Error Exponents for Asymmetric Two-User Discrete
Memoryless Source-Channel Systéms

Yangfan Zhong, Fady Alajaji and L. Lorne Campbell
Department of Mathematics and Statistics
Queen’s University, Kingston, ON K7L 3N6, Canada
Email: {yangfan,fady,campblii@mast.queensu.ca

Abstract— Consider transmitting two discrete memoryless cor-  i.) The CS-AMAC system: If we remove Decoder 2 from
related sources, consisting of a common and a private sourcever Fig. 1, and letZ| = 1, then the channel reduces to a
a discrete memoryless multi-terminal channel with two trars- multiple-access channeWy‘UX, and the coding prob-

mitters and two receivers. At the transmitter side, the comnon | d o t itting ¢ lated cs
source is observed by both encoders but the private source ca em reduces to transmitting two correlated sources (CS)

only be accessed by one encoder. At the receiver side, both over an asymmetric multiple-access channel (AMAC)
decoders need to reconstruct the common source, but only one with one receiver.
decoder needs to reconstruct the private source. We hencefes i) The CS-ABC system: If we remove Encoder 2 from

to this system by the asymmetric 2-user source-channel sgsh. In

: . i . -~ Fig. 1, and letji/| = 1, then the channel reduces to
this work, we derive a universally achievable joint sourcechannel broadcast ch b d th di bl
coding (JSCC) error exponent pair for the 2-user system by Lisg a broadcast channeVy z|x, and the coding problem

a technique which generalizes Csigz’s method [3] for the point- reduces to transmitting two CS over an asymmetric

to-point (single-user) discrete memoryless source-chaehsystem. broadcast channel (ABC) with one transmitter.

We next investigate the largest convergence rate of asympito

exponential decay of the system (overall) probability of etoneous The sufficient and necessary condition for the reliable

Itransmiszion, i'e'[g thedsyfstem Jscc errttJrAexponent. We obifa  transmission of CS over the AMAC — i.e., the JSCC theorem

ower and upper bounds for the exponent. As a consequence, we ; .

establish thgr\)JSCC theorem with sl?ingle letter charactgrizﬁon. for the CS-AMAC system — has be(_en denyed with single letter
characterization in [5]. The capacity region of the ABC has

been determined in [7], and the JSCC theorem for CS-ABC

system with arbitrary transmission rate can also be anaklgo

Recently, the study of the error exponent (reliability funccarried out (e.g., [6]). In this work, we study a refined vensi
tion) for point-to-point (single-user) source-channestsyns of th(_e JSC_C theorem f(_)r the _gen_eral asymmetric 2-user system
has illustrated substantial superiority of joint sourtemnel (depicted in Fig. 1), by investigating the achievable JS@6re
coding (JSCC) over the traditional tandem coding (i.e.- sepXPonent pair (for two receivers) as well as the system JSCC
arate source and channel coding) approach (e.g., [3], If9]) £T0r €xponent, i.e., the largest convergence rate of asymp
is of natural interest to study the JSCC error exponent fitic exponential decay of the system (overall) probapibit
multi-terminal source-channel systems. erroneous transmission. We also apply our results to the CS-

In this work we address the asymmetric 2-user sourc@MAC and CS-ABC systems.
channel system depicted in Fig. 1. Two discrete memorylessWe outline our results as follows. We first extend Csiszar’s
correlated source messaggesl) € S™ x £™ drawn from type packing lemma [3] from a single-letter (1-dimension)
a joint distributionQsy : S x £, consisting of a common type setting to a joint (2-dimensional) type setting. By em-
source messagesand a private source messagef length ploying the joint type packing lemma, superposition encsde
Tn, are transmitted over a discrete memoryless asymmetgied generalized maximum mutual information decoders, we
communication channel described by, x : U x X — establish a universally achievable error exponent paitter
Y x Z with block codes of lengtle, wherer > 0 (measured two receivers (namely, the pair of exponents can be achieved
in source symbol/channel use) is the overall transmissiten r by a sequence of source-channel codes independent of the
The common source can be accessed by both encoders,statistics of the source and the channel); this generalizes
the private source can only be observed by one encoder (6§tner and Sgarro’s exponent pair for ABC coding (with
Encoder 1). In this set-up, the goal is to send the commaniform message sets) [8]. We also employ a similar coding
information to both receivers, and send the private infdimma scheme to establish a lower bound for the system JSCC error
to only one receiver (say, Decoder 1). exponent; see Theorem 1. Note that one consequence of our

It is worthy to point out that the asymmetric 2-user systefigsults is a sufficient condition (forward part) for the JSCC
can be specialized to the following two classical asymroetriheorem. In addition, we use Fano’s inequality to prove a
multi-terminal scenarios. necessary condition (converse part) which coincides whith t

sufficient condition, and hence completes the JSCC theorem

*This work was supported in part by NSERC of Canada. (Theorem 2). Using an approach analogous to [3], we also
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Fig. 1. Transmitting two CS over the asymmetric 2-user comigaiion channel.

obtain an upper bound for the system JSCC error exponémtaddition, we denote

Theorem 3).

( 3): PaIX) 2 | PuIPx) C POIIA).
Due to limited space, we focus on the error exponents for Py P ()

the asymmetric 2-user system. In Section V, we briefly dscus el )

applications to the CS-AMAC and the CS-ABC systems. allo distinguish different distributions (or types) defineu the

details and proofs are available in [10]. same alphabet, we use sub-subscript, &ay,in Px;, Px,y;,
Tx,y;, and so on. For exampl&y,y; is the type class of the

joint type Px,y, € P, (X x ). For any distributionPxy 7 €
1. NOTATION AND CONVENTIONS P(X x)Y x Z), we useHp,, ,(-) andIp,, ,(-;-) to denote
the entropy and mutual information undétyy ,, respec-
The following notations and conventions are adopted frofively, or simply by H(-) and I(-;-) if Pxyz is understood.
[3], [4]. For any finite set (or alphabety, the size ofx is D(Px | Qx) denotes the Kullback-Leibler divergence be-
denoted by|.X|. The set of all probability distributions ontween distributionsPx, Qx € P(X). D(Vy|x || Wy x|Px)
X is denoted byP(X). We denote the type (the relativedenotes the Kullback-Leibler divergence between stoahast
frequency of the components in a data sequence) oh-an matrices (conditional distributions)y|x, Wy |x € P(Y|X)
length sequenc& € X" by P € P,(X) C P(X), where conditional on distributionPx € P(X). All logarithms and
P, (X) is the collection of all types of sequencesAit. For exponentials throughout this paper are in base 2.
any Py € P,(X), the set of allx € X™ with type Px is

denoted byTp,, or simply by Tx if Px is understood. We L )
also call Tp, or Ty a type class. Similarly, the joint type W€ extend Csiszars type packing lemma [3, Theorem.

of n-length sequences ¢ X" andy € )" is denoted by 51 from_ a (1-Qimensional) §ing|e-|gtter type setting to a (2
By € Po(X x ) and the set of alk € X andy € V" with Q|men§|_onal) joint type s_ettmg. T_h|s lemma plays a key role
joint type Pxy € Py (X x V) is denoted byTp,.,., or simply in denv_mg an exponentially ach_le\{able upper bound for the
by Txy. For any finite setst and), the set of all conditional probability of erroneous transmission for the asymmetric 2
distributions Vy-x : & — Y is denoted byP(Y|X). The YS€' channgl. _ _ _ N
conditional type ofy € Y givenx € Tp, is denoted by Lemma 1:(Joint Type Packmg_Lemma) Given finite sets
Py € Pu(Y|Px), whereP,,(Y|Px) is the collection of all A and B, a sequence of pOS/Itlve |nteg_e|{3nn},_ and a
conditional distributionsly-|x which are conditional types sequence of positive |.ntege|{3nm} assomgted_thh every
of y € Y given anx € Tp,. For any conditional type © — 1,2,...,m,, for arb|tre}ry (not necessarily distinct) types
Vyix € Pu(Y|Px), the set of ally € V" for a givenx € Tp,  LA: € Pn(A) and conditional typess; 4, € Pn(B|Fa,),
satisfying P x = Vy|x is denoted by, . (x), or simply by a}nij .ppsLtlve mtegetsNi .?1”? Mg, @ = 1, 2’;;1"m" ang
Ty|x (x), which is also called a conditional type class witH = j() = 1,2,..,mi, with 7 logy, Ni < Hp, (4) — 4 an
respect tox. For finite setsX, ), Z with joint distribution = logy M < HPAiPBj\Ai (BlA) — 4, where

Pxyz € P(X x )Y x Z), we usePx, Pxy, Pyzx, €etc, to A2 o

denote the corresponding marginal and conditional prdibabi 0= n [|A| |B|” logy(n + 1)

ties induced byPxy 7. ConverselyPx Py 7 x denotes a joint
distribution onX’ x Y x Z with marginal distributionPx and
conditional distributionPy- 7| x . Note that for a given joint type ) o @)
Pxy € Pa(X x ), Tp, (X) = {y : (x,y) € Tpy, }. Note there existm,, disjoint subsets); = {ap }
also that Tp,, such that

I1l. AJOINT TYPE PACKING LEMMA

+ logy my, + logy (maxm,) + log, 12] ;

N;

N
(1>

Ta,

i

p=1

[PxVyix 1 Px € Po(X), Vipx € PaVIPx)} = Pu(XxY). [Ty, (@))% < N2 " lracana A0 g



for everyi, k,p and V4 € Pn(A|A), with the exception >y Wy zyx). The marginal distributions OW}(JZ\UX are

of the case when both = k£ and V4,4 is the conditional (n) (n) ;

Sstribut w i and, A1|A.f' e “d 0 denoted by}, and W[/, ., respectively. o

istribution such thatVa/(4(a’|a) _')S Ma = aan Consider two discrete memoryless CS with a generic joint

otherwise; furthermore, for eveny,” € Q; and eve%,_ there distribution Qsz.(s,!) defined on the finite alphabef x

existm!,. disjoint subsets;;(al’) — {(aé“,b;{g)} Y such £ such that thek-tuple joint distribution is Q%) (s I)
g=1 15, Qsi(si, i), where (s,1) € S x £, and (s,I)

(1> 1l

j (i)Y & (4) ;
thatby)) € Tp, |4, (a;”) £ Tpy, 4, (@) and ((s1,01), -, (s, 11)) € S* x L£F. For each pair of source
N, messagess(l) drawn from the above joint distribution, we
T (i) p) Q. (a® need to transmit theeommon message over the channel
Varrian @y ”’q)ﬂp,gl a(3) Wy ziux to ReceiversY and Z and transmit theprivate

messagé only to ReceiverY. A joint source-channel (JSC)
code with block lengthn and transmission rate (source
sumbol/channel use) for transmittin@s;, throughWy 2 x
N, is a quadruple of mappings.f.{, gn, ¥n,¥n), Where f,, :
i) WG a0) S™x L™ — X" andg, : ST — U™ are called encoders,
TVA/B/‘AB(a’())’ bf(“)l) ﬂ /u1 Q“(ap/ ) andp, : Y" — 8™ x L™ and,, : Z" — 8™ are referred
P to asY-decoder andZ-decoder, respectively; see Fig. 1.
The probabilities ofy’- and Z-error are given by

PY Qs Wy ziux,7) 2 Pii{pa(y) # (s.1)})

—nl|I L A,B;A',B')—6
< NuMy2 { Pa;BjVarp \AB( ) ]7 (2)

—n ;B'|A)—6
. (20, Va1 (BB 10) ] @)

foranyi, j,k,1,p,q andVy g/ jap € Pn(A x B|A x B), with

the exception of the case when béth k, j =l andVy g/ ap = Z QS (s 1) Z W;(;\L()]X(WU, xX) (4
is the conditional distribution such th&l, g/ | a5(a’, V'|a,b) is s Yien (¥)#(s))
1if (o/,b') = (a,b) and O otherwise. and

We remark that the assertion of (1) is Csiszar's type pagkin n A
lemma [3, Theorem 5] for a single-letter type setting. Rdygh Py @Qst, Wyzpx,7) = P{Un(2) # 5})
and intuitively, if (a,b) is a pair of transmitted codewords, = ZQ(STL")(S,I) Z Wé’ll[)]x (zu,x) (5)
then the possible sequences decodedaab) can be seen sl zpn (2) %S
as elements in the “spheréﬂ“VA,B,‘AB(a, b) “centered” at A A

4 . wherex = f,(s,I) andu = g,(s) are the corresponding
(a,b) for some Vi piap. EQ. (2) in the packing lemma o,qo 0045 of the source message fail) and the source

(similar to (1) and (3)) states that there exist disjointsse :

O = UM 0 (a(’“)) with bounded cardinalities such tha Fness_ages, andy and z are the received codewords at the
ki == pr=1 22kl lReceiversy” and 7, respectively. We say that the JSCC error

the size of intersection between the SPHE@/MA@ (a,b) for” exponent pait Eay, Eaz) is achievable with respect to> 0

every (a,b) € (;; and every sefly; is “exponentially small” it there exists a sequence of JSC codES §n, ¥n, tn) With

compared with the size of eadly,. So the packing lemma y5nsmission rate such that the probabilities df-error and
can be used to prove the existence of good codes that have,a8,,or are simultaneously bounded by

exponentially small probability of error. (n) s .
Note also that the above extended packing lemma is analo- Py (Qsr, Wy zpx,7) < 27"Fa=0i=y, 7z (6)
gous to, but different from the one introduced by Korner angy ,, sufficiently large and any > 0. As the point-to-point

channel coding ABC exponent. Lemma 1 here is used for theEn) A
JSCC problem. P (Qse, WYZ\UXvT) = Pr({enly) # (s D} U{vn(z) #s}),

where(s,|) are drawn according tQ)(STL").

Definition 1: GivenQsz, Wy zjyx andr > 0, the system
JSCC error exponentl;(Qsz, Wy zjux,7) is defined as
A. System supremum of the set of all numbefs for which there exists

Let {(Wyzux : U x X — Y x Z} be a 2-user dis- a sequence of JSC codes, (g,, ©n, V) With blocklengthn
crete memoryless channel with finite input alphaldek X', and transmission rate such that
finite output alphabefy x Z, and a transition distribution

IV. TRANSMITTING CSOVER THEASYMMETRIC 2-USER
CHANNEL

1
E < liminf —~log, P (QsL, Wy ziux,T)- (7)
n

Wy zjux (y, z|u, x) such that thex-tuple transition probability s
is WS(/"Z)‘UX(y, zlu,x) = [I72 Wy zx (¥, zi|ui, @), where Since the system probability of errd?™ must be larger

uelU s eEX, yeV e Z UL (. .u) € thanPB(/Z) andPg;) defined by (4) and (5), and is also upper
U, x 2 (21,..,,2,) € X"y 2 (y1,...,y,) € Y, boundedby the sum of the two, it follows that for any sequence

andz £ (z1,...,2,) € Z". Denote the marginal transition0f JSC codesf., gn, on, ¥n)

istributi i - i - 1 1
distributions of WYAZ‘UX at its Y-output (respectlvelyZA lim inf —— log, Pe(") — liminf —— log, max (Pé?,Pé’;)) '
output) byWyjyx = >, Wy zjux (respectivelyWzyx = n—oo M n—oo  n



B. Superposition Encoding for Asymmetric 2-User Channelshere |z|T = max(0,z), and the outer minimum in (8)

coder side, we can artificially augment the channel inputalp 0N P(Y[7 x U x X) (respectively P(Z|T x U x X)).
bet by introducing an auxiliary (arbitrary and finite) alpea USing Lemma 1 and employing superposition encoders and
T, and then look at the channel as a discrete memonerallzed maximum mutual information decoders at the two
channelWy zjrux = Wy zux with marginal distributions receivers, we can prove the following achievable bounds.
Wy rox and Wyrox such thatWy zirpx (y, 2|t u, ) = __Theorem 1:Given arbitrary and finite alphabéft, for any
Wy zjux (v, zu,z) for anyt € T, u e U, z € X, y € ¥ and PT_UX € P(T_x U x X), the following exponent pair is
2 € Z. In other words, we introduce a dummy R € 7 universally achievable,
such thaﬂ“, (U, X), and(Y, Z) form a Markov chain in this EJY(QSLawYZ\TvaﬁTUXaT) 2 min [rD(Psz || Qsi)
order, i.e..T — (U, X) — (Y, Z). Pst

The idea of sgperposition coding is described as fol_lows. + EY(THP(S),THP(L|S)7WY|TUX,f)TUX)} ,(10)
The encodery, first maps the source messagdo a pair
of n-length sequenceft,u) € 7" x U™ with a fixed type, &nd

say Pry, and then sends the codewandover the channel, Ej2(Qsr, Wy zirux, Prux, ) 2 min [rD(Psy, || Qsz)
i.e., gn(S) = u. The encoderf,, first maps each paifs,I) Pst N
to a triple of sequence@,u,x) € 7" x U™ x X™ such that +E;(rHp(S), 7Hp(L|S), WZ|TUX,PTUX)} ,(11)

X € Tpy (L, u), then f, sends the codeword over the
channel, i.e.f,(s,1) = x. In other wordsg,, and f,, map(s,|)
to a tuple of sequences, u, x) with a joint type Pry Px v,
although onlyu andx are sent to the channel, wherglays
the role of a dummy codeword.

SinceWy"y), .y y (v, ZIt, u, x) is equal oW, (¥, Z]u, X) Ey(Qse, Wy zpx:7) 2 min [rD(Psr || Qst)
and is independent of, transmitting the codewordgu, x) SE
through the channeWy z;yx can be viewed as transmit- +ET(THP(S)7THP(L|S)’WYZIUX)} (12)
ting the codewords(t,u,x) over the augmented channelyhere
Wy zirvx- Here, the common outputs of, and f,,, (t,u)’s, Ey(Ry, Ra, W )
are called auxiliarycloud centersaccording to the traditional r Al’ 2 WY ZIUX
superposition coding notion [2], which convey the inforioat = sup max E.(R1, Ro, Wy zirux, Prux), (13)
of the common message and the codewordss correspond- T
ing to the samét, u) are called satellite codewords ¢f u),
which contain both the common and private information.
the decoding stage, Receiv&ronly needs to figure out which Uxx)
cloud(t,u) was transmitted, and ReceivErneeds to estimate min { By (R1, R2, Wy |rux, Prux) ,
not only the cloud bu_t also the_satelhte co_dewx)r(dVe employ Ez(Ry, R, Warux, PTUx)} :
superposition encoding to derive the achievable error eepb

pair and the lower bound of system JSCC error exponentiiere Ey and Ez are given by (8) and (9), respectively.
Section IV-C. We remark that (10) and (11) can be achieved by a sequence

of codes without the knowledge 6fs;, andWy 2 x, but the

C. Achievable Exponents and a Lower Bound By lower bound (12) is achieved by a sequence of codes that needs
Given arbitrary and finite alphabéft, for any joint distri- tg know the statistics of the channel.

where Wy ryx and Wz rpx are marginal distributions of
Wy zirux, which is the augmented conditional distribution
from Wy zux. Furthermore, giverQsr, Wy zjux, and 7,
the system JSCC error exponent satisfies

where the supremum is taken over all finite alphal¥etand
Ape maximum is taken over all the joint distributionsB(Z x
and E,.(R1, Rz, Wy zirux, Prux) is given by

bution Pryx € P(T x U x X) and everyR, > 0, Ry > 0, By examining the positivity of the lower bound 16, we
define obtain a sufficient condition for reliable transmissilyilior the
Ey (R1, Re, Wy|rvx, Prox) asymmetric 2-user system. For the seke of completeness, we
. . also prove a converse by using Fano’s inequality, and hence
= min {D(VY\TUX | Wy rux|Prux) establish the JSCC theorem for this system. Gién; x,
Vy|rux ) |
’ ( ) ( )‘Jr define
+mm(1p v T,U,X:Y) — (R, + Ro)| ",
e N RWy zwx) 2 U RWy zrux, Prux)
‘IPTUXVY\TUX (X; YlTv U) - R2’ )} ) (8) T Prux€P(TxXUXX)
and where the first union is taken over all discrete alphaliets
with |7 < [U[|X] + 2, andR(Wy zjrux, Prux) is defined
Ez(R1, Ry, Wzirux, Prux) by the following set
= min [DVzrox | Wzrvx|Prox) Ri+ Ry < I(T,U,X;Y)
Z|TUX

n (R1,Re): R < I(T\U; Z) ;
+IPruxvarox (T,U; Z) — R } ) Ry < I(X;Y|T,U)



where the mutual informations are taken under the joi@s.(S = 1,L = 0) = 4, andQs.(S = 0,L = 1) = £,

distribution Pryxyz = PruxWy zjux- where0 < ¢ < 1/2, and a binary AMACWy- |y x with binary
Theorem 2:(JSCC Theorem) Giver@)sz, Wy zjux and additive noisePr(F' = 1) = ¢ (0 < e < 1/2) and output
7 > 0, the following statements hold. described by; = U, 0 X;@F; (mod 2),Y =U=X=F =

(12 The sources can be transmitted over the channel with, 1}, and F; is independent o; andU,, i = 1,2,...,n. In
P = 0asn — oo if (tHg(S),7Hg(L|S)) € Fig. 2, we plot the lower and upper bounds for the JSCC error
RWy zjux); exponentE; for different (¢, ¢) pairs with transmission rate
(2) Conversely, if the sources can be transmitted over the= 0.25,0.35. As illustrated, the upper and lower bounds
channel with an arbitrarily small probability of erréi™ as coincide (this can also be proved) for mafiye) pairs (e.g.,

n — oo, then(rHq(S), 7Ho(L|S)) € R(Wy zjux) with < when7 =0.25,¢ = 0.1,¢ > 0.0205 and whenr = 0.35,¢ =
replaced by< in R(Wy zjrx)- 0.1, e > 0.0056), and hence exactly determine the exponent.

D. The Upper Bound td; 1

In [3], Csiszar also established an upper bound for the JISCC  os} 1
error exponent for the point-to-point discrete memoryless
source-channel system in terms of the source and chanoel err '
exponents by a simple type counting argument. He shows that%
the JSCC error exponent is always less than the infimum of
the sum of the source and channel error exponent, even thougl
the channel error exponent is only partially known for high
rates. This conceptual bound cannot currently be computed
as the channel error exponent is not yet fully known for all
achievable coding rates, but it directly implies that anperp
bound for the channel error exponent yields a corresponding
upper bound for the JSCC error exponent. For the asymmetric
2-user channel, it can be shown by using a similar approach o

0.8 1
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L L L 1 T
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based on the method of types that the following is true. €
Theorem 3:GivenQsr, Wy zjux, andr, the system JSCC
error exponent satisfies Fig. 2. The lower bound (solid line) and the upper bound (das#) for
the system JSCC error exponent for transmitting binary C& twe binary
EJ(QSL, WYZ|UX3 7') < IIDI;E [TD(PSL ” QSL) AMAC with binary additive noise.
+E(THP(S)7THP(L|S)3WYZ\UX)] ) (14) REFERENCES

where E(-, -, Wy zjyx) is the corresponding channel codingy) E. A. Arutyunyan (Haroutunian), “Lower bound for the ermprobability
error exponent for the asymmetric 2-user channel (refet@ [ of multiple-access channelsProbl. Pered. Inform.vol. 11, pp. 23-36,
for the formal definition). April-June 1975. . .

) [2] P. P. Bergmans, “Random coding theorem for broadcashreda with

V. APPLICATIONS TOCS-AMAC AND CS-ABC SYSTEMS gggraﬁig ig%‘?onemglEEE Trans. Inform. Theoryvol. 19, pp. 197~

We note brieﬂy that our results of the previous sectidﬁ] I. Csiszar, “Joint source-channel error exponemtobl. Contr. Inform.

. . . Theory vol. 9, pp. 315-328, 1980.
can be directly applied to the CS-AMAC system (by setting; | csiszar and J. Koémernformation Theory: Coding Theorems for

|Z] = 1 and removingv,(-)) and the CS-ABC system  Discrete Memoryless SystenMdew York: Academic, 1981.

by settin — 1 and removin )). Here we remark [5] K.De Bruyn, V. V. Prelov, and E. Van Der Meulgn, “Re!iahransmission
( y 9 |L{| gg”( )) of two correlated sources over an asymmetric multiplescgsmnnel,”

that, when applying Theorem 3 to the CS-AMAC system, |Egg Trans. Inform. Theorwol. 33, pp. 716-718, Sep. 1987.
we can use the upper bound of the channel error exponghtT. S. Han and M. H. M. Costa, “Broadcast channels with taaby
E(-, . WYZ\UX) in (14) for the general multiple-access correlated sources|EEE Trans. Inform. Theorwol. 33, no. 5, pp. 641—

- . 650, Sep. 1987.
channel (with one common message set and two priva#e j Korner and K. Marton, “Genreal broadcast channelth wdegraded

message sets) derived in [1] and obtain a looser but (in some message setslEEE Trans. Inform. Theorwol. 23, pp. 60-64, Jan. 1977.

cases) computable upper boundAo. In the following we [8] J. Kdrner and A. Sga_rro, “Universally attainable errexponents for
) P PP g 9 broadcast channels with degraded message d&EE Trans. Inform.

give an example to show that for a class of CS-AMAC pairs  Theory vol. 26, pp. 670-679, Nov. 1980.
the lower bound (12) and the upper bound on (14) coinci@® Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint sme-channel

; _ it i coding error exponent for discrete memoryless systetizEE Trans.
for a wide range of source-channel conditions. Similarly, Inform. Theory vol. 52, no. 4. pp. 1450.1468, April 2006,
Theorems 1-3 apply to the CS-ABC system. The readgi§] v. zhong, F. Alajaji, and L. L. Campbell, “Coding erromgonents
may refer to [10] for the full details. for asymmetric two-user discrete memoryless source-@asystems,”
Mathematics and Engineering Technical Report, Dept. Martll Stats.,
. . . . Queen’s Univ., Kingston, ON, Canada, March 2007. Availaj@aline]
Example: (Binary CS-AMAC System) Consider two binary at http://markov.mast.queensu.ca/TR/cs-ac-exp-TRB7.p

CS Qs with distribution Qs(S = 0,L = 0) = 20-4),



