
Error Exponents for Asymmetric Two-User Discrete
Memoryless Source-Channel Systems∗

Yangfan Zhong, Fady Alajaji and L. Lorne Campbell
Department of Mathematics and Statistics

Queen’s University, Kingston, ON K7L 3N6, Canada
Email: {yangfan,fady,campblll}@mast.queensu.ca

Abstract— Consider transmitting two discrete memoryless cor-
related sources, consisting of a common and a private source, over
a discrete memoryless multi-terminal channel with two trans-
mitters and two receivers. At the transmitter side, the common
source is observed by both encoders but the private source can
only be accessed by one encoder. At the receiver side, both
decoders need to reconstruct the common source, but only one
decoder needs to reconstruct the private source. We hence refer
to this system by the asymmetric 2-user source-channel system. In
this work, we derive a universally achievable joint source-channel
coding (JSCC) error exponent pair for the 2-user system by using
a technique which generalizes Csiszár’s method [3] for the point-
to-point (single-user) discrete memoryless source-channel system.
We next investigate the largest convergence rate of asymptotic
exponential decay of the system (overall) probability of erroneous
transmission, i.e., the system JSCC error exponent. We obtain
lower and upper bounds for the exponent. As a consequence, we
establish the JSCC theorem with single letter characterization.

I. I NTRODUCTION

Recently, the study of the error exponent (reliability func-
tion) for point-to-point (single-user) source-channel systems
has illustrated substantial superiority of joint source-channel
coding (JSCC) over the traditional tandem coding (i.e., sep-
arate source and channel coding) approach (e.g., [3], [9]).It
is of natural interest to study the JSCC error exponent for
multi-terminal source-channel systems.

In this work we address the asymmetric 2-user source-
channel system depicted in Fig. 1. Two discrete memoryless
correlated source messages(s, l) ∈ Sτn × Lτn drawn from
a joint distributionQSL : S × L, consisting of a common
source messagess and a private source messagel of length
τn, are transmitted over a discrete memoryless asymmetric
communication channel described byWY Z|UX : U × X →
Y ×Z with block codes of lengthn, whereτ > 0 (measured
in source symbol/channel use) is the overall transmission rate.
The common source can be accessed by both encoders, but
the private source can only be observed by one encoder (say,
Encoder 1). In this set-up, the goal is to send the common
information to both receivers, and send the private information
to only one receiver (say, Decoder 1).

It is worthy to point out that the asymmetric 2-user system
can be specialized to the following two classical asymmetric
multi-terminal scenarios.

∗This work was supported in part by NSERC of Canada.

i.) The CS-AMAC system: If we remove Decoder 2 from
Fig. 1, and let|Z| = 1, then the channel reduces to a
multiple-access channelWY |UX , and the coding prob-
lem reduces to transmitting two correlated sources (CS)
over an asymmetric multiple-access channel (AMAC)
with one receiver.

ii.) The CS-ABC system: If we remove Encoder 2 from
Fig. 1, and let|U| = 1, then the channel reduces to
a broadcast channelWY Z|X , and the coding problem
reduces to transmitting two CS over an asymmetric
broadcast channel (ABC) with one transmitter.

The sufficient and necessary condition for the reliable
transmission of CS over the AMAC – i.e., the JSCC theorem
for the CS-AMAC system – has been derived with single letter
characterization in [5]. The capacity region of the ABC has
been determined in [7], and the JSCC theorem for CS-ABC
system with arbitrary transmission rate can also be analogously
carried out (e.g., [6]). In this work, we study a refined version
of the JSCC theorem for the general asymmetric 2-user system
(depicted in Fig. 1), by investigating the achievable JSCC error
exponent pair (for two receivers) as well as the system JSCC
error exponent, i.e., the largest convergence rate of asymp-
totic exponential decay of the system (overall) probability of
erroneous transmission. We also apply our results to the CS-
AMAC and CS-ABC systems.

We outline our results as follows. We first extend Csiszár’s
type packing lemma [3] from a single-letter (1-dimension)
type setting to a joint (2-dimensional) type setting. By em-
ploying the joint type packing lemma, superposition encoders,
and generalized maximum mutual information decoders, we
establish a universally achievable error exponent pair forthe
two receivers (namely, the pair of exponents can be achieved
by a sequence of source-channel codes independent of the
statistics of the source and the channel); this generalizes
Körner and Sgarro’s exponent pair for ABC coding (with
uniform message sets) [8]. We also employ a similar coding
scheme to establish a lower bound for the system JSCC error
exponent; see Theorem 1. Note that one consequence of our
results is a sufficient condition (forward part) for the JSCC
theorem. In addition, we use Fano’s inequality to prove a
necessary condition (converse part) which coincides with the
sufficient condition, and hence completes the JSCC theorem
(Theorem 2). Using an approach analogous to [3], we also
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Fig. 1. Transmitting two CS over the asymmetric 2-user communication channel.

obtain an upper bound for the system JSCC error exponent
(Theorem 3).

Due to limited space, we focus on the error exponents for
the asymmetric 2-user system. In Section V, we briefly discuss
applications to the CS-AMAC and the CS-ABC systems. All
details and proofs are available in [10].

II. N OTATION AND CONVENTIONS

The following notations and conventions are adopted from
[3], [4]. For any finite set (or alphabet)X , the size ofX is
denoted by|X |. The set of all probability distributions on
X is denoted byP(X ). We denote the type (the relative
frequency of the components in a data sequence) of ann-
length sequencex ∈ Xn by Px ∈ Pn(X ) ⊆ P(X ), where
Pn(X ) is the collection of all types of sequences inXn. For
any PX ∈ Pn(X ), the set of allx ∈ Xn with type PX is
denoted byTPX

, or simply byTX if PX is understood. We
also call TPX

or TX a type class. Similarly, the joint type
of n-length sequencesx ∈ Xn and y ∈ Yn is denoted by
Pxy ∈ Pn(X ×Y) and the set of allx ∈ Xn andy ∈ Yn with
joint typePXY ∈ Pn(X ×Y) is denoted byTPXY

, or simply
by TXY . For any finite setsX andY, the set of all conditional
distributionsVY |X : X → Y is denoted byP(Y|X ). The
conditional type ofy ∈ Yn given x ∈ TPX

is denoted by
Py|x ∈ Pn(Y|PX), wherePn(Y|PX) is the collection of all
conditional distributionsVY |X which are conditional types
of y ∈ Yn given an x ∈ TPX

. For any conditional type
VY |X ∈ Pn(Y|PX), the set of ally ∈ Yn for a givenx ∈ TPX

satisfyingPy|x = VY |X is denoted byTVY |X
(x), or simply by

TY |X(x), which is also called a conditional type class with
respect tox. For finite setsX , Y, Z with joint distribution
PXY Z ∈ P(X × Y × Z), we usePX , PXY , PY Z|X , etc, to
denote the corresponding marginal and conditional probabili-
ties induced byPXY Z . Conversely,PXPY Z|X denotes a joint
distribution onX ×Y ×Z with marginal distributionPX and
conditional distributionPY Z|X . Note that for a given joint type
PXY ∈ Pn(X × Y), TPY |X

(x) = {y : (x, y) ∈ TPXY
}. Note

also that

{
PXVY |X : PX ∈ Pn(X ), VY |X ∈ Pn(Y|PX)

}
= Pn(X×Y).

In addition, we denote

Pn(Y|X ) ,
⋃

PX∈Pn(X )

Pn(Y|PX) ⊆ P(Y|X ).

To distinguish different distributions (or types) defined on the
same alphabet, we use sub-subscript, say,i, j, in PXi

, PXiYj
,

TXiYj
, and so on. For example,TXiYj

is the type class of the
joint typePXiYj

∈ Pn(X ×Y). For any distributionPXY Z ∈
P(X × Y × Z), we useHPXY Z

(·) andIPXY Z
(·; ·) to denote

the entropy and mutual information underPXY Z , respec-
tively, or simply byH(·) and I(·; ·) if PXY Z is understood.
D(PX ‖ QX) denotes the Kullback-Leibler divergence be-
tween distributionsPX , QX ∈ P(X ). D(VY |X ‖ WY |X |PX)
denotes the Kullback-Leibler divergence between stochastic
matrices (conditional distributions)VY |X ,WY |X ∈ P(Y|X )
conditional on distributionPX ∈ P(X ). All logarithms and
exponentials throughout this paper are in base 2.

III. A J OINT TYPE PACKING LEMMA

We extend Csiszár’s type packing lemma [3, Theorem.
5] from a (1-dimensional) single-letter type setting to a (2-
dimensional) joint type setting. This lemma plays a key role
in deriving an exponentially achievable upper bound for the
probability of erroneous transmission for the asymmetric 2-
user channel.

Lemma 1: (Joint Type Packing Lemma) Given finite sets
A and B, a sequence of positive integers{mn}, and a
sequence of positive integers{m′

in} associated with every
i = 1, 2, ...,mn, for arbitrary (not necessarily distinct) types
PAi

∈ Pn(A) and conditional typesPBj |Ai
∈ Pn(B|PAi

),
and positive integersNi and Mij , i = 1, 2, ...,mn and
j = j(i) = 1, 2, ...,m′

in with 1
n

log2Ni < HPAi
(A) − δ and

1
n

log2Mij < HPAi
PBj |Ai

(B|A) − δ, where

δ ,
2

n

[
|A|2|B|2 log2(n+ 1)

+ log2mn + log2(max
i
m′
in) + log2 12

]
,

there existmn disjoint subsetsΩi =
{

a(i)
p

}Ni

p=1
⊆ TAi

,

TPAi
such that

|TVA′|A
(a(i)
p )

⋂
Ωk| ≤ Nk2

−n
h

IPAi
V

A′|A
(A;A′)−δ

i

, (1)



for every i, k, p and VA′|A ∈ Pn(A|A), with the exception
of the case when bothi = k and VA′|A is the conditional
distribution such thatVA′|A(a′|a) is 1 if a′ = a and 0

otherwise; furthermore, for everyu(i)
p ∈ Ωi and everyi, there

existm′
in disjoint subsetsΩij(a

(i)
p ) =

{
(a(i)
p , b(j)

p,q)
}Mij

q=1
such

that b(j)
p,q ∈ TBj |Ai

(a(i)
p ) , TPBj |Ai

(a(i)
p ) and

∣∣∣∣∣∣
TVA′B′|AB

(a(i)
p , b(j)

p,q)
⋂ Nk⋃

p′=1

Ωkl(a
(k)
p′ )

∣∣∣∣∣∣

≤ NkMkl2
−n

»

IPAiBj
V

A′B′|AB
(A,B;A′,B′)−δ

–

, (2)

∣∣∣∣∣∣
TVA′B′|AB

(a(i)
p , b(j)

p,q)
⋂ Ni⋃

p′=1

Ωil(a
(i)
p′ )

∣∣∣∣∣∣

≤Mil2
−n

»

IPAiBj
V

A′B′|AB
(B;B′|A)−δ

–

, (3)

for any i, j, k, l, p, q andVA′B′|AB ∈ Pn(A×B|A×B), with
the exception of the case when bothi = k, j = l andVA′B′|AB

is the conditional distribution such thatVA′B′|AB(a′, b′|a, b) is
1 if (a′, b′) = (a, b) and 0 otherwise.

We remark that the assertion of (1) is Csiszár’s type packing
lemma [3, Theorem 5] for a single-letter type setting. Roughly
and intuitively, if (a, b) is a pair of transmitted codewords,
then the possible sequences decoded as(a, b) can be seen
as elements in the “sphere”TVA′B′|AB

(a, b) “centered” at
(a, b) for some VA′B′|AB. Eq. (2) in the packing lemma
(similar to (1) and (3)) states that there exist disjoint sets
Ωkl =

⋃Nk

p′=1 Ωkl(a
(k)
p′ ) with bounded cardinalities such that

the size of intersection between the sphereTVA′B′|AB
(a, b) for

every(a, b) ∈ Ωij and every setΩkl is “exponentially small”
compared with the size of eachΩkl. So the packing lemma
can be used to prove the existence of good codes that have an
exponentially small probability of error.

Note also that the above extended packing lemma is analo-
gous to, but different from the one introduced by Körner and
Sgarro in [8], which is used to prove a lower bound for the
channel coding ABC exponent. Lemma 1 here is used for the
JSCC problem.

IV. T RANSMITTING CS OVER THE ASYMMETRIC 2-USER

CHANNEL

A. System

Let {WY Z|UX : U × X → Y × Z} be a 2-user dis-
crete memoryless channel with finite input alphabetU × X ,
finite output alphabetY × Z, and a transition distribution
WY Z|UX(y, z|u, x) such that then-tuple transition probability

is W
(n)
Y Z|UX(y, z|u, x) =

∏n
i=1WY Z|X(yi, zi|ui, xi), where

u ∈ U , x ∈ X , y ∈ Y, z ∈ Z, u , (u1, ..., un) ∈
Un, x , (x1, ..., , xn) ∈ Xn, y , (y1, ..., yn) ∈ Yn,
and z , (z1, ..., zn) ∈ Zn. Denote the marginal transition
distributions of WY Z|UX at its Y -output (respectivelyZ-
output) byWY |UX ,

∑
ZWY Z|UX (respectivelyWZ|UX ,

∑
Y WY Z|UX ). The marginal distributions ofW (n)

Y Z|UX are

denoted byW (n)
Y |UX andW (n)

Z|UX , respectively.
Consider two discrete memoryless CS with a generic joint

distribution QSL(s, l) defined on the finite alphabetS ×

L such that thek-tuple joint distribution isQ(k)
SL(s, l) =∏k

i=1QSL(si, li), where (s, l) ∈ S × L, and (s, l) ,

((s1, l1), ..., (sk, lk)) ∈ Sk × Lk. For each pair of source
messages (s, l) drawn from the above joint distribution, we
need to transmit thecommon messages over the channel
WY Z|UX to ReceiversY and Z and transmit theprivate
messagel only to ReceiverY . A joint source-channel (JSC)
code with block lengthn and transmission rateτ (source
sumbol/channel use) for transmittingQSL throughWY Z|UX

is a quadruple of mappings, (fn, gn, ϕn, ψn), where fn :
Sτn × Lτn → Xn and gn : Sτn → Un are called encoders,
andϕn : Yn → Sτn × Lτn andψn : Zn → Sτn are referred
to asY -decoder andZ-decoder, respectively; see Fig. 1.

The probabilities ofY - andZ-error are given by

P
(n)
Y e (QSL,WY Z|UX , τ) , Pr({ϕn(y) 6= (s, l)})

=
∑

s,l

Q
(τn)
SL (s, l)

∑

y:ϕn(y) 6=(s,l)

W
(n)
Y |UX(y|u, x) (4)

and

P
(n)
Ze (QSL,WY Z|UX , τ) , Pr({ψn(z) 6= s})

=
∑

s,l

Q
(τn)
SL (s, l)

∑

z:ψn(z) 6=s

W
(n)
Z|UX(z|u, x) (5)

where x , fn(s, l) and u , gn(s) are the corresponding
codewords of the source message pair(s, l) and the source
messages, and y and z are the received codewords at the
ReceiversY andZ, respectively. We say that the JSCC error
exponent pair(EAY , EAZ) is achievable with respect toτ > 0
if there exists a sequence of JSC codes (fn, gn, ϕn, ψn) with
transmission rateτ such that the probabilities ofY -error and
Z-error are simultaneously bounded by

P
(n)
ie (QSL,WY Z|UX , τ) ≤ 2−n[EAi−δ], i = Y, Z (6)

for n sufficiently large and anyδ > 0. As the point-to-point
system, we denote the system (overall) probability of errorby

P (n)
e (QSL,WY Z|UX , τ) , Pr({ϕn(y) 6= (s, l)} ∪ {ψn(z) 6= s}) ,

where(s, l) are drawn according toQ(τn)
SL .

Definition 1: GivenQSL, WY Z|UX andτ > 0, the system
JSCC error exponentEJ (QSL,WY Z|UX , τ) is defined as
supremum of the set of all numbersE for which there exists
a sequence of JSC codes (fn, gn, ϕn, ψn) with blocklengthn
and transmission rateτ such that

E ≤ lim inf
n→∞

−
1

n
log2 P

(n)
e (QSL,WY Z|UX , τ). (7)

Since the system probability of errorP (n)
e must be larger

thanP (n)
Y e andP (n)

Ze defined by (4) and (5), and is also upper
bounded by the sum of the two, it follows that for any sequence
of JSC codes (fn, gn, ϕn, ψn)

lim inf
n→∞

−
1

n
log2 P

(n)
e = lim inf

n→∞
−

1

n
log2 max

(
P

(n)
Y e , P

(n)
Ze

)
.



B. Superposition Encoding for Asymmetric 2-User Channels

Given an asymmetric 2-user channelWY Z|UX , at the en-
coder side, we can artificially augment the channel input alpha-
bet by introducing an auxiliary (arbitrary and finite) alphabet
T , and then look at the channel as a discrete memoryless
channelWY Z|TUX = WY Z|UX with marginal distributions
WY |TUX andWZ|TUX such thatWY Z|TUX(y, z|t, u, x) =
WY Z|UX(y, z|u, x) for any t ∈ T , u ∈ U , x ∈ X , y ∈ Y and
z ∈ Z. In other words, we introduce a dummy RVT ∈ T
such thatT , (U,X), and(Y, Z) form a Markov chain in this
order, i.e.,T → (U,X) → (Y, Z).

The idea of superposition coding is described as follows.
The encodergn first maps the source messages to a pair
of n-length sequences(t, u) ∈ T n × Un with a fixed type,
say PTU , and then sends the codewordu over the channel,
i.e., gn(s) = u. The encoderfn first maps each pair(s, l)
to a triple of sequences(t, u, x) ∈ T n × Un × Xn such that
x ∈ TPX|T U

(t, u), then fn sends the codewordx over the
channel, i.e.,fn(s, l) = x. In other words,gn andfn map(s, l)
to a tuple of sequences(t, u, x) with a joint typePTUPX|TU ,
although onlyu andx are sent to the channel, wheret plays
the role of a dummy codeword.

SinceW (n)
Y Z|TUX(y, z|t, u, x) is equal toW (n)

Y Z|UX(y, z|u, x)

and is independent oft, transmitting the codewords(u, x)
through the channelWY Z|UX can be viewed as transmit-
ting the codewords(t, u, x) over the augmented channel
WY Z|TUX . Here, the common outputs ofgn andfn, (t, u)’s,
are called auxiliarycloud centersaccording to the traditional
superposition coding notion [2], which convey the information
of the common messages, and the codewordsx’s correspond-
ing to the same(t, u) are called satellite codewords of(t, u),
which contain both the common and private information. At
the decoding stage, ReceiverZ only needs to figure out which
cloud(t, u) was transmitted, and ReceiverY needs to estimate
not only the cloud but also the satellite codewordx. We employ
superposition encoding to derive the achievable error exponent
pair and the lower bound of system JSCC error exponent in
Section IV-C.

C. Achievable Exponents and a Lower Bound forEJ

Given arbitrary and finite alphabetT , for any joint distri-
bution PTUX ∈ P(T × U × X ) and everyR1 > 0, R2 > 0,
define

EY (R1, R2,WY |TUX , PTUX)

, min
VY |TUX

[
D(VY |TUX ‖WY |TUX |PTUX)

+ min
(∣∣IPT UXVY |T UX

(T, U,X ;Y ) − (R1 +R2)
∣∣+ ,

∣∣IPT UXVY |T UX
(X ;Y |T, U) −R2

∣∣+
)]
, (8)

and

EZ(R1, R2,WZ|TUX , PTUX)

, min
VZ|T UX

[
D(VZ|TUX ‖WZ|TUX |PTUX)

+
∣∣IPT UXVZ|T UX

(T, U ;Z)−R1

∣∣+
]
, (9)

where |x|+ = max(0, x), and the outer minimum in (8)
(respectively (9)) is taken over all conditional distributions
on P(Y|T × U × X ) (respectivelyP(Z|T × U × X )).
Using Lemma 1 and employing superposition encoders and
generalized maximum mutual information decoders at the two
receivers, we can prove the following achievable bounds.

Theorem 1:Given arbitrary and finite alphabetT , for any
P̃TUX ∈ P(T × U × X ), the following exponent pair is
universally achievable,

EJY (QSL,WY Z|TUX , P̃TUX , τ) , min
PSL

[τD(PSL ‖ QSL)

+ EY (τHP (S), τHP (L|S),WY |TUX , P̃TUX)
]
,(10)

and

EJZ(QSL,WY Z|TUX , P̃TUX , τ) , min
PSL

[τD(PSL ‖ QSL)

+EZ(τHP (S), τHP (L|S),WZ|TUX , P̃TUX)
]
, (11)

whereWY |TUX andWZ|TUX are marginal distributions of
WY Z|TUX , which is the augmented conditional distribution
from WY Z|UX . Furthermore, givenQSL, WY Z|UX , and τ ,
the system JSCC error exponent satisfies

EJ (QSL,WY Z|UX , τ) ≥ min
PSL

[τD(PSL ‖ QSL)

+Er(τHP (S), τHP (L|S),WY Z|UX)
]

(12)

where

Er(R1, R2,WY Z|UX)

, sup
T

max
PT UX

Er(R1, R2,WY Z|TUX , PTUX), (13)

where the supremum is taken over all finite alphabetsT , and
the maximum is taken over all the joint distributions onP(T ×
U × X ) andEr(R1, R2,WY Z|TUX , PTUX) is given by

min
{
EY (R1, R2,WY |TUX , PTUX) ,

EZ(R1, R2,WZ|TUX , PTUX)
}
,

whereEY andEZ are given by (8) and (9), respectively.
We remark that (10) and (11) can be achieved by a sequence

of codes without the knowledge ofQSL andWY Z|UX , but the
lower bound (12) is achieved by a sequence of codes that needs
to know the statistics of the channel.

By examining the positivity of the lower bound toEJ , we
obtain a sufficient condition for reliable transmissibility for the
asymmetric 2-user system. For the sake of completeness, we
also prove a converse by using Fano’s inequality, and hence
establish the JSCC theorem for this system. GivenWY Z|UX ,
define

R(WY Z|UX) ,
⋃

T

⋃

PT UX∈P(T ×U×X )

R(WY Z|TUX , PTUX)

where the first union is taken over all discrete alphabetsT
with |T | ≤ |U||X | + 2, andR(WY Z|TUX , PTUX) is defined
by the following set



(R1, R2) :

R1 +R2 < I(T, U,X ;Y )
R1 < I(T, U ;Z)
R2 < I(X ;Y |T, U)



 ,



where the mutual informations are taken under the joint
distributionPTUXY Z = PTUXWY Z|UX .

Theorem 2:(JSCC Theorem) GivenQSL, WY Z|UX and
τ > 0, the following statements hold.
(1) The sources can be transmitted over the channel with
P

(n)
e → 0 as n → ∞ if (τHQ(S), τHQ(L|S)) ∈

R(WY Z|UX);
(2) Conversely, if the sources can be transmitted over the
channel with an arbitrarily small probability of errorP (n)

e as
n → ∞, then(τHQ(S), τHQ(L|S)) ∈ R(WY Z|UX) with <
replaced by≤ in R(WY Z|UX).

D. The Upper Bound toEJ

In [3], Csiszár also established an upper bound for the JSCC
error exponent for the point-to-point discrete memoryless
source-channel system in terms of the source and channel error
exponents by a simple type counting argument. He shows that
the JSCC error exponent is always less than the infimum of
the sum of the source and channel error exponent, even though
the channel error exponent is only partially known for high
rates. This conceptual bound cannot currently be computed
as the channel error exponent is not yet fully known for all
achievable coding rates, but it directly implies that any upper
bound for the channel error exponent yields a corresponding
upper bound for the JSCC error exponent. For the asymmetric
2-user channel, it can be shown by using a similar approach
based on the method of types that the following is true.

Theorem 3:GivenQSL,WY Z|UX , andτ , the system JSCC
error exponent satisfies

EJ(QSL,WY Z|UX , τ) ≤ inf
PSL

[τD(PSL ‖ QSL)

+E(τHP (S), τHP (L|S),WY Z|UX)
]
, (14)

whereE(·, ·,WY Z|UX) is the corresponding channel coding
error exponent for the asymmetric 2-user channel (refer to [10]
for the formal definition).

V. A PPLICATIONS TOCS-AMAC AND CS-ABC SYSTEMS

We note briefly that our results of the previous section
can be directly applied to the CS-AMAC system (by setting
|Z| = 1 and removingψn(·)) and the CS-ABC system
(by setting |U| = 1 and removinggn(·)). Here we remark
that, when applying Theorem 3 to the CS-AMAC system,
we can use the upper bound of the channel error exponent
E(·, ·,WY Z|UX) in (14) for the general multiple-access
channel (with one common message set and two private
message sets) derived in [1] and obtain a looser but (in some
cases) computable upper bound toEJ . In the following we
give an example to show that for a class of CS-AMAC pairs
the lower bound (12) and the upper bound on (14) coincide
for a wide range of source-channel conditions. Similarly,
Theorems 1–3 apply to the CS-ABC system. The readers
may refer to [10] for the full details.

Example: (Binary CS-AMAC System) Consider two binary
CS QSL with distribution QSL(S = 0, L = 0) = 2(1−q)

3 ,

QSL(S = 1, L = 0) = q
2 , andQSL(S = 0, L = 1) = q

2 ,
where0 < q < 1/2, and a binary AMACWY |UX with binary
additive noisePF (F = 1) = ǫ (0 < ǫ < 1/2) and output
described byYi = Ui⊕Xi⊕Fi (mod 2), Y = U = X = F =
{0, 1}, andFi is independent ofXi andUi, i = 1, 2, ..., n. In
Fig. 2, we plot the lower and upper bounds for the JSCC error
exponentEJ for different (q, ǫ) pairs with transmission rate
τ = 0.25, 0.35. As illustrated, the upper and lower bounds
coincide (this can also be proved) for many(q, ǫ) pairs (e.g.,
whenτ = 0.25, q = 0.1, ǫ ≥ 0.0205 and whenτ = 0.35, q =
0.1, ǫ ≥ 0.0056), and hence exactly determine the exponent.
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Fig. 2. The lower bound (solid line) and the upper bound (dashline) for
the system JSCC error exponent for transmitting binary CS over the binary
AMAC with binary additive noise.
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