and ρ = 0.8. It is worth
noting that gε(XG, YG) is related to the Gaussian rate-distortion function RG(D)
[21]. In fact, gε(XG, YG) = RG(Dε) for ε ≤ I(XG;YG) where

Dε =
2−2ε − 2−2I(XG;YG)

ρ2
,

is the mean squared distortion incurred in reconstructing Y given the displayed
data Zγ .
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Fig. 1. The rate-privacy function for a pair of Gaussian (XG, YG), given by (12), for
ρ = 0.5 and ρ = 0.8. The �rst and second-order approximations are also shown in red
and green, respectively.

The next result provides the �rst derivative g′ε(X,Y ) of the function ε 7→
gε(X,Y ) at any ε < I(X;Y ).

Theorem 1. For any absolutely continuous random variables (X,Y ), we have

g′ε(X,Y ) =
mmse(Y |Zγε)

mmse(Y |Zγε)−mmse(Y |Zγε , X)
.

Proof. Since gε(X,Y ) = I(Y ;Zγε), we have

d

dε
gε(X,Y ) =

[
d

dγ
I(Y ;Zγ)

]
γ=γε

d

dε
γε

(a)
=

1

2
mmse(Y |Zγε)

d

dε
γε, (13)

where (a) follows from (5). In order to calculate d

dεγε, notice that ε = I(X;Zγε)
and hence taking the derivative of both sides of this equation with respect to ε
yields

1 =

[
d

dγ
I(X;Zγ)

]
γ=γε

d

dε
γε,
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and hence

d

dε
γε =

1[
d

dγ I(X;Zγ)
]
γ=γε

(a)
=

2

mmse(Y |Zγε)−mmse(Y |Zγε , X)
, (14)

where (a) follows from (6). The result then follows by plugging (14) into (13). ut

As a simple illustration of Theorem 1, consider jointly Gaussian XG and YG
whose rate-privacy function is computed in Example 1. In particular, (12) gives

g′ε(XG, YG) =
2−2ε

2−2ε + ρ2 − 1
. (15)

On the other hand, since XG =
√
αYG+N1 where α = ρ2var(X), N1 ∼ N (0, σ2

N )
is independent of YG, and σ2

N = (1 − ρ2)var(X), one can conclude from [16,
Proposition 3] that

mmse(YG|Zγ , XG) = mmse

(
YG|Zγ ,

1

σ2
N

XG

)
= mmse(YG|Zγ+a),

where a = ρ2

1−ρ2 . Recalling that mmse(YG|Zγ) = 1
1+γ , we obtain

mmse(YG|Zγ)
mmse(YG|Zγ)−mmse(YG|Zγ+a)

=
1 + (1− ρ2)γε

ρ2

=
2−2ε

2−2ε + ρ2 − 1
,

which equals (15).
In light of Theorem 1, we can now show that the map ε 7→ gε(X,Y ) is in

fact in�nitely di�erentiable over (0, I(X;Y )).

Corollary 1. For a pair of absolutely continuous (X,Y ), the map ε 7→ gε(X,Y )
is in�nitely di�erentiable at any ε ∈ (0, I(X;Y )). Moreover, if all the moments
of Y is �nite, then ε 7→ gε(X,Y ) is in�nitely right di�erentiable at ε = 0.

Proof. It is shown in [17, Proposition 7] that γ 7→ mmse(Y |Zγ) is in�nitely
di�erentiable at any γ > 0 and in�nitely right di�erentiable at γ = 0 if all the
moments of Y are �nite. Thus the corollary follows from Theorem 1 noting that
since E[Y k]<∞ for all k, we also have E[Y k|X = x]<∞ for almost all x (except
for x in a set of zero PX -measure). It therefore follows that γ 7→ mmse(Y |Zγ , X)
is also in�nitely right di�erentiable at γ = 0. ut

We remark that using (7) and Theorem 1, one can easily calculate the second
derivative as

g′′ε (X,Y ) =
d2

dε2
gε(X,Y ) (16)

=
2
(
mmse(Y |Zγε , X)E[var2(Y |Zγε)]−mmse(Y |Zγε)E[var2(Y |Zγε , X)]

)
[mmse(Y |Zγε)−mmse(Y |Zγε , X)]

3 .
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The following corollary, which is an immediate consequence of Theorem 1,
provides a second-order approximation for gε(X,Y ) as ε ↓ 0 and thus an approx-
imation to the the rate-privacy function in the almost perfect privacy regime.

Corollary 2. For a given pair of absolutely continuous random variables (X,Y ),
we have as ε ↓ 0,

gε(X,Y ) =
ε

η2X(Y )
+∆(X,Y )ε2 + o(ε2),

where

∆(X,Y ) =
1

η4X(Y )

(
var2(Y )− E[var2(Y |X)]

var2(Y )η2X(Y )
− 1

)
, (17)

and η2X(Y ) is the one-sided maximal correlation between X and Y de�ned in
(8).

Proof. According to Corollary 1, we can use the second-order Taylor expansion
to approximate gε(X,Y ) around ε = 0, resulting in

gε(X,Y ) = εg′0(X,Y ) +
ε2

2
g′′0 (X,Y ) + o(ε2).

From Theorem 1 and (16) we have g′0(X,Y ) = 1
η2X(Y )

and g′′0 (X,Y ) = 2∆(X,Y ),

respectively, from which the corollary follows. ut

Since ρ2m(XG, YG) = ρ2 for jointly Gaussian XG and YG with correlation coe�-

cient ρ, (11) implies that η2XG
(YG) = ρ2 and ∆(XG, YG) = 1−ρ2

ρ4 , and therefore
Corollary 2 implies that for small ε > 0,

gε(XG, YG) =
1

ρ2
ε+

1− ρ2

ρ4
ε2 + o(ε2).

This second-order approximation as well as the �rst-order approximation are
illustrated in Fig. 1 for ρ = 0.5 and ρ = 0.8.

Polyanskiy and Wu [22] have recently generalized the strong data processing
inequality of Anantharam et al. [15] for the case of continuous random variables
X and Y with joint distribution PXY . Their result states that

sup
X(−−Y(−−U,
0<I(U;Y )<∞

I(X;U)

I(Y ;U)
= S∗(Y,X), (18)

where

S∗(Y,X) := sup
QY ,

0<D(QY ||PY )<∞

D(QX ||PX)

D(QY ||PY )
,

where PX and PY are the marginals of PXY and QX(·) =
∫
PX|Y (·|y)QY (dy).

In addition, it is shown in [22] that the supremum in (18) is achieved by a binary
U . Replacing U with Zγ , we can conclude from (18) that

I(X;Zγ)

I(Y ;Zγ)
≤ S∗(Y,X),



10 Almost Perfect Privacy for Additive Gaussian Privacy Filters

for any γ ≥ 0. Letting γ = γε, the above yields that

gε(X,Y ) ≥ ε

S∗(Y,X)
. (19)

Clearly, this bound may be expected to be tight only for small ε > 0 since
gε(X,Y )→∞ as ε→ I(X;Y ), as shown in Proposition 1. Note that Theorem 1

implies limε↓0
gε(X,Y )

ε = 1
η2X(Y )

. On the other hand, it can be easily shown that

η2X(Y ) ≤ S∗(Y,X), with equality when X and Y are jointly Gaussian and hence
the inequality (19) becomes tight for small ε and jointly Gaussian X and Y .

The bound in (19) would be signi�cantly improved if we could show that
gε(X,Y ) ≥ gε(XG, YG), where XG and YG are jointly Gaussian having the same
means, variances, and correlation coe�cient as (X,Y ). This is because in that
case we could write

gε(X,Y ) ≥ gε(XG, YG)
(a)

≥ ε

η2XG
(YG)

=
ε

ρ2(XG, YG)
=

ε

ρ2(X,Y )

(b)

≥ ε

η2X(Y )
, (20)

where (a) and (b) follow from (12) and (11), respectively. However, as shown in
Appendix A, the inequality gε(X,Y ) ≥ gε(XG, YG) does not in general hold1. It
is therefore possible to have gε(X,Y ) < ε

η2X(Y )
for some 0 < ε < I(X;Y ). To

construct an example, it su�ces to construct PXY for which ε 7→ gε(X,Y ) is
locally concave at zero (i.e., g′′0 (X,Y ) < 0) and hence its graph lies below the
tangent line ε

η2X(Y )
for some ε > 0. Let Y ∼ N (0, 1) andX = Y ·1{Y ∈[−1,1]}. Then

it can be readily shown that E[var(Y |X)] < E[var2(Y |X)], which implies that
∆(X,Y ) < 0. Hence, since g′′0 (X,Y ) = 2∆(X,Y ), we have that g′′(X,Y ) < 0.
This observation is illustrated in Fig. 2.

As remarked earlier, the map ε 7→ gε(X,Y ) is in general not convex and
thus one cannot conclude that g′ε(X,Y ) ≥ g′0(X,Y ) = 1

η2X(Y )
. However, it can

be shown that this implication holds if PXY has more structure. In the next
theorem, we assume that Y is a noisy version of X through an additive Gaussian
channel.

Theorem 2. For a given X ∼ PX with variance σ2
X , and Y = aX +MG with

MG ∼ N (0, σ2
M ) independent of X, we have:

1. If a2σ2
X ≥ σ2

M , then ε 7→ gε(X,Y ) is convex.
2. For any a > 0 and ε ∈ [0, I(X;Y )), we have

gε(X,Y ) ≥ ε

η2X(Y )
. (21)

Furthermore, we have

inf
γ≥0

mmse(Y |Zγ , X)

mmse(Y |Zγ)
= 1− η2X(Y ), (22)

1 We will see in the next section that this holds in the estimation-theoretic formulation
of privacy, i.e., the Gaussian case is the worst case when the privacy �lter is an
additive Gaussian channel and the utility and privacy are measured as mmse(Y |Zγ)
and mmse(X|Zγ), respectively.
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Fig. 2. The rate-privacy function for Y ∼ N (0, 1) and X = Y · 1{Y ∈[−1,1]}. The map
ε 7→ gε(X,Y ) is clearly locally concave at zero. Note that here I(X;Y ) =∞ and hence
ε is unbounded.

and

sup
γ>0

I(X;Zγ)

I(Y ;Zγ)
= η2X(Y ). (23)

Proof. The �rst part follows from a straightforward computation showing that
if a2var(X) ≥ σ2

M , then ∆(X,Y ) ≥ 0.

To prove the second part, note that for any γ ≥ 0 we have

mmse(Y |Zγ) = mmse(aX +MG|a
√
γX +

√
γMG +NG)

(a)
=

1

γ
mmse (NG|a

√
γX +

√
γMG +NG)

(b)

≤ a2var(X) + σ2
M

1 + γ(a2var(X) + σ2
M )

<
a2var(X) + σ2

M

1 + γσ2
M

(c)
=

1

γ

(
a2var(X) + σ2

M

σ2
M

)
mmse (NG|

√
γMG +NG)

(d)
=

(
a2var(X) + σ2

M

σ2
M

)
mmse(Y |Zγ , X), (24)

where (a) follows from the fact that mmse(U |αU+V ) = 1
α2mmse(V |αU+V ) for

α 6= 0, (b) and (c) hold by [23, Theorem 12] which states that mmse(U |U+VG) ≤
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mmse(UG|UG + VG) =
var(U)var(V )
var(U)+var(V ) . Finally, (d) follows from the following chain

of equalities

mmse(Y |Zγ , X) = mmse(aX +MG|a
√
γX +

√
γMG +NG, X)

= mmse(MG|
√
γMG +NG, X)

(e)
= mmse(MG|

√
γMG +NG)

=
1

γ
mmse(NG|

√
γMG +NG)

where (e) holds since X and MG are independent.
We can therefore write

g′ε(X,Y ) =
mmse(Y |Zγε)

mmse(Y |Zγε)−mmse(Y |Zγε , X)

(a)

≥ a2var(X) + σ2
M

a2var(X)

(b)
=

1

η2X(Y )
= g′0(X,Y ), (25)

where (a) is due to (24) and (b) holds since var(Y ) = a2var(X) + σ2
M and

var(E[Y |X]) = a2var(X). The identity gε(X,Y ) =
∫ ε
0
g′t(X,Y )dt, and inequality

(25) together imply that gε(X,Y ) ≥ ε
η2X(Y )

for ε ≤ I(X;Y ).

Furthermore, according to Theorem 1, the inequality (25) yields (22). Using
the integral representation of mutual information in (5) and (6), we can write
for any γ ≥ 0

I(X;Zγ) =
1

2

∫ γ

0

[mmse(Y |Zt)−mmse(Y |Zt, X)]dt

≤ η2X(Y )

2

∫ γ

0

mmse(Y |Zt)dt = η2X(Y )I(Y ;Zγ), (26)

where the inequality is due to (22). The equality (23) then follows from (26). ut

It should be noted that both MMSE and mutual information satisfy the data
processing inequality, see, [23] and [15], that is, mmse(U |V ) ≤ mmse(U |W ), and
I(U ;W ) ≤ I(U ;V ) for U (−− V (−− W . Therefore, (22) can be thought of
as a strong version of the data processing inequality for MMSE for the trivial
Markov chain Y (−− (Zγ , X) (−− Zγ . Also, (23) can be viewed as a strong data
processing inequality for the mutual information for the Markov chain X (−−
Y (−− Zγ which is slightly stronger than (18) in the special case of an additive
Gaussian channel as η2X(Y ) ≤ S∗(Y,X).

3 Estimation-Theoretic Formulation

Consider the same scenario as in the previous section: Alice observes Y , which is
correlated with the private data X according to a given joint distribution PXY ,
and wishes to transmit a random variable Z to Bob to receive a utility from
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him. An operational measure of privacy is proposed in [4] where Alice generates
the displayed data Z via a privacy �lter PZ|Y such that Bob cannot e�ciently
estimate any non-trivial function ofX given Z. As before, her goal is to maximize
the utility (or equivalently minimize the cost) between Y and the displayed data
Z. The next de�nition formalizes this privacy guarantee. We call a function f
of random variable X non-degenerate if f(X) is not almost everywhere constant
with respect to the probability measure PX . Also, we assume throughout this
section that X and Y have �nite second moments.

De�nition 1. Given a pair of jointly absolutely continuous random variables
(X,Y ) with joint distribution PXY and 0 ≤ ε ≤ 1, we say Z satis�es ε-strong
estimation privacy, if there exists a channel PZ|Y that induces a joint distribution
PX × PZ|X , via the Markov condition X (−− Y (−− Z, satisfying

mmse(f(X)|Z) ≥ (1− ε)var(f(X)), or equivalently, η2Z(f(X)) ≤ ε, (27)

for any non-degenerate Borel function f . Similarly, Z is said to satisfy ε-weak
estimation privacy, if (27) is satis�ed only for the identity function f(x) = x.

It is shown in [4] that ε-strong estimation privacy is equivalently character-
ized by the requirement ρ2m(X,Z) ≤ ε. In other words, mmse(f(X)|Z) ≥ (1 −
ε)var(f(X)) for any non-degenerate Borel function f if and only if ρ2m(X,Z) ≤ ε.
Let the utility that Alice receives from Bob be measured by var(Y )

mmse(Y |Z) , which

she aims to maximize. For mathematical convenience, we de�ne the cost that
Alice su�ers by describing Z in lieu of Y as the estimation noise-to-signal ratio

(ENSR), mmse(Y |Z)
var(Y ) , and hence Alice equivalently aims to minimize the ENSR.

Focusing on additive Gaussian privacy �lter Z = Zγ , we can formalize the
privacy-utility tradeo� as

sENSRε(X,Y ) := inf
γ∈Cε(PXY )

mmse(Y |Zγ)
var(Y )

= 1− sup
γ∈Cε(PXY )

η2Zγ (Y ),

where Cε(PXY ) is the set of parameters γ corresponding to ε-strong privacy, i.e.,

Cε(PXY ) := {γ ≥ 0 : ρ2m(X,Zγ) ≤ ε}.

Similarly,

wENSRε(X,Y ) := 1− sup
γ∈∂Cε(PXY )

η2Zγ (Y ),

where

∂Cε(PXY ) := {γ ≥ 0 : η2Zγ (X) ≤ ε}.

Note that both the maximal correlation and the one-sided maximal correla-
tion satisfy the data processing inequality, that is, ρ2m(X,Zγ) ≤ ρ2m(Y,Zγ) and
η2Zγ (X) ≤ ηY (X). Therefore, in the de�nition of sENSRε(X,Y ) and wENSRε(X,Y ),

we can restrict ε as 0 ≤ ε ≤ ρ2m(X,Y ) and 0 ≤ ε ≤ η2Y (X), respectively.



14 Almost Perfect Privacy for Additive Gaussian Privacy Filters

Example 2. Let XG and YG be jointly Gaussian with correlation coe�cient ρ.
Without loss of generality assume that E[XG] = E[YG] = 0. Since ρ2m(XG, Zγ) =
ρ2(XG, Zγ), we have

ρ2m(XG, Zγ) = ρ2
γvar(YG)

1 + γvar(YG)
,

which implies that the mapping γ 7→ ρ2m(XG, Zγ) is strictly increasing. Also, the
equation ρ2m(XG, Zγ) = ε for 0 ≤ ε ≤ ρ2m(XG, YG) = ρ2 has a unique solution

γε :=
ε

var(YG)(ρ2 − ε)
,

and ρ2m(X,Zγ) ≤ ε for any γ ≤ γε. On the other hand, mmse(YG|Zγ) =
var(YG)

1+γvar(YG)
, which shows that the map γ 7→ mmse(YG|Zγ) is strictly decreasing.

Hence,

sENSRε(XG, YG) =
mmse(YG|Zγε)

var(YG)
= 1− ε

ρ2
. (28)

Clearly for jointly Gaussian XG and YG we have η2Zγ (XG) = ρ2m(XG, Zγ) = ε, for

any γ ≥ 0 and consequently Cε(PXGYG
) = ∂Cε(PXGYG

), that is, for 0 ≤ ε ≤ ρ2,

sENSRε(XG, YG) = wENSRε(XG, YG) = 1− ε

ρ2
. (29)

Unlike gε(X,Y ), the quantity sENSRε(X,Y ) is maximized among all pairs
of random variables (X,Y ) with identical means, variances and correlation co-
e�cient when X and Y are jointly Gaussian. Thus, Example 2 yields a sharp
upper-bound for sENSRε(X,Y ). This is stated in the following theorem.

Theorem 3 ([4]). For any given jointly absolutely continuous (X,Y ), we have
for 0 ≤ ε ≤ ρ2m(X,Y ),

wENSRε(X,Y ) ≤ sENSRε(X,Y ) ≤ sENSRε(XG, YG) = 1− ε

ρ2m(X,Y )
,

where (XG, YG) is a pair of Gaussian random variables with the same means,
variances, and correlation coe�cient as (X,Y ).

Next, we turn our attention to the approximation of sENSRε(X,Y ) in the
almost perfect privacy regime. Unfortunately, there is no known approximation
for ρ2m(X,Zγ) and mmse(X|Zγ) around γ = 0. Nevertheless, we can use the �rst-
order approximation of gε(X,Y ) to derive an approximation for sENSRε(X,Y )
around ε = 0. The next theorem shows this approximation for the special case
where PY |X is an additive noise channel.

Theorem 4. If X ∼ N (b, σ2
X) and Y = aX +M , where a, b ∈ R+, and M is a

noise random variable having a density, then for su�ciently small ε

sENSRε(XG, Y ) ≥ 2−D(Y )2−2gε+o(ε)(XG,Y ). (30)
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Proof. We start by deriving an inequality relating mmse(Y |Zγ) and I(Y ;Zγ)
which originates from the Shannon lower bound for the rate-distortion function.
Since the Gaussian distribution maximizes the di�erential entropy [21, Theorem
8.6.5], we have h(Y |Z = z) ≤ 1

2 log(2πevar(Y |Z = z)) for any random variable
Z. It immediately follows from Jensen's inequality that

h(Y |Zγ) ≤
1

2
log(2πemmse(Y |Zγ)),

and hence

mmse(Y |Zγ) ≥
1

2πe
22h(Y |Zγ) = var(Y )22(h(Y )−h(YG))2−2I(Y ;Zγ), (31)

from which we obtain

inf
γ≥0,

I(X;Zγ)≤ε

mmse(Y |Zγ)
var(Y )

≥ 2−D(Y )2−2gε(X,Y ), (32)

where D(Y ) is the non-Gaussianness of Y de�ned in Proposition 1. We note that
a similar inequality is proved in [2, Lemma 13] for arbitrary noise distribution
provided that Y is Gaussian. Although, inequality (32) provides an operational
interpretation of gε(X,Y ), it does not relate gε(X,Y ) to sENSRε(X,Y ). Such a
relationship would follow if ρ2m(X,Zγ) ≤ ε implied I(X;Zγ) ≤ ε for a given
(X,Y ), because then according to (32), one could conclude that sENSRε ≥
2−D(Y )2−2gε(X,Y ). However, this implication does not hold in general. Never-
theless, we show in the sequel that this implication holds for Gaussian X in
the almost perfect privacy regime when PY |X is an additive noise channel.
First we notice that for jointly Gaussian XG and YG, we have I(XG;

√
γYG +

NG) = − 1
2 log(1 − ρ2(XG,

√
γYG + NG)). Hence, since ρ

2
m(XG,

√
γYG + NG) =

ρ2(XG,
√
γYG + NG), the above implication clearly holds, i.e., ρ2m(XG,

√
γYG +

NG) ≤ ε implies I(XG;
√
γYG + NG) ≤ ε. On the other hand, specializing the

decomposition (37) proved in Appendix A for U = XG and V = Zγ , we can
write

I(XG;Zγ) = I(XG;
√
γYG +NG) +D(Zγ |XG)−D(Zγ), (33)

where D(V |U) for a pair of absolutely continuous random variables (U, V ) is
de�ned as

D(V |U) := D(PV |U ||PVG|UG
|PU ) = EUV

[
log

PV |U

PVG|UG

]
, (34)

where (UG, VG) is a pair of Gaussian random variables having the same means,
variances and correlation coe�cient as (U, V ), and PVG|UG

(·|u) and PV |U (·|u) are
the conditional densities of VG and V given UG = u and U = u, respectively. As
shown in [16, Appendix II] if var(Y )<∞, then as γ → 0

D(Zγ) = o(γ). (35)



16 Almost Perfect Privacy for Additive Gaussian Privacy Filters

Lemma 1 in Appendix B shows thatD(Zγ |XG) also behaves like o(γ) ifmmse(Y |XG) =
mmse(YG|XG). In light of this lemma, (33), and (35), we can conclude that

I(XG;Zγ) ≤ I(XG;
√
γYG +NG) +

γ

2
[mmse(YG|XG)−mmse(Y |XG)] + o(γ).

Thus if PXY satis�esmmse(Y |XG) = mmse(YG|XG), or equivalently E[var(Y |XG)] =
1− ρ2(X,Y ), we have

I(XG;Zγ) ≤ I(XG;
√
γYG +NG) + o(γ). (36)

Since ρ2m(XG, Zγ) ≥ ρ2m(XG,
√
γYG + NG), we can conclude from (36) that,

ρ2m(XG, Zγ) ≤ ε implies I(XG;Zγ) ≤ ε + o(γ) for su�ciently small γ (or equiv-
alently ε). Note that it is straightforward to show that ρ2m(XG, Zγ) ≤ ε implies
γ ≤ ε

ρ2(XG,Y )−ε (see Example 2). Hence, in the almost perfect privacy regime,

ρ2m(XG, Zγ) ≤ ε is satis�ed with γ which is at most linear in ε. Therefore, (36)
allows us to conclude that ρ2m(XG, Zγ) ≤ ε implies that I(XG;Zγ) ≤ ε+ o(ε).

The condition E[var(Y |XG)] = 1 − ρ2(X,Y ) is satis�ed if the channel from
XG to Y is additive, that is, Y = aXG +M , where a ∈ R+ and M is a noise
random variable with a density having variance 1 − ρ2(XG, Y ). However, since
E[var(Y |XG)] = E[var(Y |rXG)] for any r 6= 0, the variance condition can be
removed. ut

The lower-bound (30) can be further simpli�ed by invoking Corollary 2, which
results in

sENSRε(XG, Y ) ≥ 2−D(Y )

(
1− 2ε

η2XG
(Y )

)
+ o(ε).

One the other hand, as proved in [4], when Y is Gaussian, YG, then

1− ε

ρ2(X,YG)
≤ sENSRε(X,YG) ≤ 1− ε

ρ2m(X,YG)
,

for any ε ≤ ρ2m(X,Y ). We have therefore tight lower bounds for sENSRε(X,Y )
when either X or Y is Gaussian.

4 Conclusion

In this paper, we studied the problem of approximating the maximal amount
of information one can transmit about a random variable Y over an additive
Gaussian channel without revealing more than a certain (small) amount of in-
formation about another random variable X that represents sensitive or private
data. Speci�cally, letting gε(X,Y ) denote the maximum of I(Y ;Zγ) over γ ≥ 0,
where Zγ :=

√
γY + NG and NG ∼ N (0, 1) is independent of (X,Y ), subject

to I(X;Zγ) ≤ ε, we showed that gε(X,Y ) = ε
η2X(Y )

+ ∆(X,Y )ε2 + o(ε) where

η2X(Y ) and ∆(X,Y ) are two asymmetric measures of correlation between X and
Y . For the special case of jointly Gaussian X and Y , the approximation was
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compared with the exact value of gε(X,Y ). As a side result, we also showed
that this approximation leads to a slightly improved version of the strong data
processing inequality under some suitable conditions on PY |X .

We also studied an estimation-theoretic formulation of the privacy-utility
tradeo� for the same setup. Let sENSRε(X,Y ) be the smallest achievable MMSE
in estimating Y given Zγ such that MMSE in estimating any function f of X
given Zγ is lower bound by (1 − ε)var(f(X)). We then showed that when X is
Gaussian and Y is the output of an additive noise channel then sENSRε(X,Y ) ≥
2−D(Y )2−2gε(X,Y ) for su�ciently small ε, where D(Y ) is the non-Gaussianness
of Y . The signi�cance of this bound is that it gives an operational interpretation
for gε(X,Y ) in terms of MMSE. Using the approximation obtained for gε(X,Y ),
we derived a lower bound for sENSRε(X,Y ) for small ε which is linear in ε.
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A Connection Between Mutual Information and

Non-Gaussianness

For any pair of random variables (U, V ) with I(U ;V )<∞, let PV |U (·|u) be the
conditional density of V given U = u. Then, we have

I(U ;V ) = EUV
[
log

PV |U (V |U)

PV (V )

]
= EUV

[
log

PV |U (V |U)

PVG|UG
(V |U)

]
+ EUV

[
log

PVG|UG
(V |U)

PVG
(V )

]
− EUV

[
log

PV (V )

PVG
(V )

]
= I(UG;VG) +D(V |U)−D(V ), (37)

where (UG, VG) is a pair of Gaussian random variable having the same means,
variances and correlation coe�cient as (U, V ), and PVG|UG

(·|u) is the conditional
density of VG given UG = u, and the quantity D(V |U) is de�ned in (34). Replac-
ing U and V with X and Zγ , respectively, the decomposition (37) allows us to
conclude that

I(X;Zγ) = I(XG;
√
γYG +NG) +D(Zγ |X)−D(Zγ),
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and therefore, if Y = YG is Gaussian, we have

I(X;Zγ) = I(XG;Zγ) +D(Zγ |X) ≥ I(XG;Zγ),

from which we conclude that when Y is Gaussian then I(X;Zγ) ≤ ε implies
that I(XG;Zγ) ≤ ε and hence gε(X,YG) ≤ gε(XG, YG).

B Completion of the Proof of Theorem 4

Lemma 1. For Gaussian XG and absolutely continuous Y with unit variance,
we have

D(Zγ |XG) ≤
γ

2
[mmse(YG|XG)−mmse(Y |XG)] + o(γ).

Proof. Let E be an auxiliary random variable de�ned as

E =

{
1, |Y | ≤ L
0, otherwise,

for some real number M > 0. Note that

D(Zγ |XG = x) = h(
√
γYG +NG|XG = x)− h(Zγ |XG = x)

≤ h(
√
γYG +NG|XG = x)− h(Zγ |XG = x,E)

=
1

2
log(2πe(1 + γvar(YG|XG = x)))

−Pr(E = 1)h(Zγ |XG = x,E = 1)− Pr(E = 0)h(Zγ |XG = x,E = 0)

(a)

≤ 1

2
log(2πe(1 + γvar(YG|XG = x))− Pr(E = 0)h(NG)

−Pr(E = 1)h(Zγ |XG = x,E = 1) (38)

where (a) follows from the fact that h(Zγ |XG = x,E = 0) ≥ h(NG).
Prelov [24] showed that for any random variable Y such that

E[|Y |2+α] ≤ K<∞, (39)

for some α > 0, then

h(
√
γY +NG) =

1

2
log(2πe) +

var(Y )

2
(γ + o(γ)), (40)

where o(γ) term depends only on K. Since Y |{E = 1} satis�es (39), we can use
(40) to evaluate h(Zγ |XG = x,E = 1) in (38) which yields

D(Zγ |XG = x) ≤ 1

2
log(2πe(1 + γvar(YG|XG = x))− Pr(E = 0)

1

2
log(2πe)

−Pr(E = 1)

[
1

2
log(2πe) +

var(Y |XG = x,E = 1)

2
(γ + o(γ))

]
=

1

2
log(1 + γvar(YG|XG = x))

−var(Y |XG = x,E = 1)

2
(γ + o(γ)) Pr(E = 1). (41)
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Note that since var(Y )<∞ and XG has a positive density, var(Y |XG = x)<∞
for almost all x (except for x in a set of zero Lebesgue measure). Hence, we can
choose L su�ciently large such that for any given δ > 0,

Pr(E = 1) ≥ 1− δ,

and
var(Y |XG = x,E = 1) ≥ var(Y |XG = x)− δ.

Therefore, invoking the inequality log(1 + u) ≤ u for u > 0, we can write

D(Zγ |XG = x) ≤ γ

2
[var(YG|XG = x)− (var(Y |XG = x)− δ)(1− δ)] + o(γ),

from which and the fact the δ is arbitrarily small the result follows. ut


