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Abstract—The generalized Poor-Verdú error lower bound for
multihypothesis testing is revisited. Its asymptotic expression
is established in closed-form as its tilting parameter grows
to infinity. It is also shown that the asymptotic generalized
bound achieves the error exponent (or reliability function) of
the memoryless binary symmetric channel at zero coding rates.

Index Terms—Binary symmetric channel, error probability
bounds, error exponent, hypothesis testing, zero coding rates.

I. INTRODUCTION

A well-known lower bound on the minimum probability of
error Pe of multihypothesis testing is the so-called Poor-Verdú
bound [1]. The bound was generalized in [2] by tilting, via a
parameter θ ≥ 1, the posterior hypothesis distribution. The
generalized bound was noted to progressively improve with θ;
however its asymptotic formula as θ tends to infinity was not
determined.

In this paper, we revisit this generalized bound and establish
its asymptotic expression in closed-form. We then investigate
the asymptotic generalized bound in the classical context of
the error probability of block codes used over the memoryless
binary symmetric channel (BSC) with crossover probability
p < 1

2 . We prove that it is exponentially tight for arbitrary
sequences of zero-rate codes and hence achieves the BSC zero-
rate error exponent or reliability function (for in-depth studies
of the channel reliability function, whose characterization at
low rates remains a long-standing open problem, see [3]–[14]
and the references therein).

In showing the exponential tightness of the asymptotic
generalized Poor-Verdú bound, we first observe that when a
code Cn with blocklength n and size |Cn| = Mn is transmitted
over the BSC, this bound exactly equals the probability of
the set N(Cn), which consists of all input-output n-tuple pairs
(xn, yn) ∈ Cn × Yn satisfying

d(xn, yn) > min
un∈Cn\{xn}

d(un, yn), (1)

where d(·, ·) is the Hamming distance and Y is the channel
output alphabet (see Section III). By adding the probability of
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all ties, i.e., all (xn, yn) ∈ Cn × Yn such that

d(xn, yn) = min
un∈Cn\{xn}

d(un, yn), (2)

which are collected in the set T(Cn), to Pr(N(Cn)), an upper
bound on the minimum probability of decoding error Pe
is then obtained. The exponential tightness of Pr(N(Cn)) to
Pe can thus be confirmed by showing that Pr(T(Cn)) has
either the same error exponent as, or decreases exponentially
faster than, Pr(N(Cn)) for zero-rate codes. This property is
demonstrated by constructing partitions of T(Cn) and N(Cn),
denoted by {Ti}Mn

i=1 and {Ni}Mn
i=1, respectively, and then

judiciously relating the probability of component set Ti to
that of component set Ni for i = 1, . . . ,Mn. Specifically,
we show that the probability of a finite cover of each Ti,
multiplied by 2Mn

(1−p)
p , is no larger than the probability

of a subset of Ni (cf. Fig. 1 in Section III). With these key
ingredients in place, we prove the exponential tightness of the
asymptotic generalized Poor-Verdú bound at rate zero (i.e.,
when lim supn→∞

1
n log |Cn| = 0).

The rest of the paper is organized as follows. In Section II,
the exact expression of the asymptotic generalized Poor-Verdú
lower bound on the error probability in multihypothesis testing
is derived. In Section III, the error exponent analysis of this
asymptotic bound is carried out in detail for the channel
coding problem over the BSC. Finally conclusions are drawn
in Section IV.

II. ASYMPTOTIC EXPRESSION OF THE GENERALIZED
POOR-VERDÚ BOUND

In 1995, Poor and Verdú established a lower bound on the
error probability of multihypothesis testing [1]. This bound
was generalized in [2] in terms of a tilted posterior hypothesis
distribution with tilting parameter θ ≥ 1 (with the original
bound in [1] recovered when θ = 1).

Lemma 1 (Generalized Poor-Verdú bound [2]): Consider
random variables X and Y , governed by the joint distribution
PX,Y , and that take values in a discrete (i.e., finite or countably
infinite) alphabet X and an arbitrary alphabet Y , respectively.
The minimum probability of error Pe in estimating X from Y
satisfies

Pe ≥ (1− α)·PX,Y
{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}
(3)

for each α ∈ [0, 1] and arbitrary θ ≥ 1, where

P
(θ)
X|Y (x|y) ,

(PX|Y (x|y))θ∑
u∈X (PX|Y (u|y))θ

(4)

is the tilted distribution of PX|Y (x|y) with parameter θ.



It is illustrated via examples in [2] that the lower bound in
(3) improves in general as θ grows. However, the asymptotic
expression of (3), as θ goes to infinity, was not established in
closed-form. This issue is resolved in what follows.

Lemma 2: For joint distribution PX,Y with marginal dis-
tribution PX having finite support C ⊆ X , we have that for
α < 1/|C|,

lim sup
θ→∞

PX,Y

{
(x, y) ∈ X × Y : P

(θ)
X|Y (x|y) ≤ α

}
= PX,Y

{
(x, y) ∈ X × Y : PX|Y (x|y) < max

u∈C
PX|Y (u|y)

}
.

(5)

Proof: Setting α = e−κ in the right-hand side (RHS)
probability term in (3) yields

PX,Y

{
(x, y) ∈ X × Y : P

(θ)
X|Y (x|y) ≤ e−κ

}
= PX,Y

{
(x, y) ∈ X × Y :

(PX|Y (x|y))θ∑
u∈C (PX|Y (u|y))θ

≤ e−κ
}

= PX,Y

{
(x, y) ∈ X × Y :

logPX|Y (x|y) ≤ 1

θ
log

(∑
u∈C

(PX|Y (u|y))θ
)
− κ

θ

}
(6)

= PX,Y

{
(x, y) ∈ X × Y :

logPX|Y (x|y) ≤ log ‖PX|Y (·|y)‖θ −
κ

θ

}
, (7)

where ‖PX|Y (·|y)‖θ ,
(∑

u∈C (PX|Y (u|y))θ
)1/θ

is the θ-
norm of PX|Y (·|y) for a fixed y ∈ Y . Noting that

logPX|Y (x|y) ≤ log ‖PX|Y (·|y)‖θ −
κ

θ

⇐⇒ κ

θ
≤ log ‖PX|Y (·|y)‖θ − logPX|Y (x|y), (8)

we separately consider the following two cases.

Case 1: For (x, y) with PX|Y (x|y) < maxu∈C PX|Y (u|y), the
RHS of (8) tends to log maxu∈C PX|Y (u|y)− logPX|Y (x|y)
(which is strictly positive) as θ grows without bound (since
the θ-norm of PX|Y (·|y) approaches its infinity-norm given
by maxu∈C PX|Y (u|y)), while the left-hand side (LHS) of (8)
tends to zero. Hence, (8) holds for θ sufficiently large.

Case 2: For (x, y) with PX|Y (x|y) = maxu∈C PX|Y (u|y), we
have

log ‖PX|Y (·|y)‖θ − logPX|Y (x|y)

= log

(∑
u∈C

(PX|Y (u|y))θ
)1/θ

− logPX|Y (x|y) (9)

= log

(∑
u∈C (PX|Y (u|y))θ

)1/θ
(

(PX|Y (x|y))θ
)1/θ (10)

=
1

θ
log

∑
u∈C (PX|Y (u|y))θ

(PX|Y (x|y))θ
(11)

≤ 1

θ
log |C|, (12)

where the last inequality holds since PX|Y (u|y) ≤ PX|Y (x|y)
for all u ∈ C. Thus (8) is violated since κ = − logα > log |C|.

Verifying the above two cases completes the proof.

In light of Lemma 2, we can fix κ = − logα > log |C|,
take θ to infinity, and obtain from (3) that

Pe ≥ (1− e−κ)

PX,Y

{
(x, y) ∈ X × Y : PX|Y (x|y) < max

u∈C
PX|Y (u|y)

}
. (13)

Since (13) holds for κ > log |C| arbitrarily large, we have the
following asymptotic expression of the generalized Poor-Verdú
bound.

Corollary 1: The minimum error probability Pe in estimat-
ing X from Y satisfies

Pe ≥ PX,Y
{

(x, y) ∈X×Y :PX|Y (x|y) < max
u∈C

PX|Y (u|y)

}
.

(14)

Two remarks are made based on Corollary 1. First, the
optimal estimate of X from observing Y is known to be the
maximum a posteriori estimate, given by

e(y) = arg max
x∈C

PX|Y (x|y), (15)

where (15) can in fact directly yield the lower bound in (14).
This indicates that tilting the a posteriori distribution in the
generalized Poor-Verdú bound can indeed approach1

1− PX,Y
{

(x, y) ∈ X × Y : PX|Y (x|y) = PX|Y (e(y)|y)

}
.

(16)
As a consequence, the lower bound in (14) is tight if and

only if the x that maximizes PX|Y (x|y) is unique for all
y ∈ Y . This elucidates why in the example of [2, Fig. 1]
the generalized Poor-Verdú bound achieves the minimum
probability of error Pe when θ grows unbounded.

Second, an alternative lower bound for Pe is the Verdú-Han
bound established in [15]. This bound was recently generalized
in [16, Thm. 1]. We remark that the Verdú-Han bound is not
tight even if PX|Y (x|y) admits a unique maximizer for every
y ∈ Y . For example, we can obtain from the ternary hypothesis
testing example in [2, Sec. III-A] and [16, Sec. III-A] that:

Pe =
3

5
> max

γ≥0

(
Pr
[
PX|Y (X|Y ) ≤ γ

]
− γ
)

=
27

47
, (17)

where the maximizer in (17) is γ∗ = 20
47 . Noting the sub-

optimality of the Verdú-Han bound, the authors in [16] gen-
eralized it by varying the output statistics. They also proved
the tightness of the resulting generalized Verdú-Han bound:

Pe = max
QY

max
γ≥0

(
Pr

[
PX,Y (X,Y )

QY (Y )
≤ γ

]
− γ
)
. (18)

1Note that the set
{
(x, y) ∈ X × Y : PX|Y (x|y) = PX|Y (e(y)|y)

}
includes all ties. For example, for the 2-fold BSC (i.e., the BSC used twice to
transmit 2-tuple inputs) with uniform PX over C = {00, 11}, both (00, 01)
and (11, 01) will be in this set, i.e.,{

(x, y) ∈ X × Y : PX|Y (x|y) = PX|Y (e(y)|y)
}

= {(00, 00), (00, 01), (11, 01), (00, 10), (11, 10), (11, 11)}.



It is pertinent to note that the maximizers of (18) are given by

γ∗ =

∫
Y

max
x∈X

PX,Y (x, y) dPY (y) = 1− Pe (19)

and

Q∗Y (y) =
maxx∈X PX,Y (x, y)∫

Y maxx∈X PX,Y (x, y) dPY (y)
(20)

=
PY (y)PX|Y (e(y)|y)

1− Pe
. (21)

Hence, the determination of the maximizers of the above
generalized Verdú-Han bound is equivalent to determining the
minimum error probability Pe itself.

Similar to the generalized Poor-Verdú bound with parameter
θ, any QY and γ adopted for the generalized Verdú-Han bound
yields a lower bound on Pe. However, an interesting difference
between the generalized Poor-Verdú bound and the generalized
Verdú-Han bound is that when PX is uniformly distributed
over its support C, the former bound can be transformed into
a function of the information density

iXW (x, y) ,
PY |X(y|x)

PY (y)
(22)

of the channel W = PY |X with input X and output Y , while
the latter bound cannot. This transformation may facilitate the
interpretation of the error exponent via the information den-
sity (or equivalently, the Hamming distance) for memoryless
symmetric channels such as the BSC.

III. EXPONENTIAL TIGHTNESS OF THE ASYMPTOTIC
GENERALIZED POOR-VERDÚ BOUND FOR THE BSC AT

ZERO RATE

In this section, we prove that the asymptotic expression
of the generalized Poor-Verdú bound given in (14) exactly
characterizes the zero-rate coding error exponent of the BSC
with crossover probability p < 1

2 . Note that while the error
exponent formula for the BSC at zero-rate, E(0), is already
known, E(0) = − 1

4 ln
(
4p(1 − p)

)
[6], we do not explicitly

calculate it. Rather, we demonstrate that the bound in (14) is
exponentially tight for arbitrary sequences of zero-rate block
codes used over the BSC, hence indirectly achieving E(0).
This approach may be beneficial for a larger class of channels.

Fix a sequence of codes {Cn}∞n=1 of blocklength n, with
Cn ⊆ {0, 1}n, and let PXn be the uniform distribution over
Cn, where Xn denotes the n-tuple (X1, . . . , Xn). Denote by

an , Pe(Cn) (23)

the minimum probability of decoding error for transmitting
code Cn over the BSC with crossover probability p < 1

2 , and
let bn denote the RHS of (14) in this channel coding context:

bn , PXn,Y n

{
(xn, yn) ∈ Xn × Yn :

PXn|Y n(xn|yn) < max
un∈Cn

PXn|Y n(un|yn)

}
. (24)

Since the BSC has p < 1
2 , the inequality condition in (24)

can be equivalently characterized via the Hamming distance
d(·, ·). Hence,

bn = PXn,Y n(N(Cn)), (25)

where

N(Cn) ,

{
(xn, yn) ∈ Cn × Yn :

d(xn, yn) > min
un∈Cn\{xn}

d(un, yn)

}
. (26)

Define the set of ties with respect to code Cn as

T(Cn) ,

{
(xn, yn) ∈ Cn × Yn :

d(xn, yn) = min
un∈Cn\{xn}

d(un, yn)

}
, (27)

and let
δn = PXn,Y n(T(Cn)). (28)

Then the minimum probability of error an = Pe(Cn) satisfies

bn ≤ an ≤ bn + δn, (29)

where the upper bound is achieved when we have decoding
errors for (xn, yn) ∈ T(Cn). Note that (29) implies that

0 ≤ 1

n
log

an
bn
≤ 1

n
log

(
1 +

δn
bn

)
. (30)

As a result, in order to prove that an and bn have the same
error exponent, it suffices to prove that

lim sup
n→∞

1

n
log

(
1 +

δn
bn

)
= 0. (31)

We next establish the following main theorem, which confirms
(31) at zero rates (in Corollary 2 below).

Theorem 1: For any sequence of codes {Cn}∞n=1, we have

lim sup
n→∞

1

n
log

an
bn
≤ lim sup

n→∞

1

n
logMn, (32)

where Mn = |Cn|.
Before giving the proof, we elucidate the underlying idea

behind it. We first introduce the following necessary notation.
For block code Cn = {xn(1), x

n
(2), . . . , x

n
(Mn)
} consisting of Mn

distinct codewords, define the sets

Ti , {yn ∈ Yn : (xn(i), y
n) ∈ T(Cn)} (33)

for i = 1, . . . ,Mn. We can then write

δn = PXn,Y n(T(Cn)) (34)

=

Mn∑
i=1

PXn(xn(i)) Pr
(
Y n ∈ Ti

∣∣∣Xn = xn(i)

)
. (35)

Similarly, defining the sets

Ni , {yn ∈ Yn : (xn(i), y
n) ∈ N(Cn)} (36)

for i = 1, . . . ,Mn, we have

bn = PXn,Y n(N(Cn)) (37)

=

Mn∑
i=1

PXn(xn(i)) Pr
(
Y n ∈ Ni

∣∣∣Xn = xn(i)
)
. (38)

Finally for i, j = 1, . . . ,Mn with i 6= j, define

Bi,j ,
{
yn ∈ Yn : d(xn(i), y

n) = d(xn(j), y
n)
}
, (39)

and

Ωi,j ,
{
yn ∈ Yn : d(xn(i), y

n) > d(xn(j), y
n)
}
. (40)



Fig. 1. Illustration of the idea behind the proof of Theorem 1.

Then as shown in Fig. 1, we have that ∪Mn

j=1,j 6=iBi,j is a
finite cover of Ti, i.e.,

Ti ⊆ ∪Mn

j=1,j 6=iBi,j . (41)

Hence,

Pr
(
Y n ∈ Ti|Xn = xn(i)

)
≤ Pr

Y n ∈ Mn⋃
j=1,j 6=i

Bi,j

∣∣∣∣∣∣Xn = xn(i)

 (42)

≤
Mn∑

j=1,j 6=i

Pr
(
Y n ∈ Bi,j |Xn = xn(i)

)
(43)

≤ (Mn − 1) max
1≤j≤Mn,j 6=i

Pr
(
Y n ∈ Bi,j |Xn = xn(i)

)
(44)

= (Mn − 1) Pr
(
Y n ∈ Bi,j∗i |X

n = xn(i)
)
, (45)

where the second inequality follows from the union bound and
j∗i is the maximizer of (44). Next, noting that

Ωi,j ⊆ Ni (46)

for all 1 ≤ j ≤Mn and j 6= i, we have

Pr
(
Y n ∈ Ωi,j∗i |X

n = xn(i)
)
≤ Pr

(
Y n ∈ Ni|Xn = xn(i)

)
.

(47)

Thus, if Pr
(
Y n ∈ Bi,j∗i |X

n = xn(i)
)

and Pr
(
Y n ∈

Ωi,j∗i |X
n = xn(i)

)
are of comparable order in the sense that

Pr
(
Y n ∈ Ωi,j∗i

∣∣∣Xn = xn(i)

)
≥ c · Pr

(
Y n ∈ Bi,j∗i

∣∣∣Xn = xn(i)

)
(48)

for some constant c independent of n and i, then we have

Pr
(
Y n ∈ Ni

∣∣∣Xn = xn(i)

)
≥ c

Mn
Pr
(
Y n ∈ Ti

∣∣∣Xn = xn(i)

)
(49)

which immediately gives

bn ≥
c

Mn
δn (50)

and confirms (32). With this idea in mind, we next provide
the detailed proof.

Proof of Theorem 1: We present the proof in four steps.

Step 1: First, we calculate Pr
(
Y n ∈ Bi,j

∣∣xn(i)). For each xn(i)
and xn(j), if d(xn(i), x

n
(j)) = 2` ≥ 2 is even, then there are(

2`
`

)(
n−2`
m

)
of yn’s such that d(xn(i), y

n) = d(xn(j), y
n) = `+m

for 0 ≤ m ≤ n − 2`; else if d(xn(i), x
n
(j)) = 2` − 1 is odd,

then there exist no yn such that d(xn(i), y
n) = d(xn(j), y

n). As
a result, we have that

Pr
(
Y n ∈ Bi,j

∣∣∣xn(i))

=


n−2`∑
m=0

(
2`
`

)(
n−2`
m

)
(1− p)n−`−mp`+m,

if d(xn(i), x
n
(j)) = 2`;

0, if d(xn(i), x
n
(j)) = 2`− 1

(51)

=

{(
2`
`

)
p`(1− p)`, if d(xn(i), x

n
(j)) = 2`;

0, if d(xn(i), x
n
(j)) = 2`− 1.

(52)

Step 2: We next lower-bound Pr
(
Y n ∈ Ωi,j

∣∣xn(i)) in terms of
Pr
(
Y n ∈ Bi,j

∣∣xn(i)).
If d(xn(i), x

n
(j)) = 2` is even, there are

min{m,`−1}∑
`′=0

(
2`

`+`′+1

)(
n−2`
m−`′

)
(53)

of yn’s satisfying d(xn(i), y
n) = ` + 1 + m and d(xn(i), y

n) >
d(xn(j), y

n) for 0 ≤ m ≤ n− 2`; else if d(xn(i), x
n
(j)) = 2`− 1

is odd, then there are
min{m,`}∑
`′=0

(
2`−1
`+`′+1

)(
n−2`+1
m−`′

)
(54)

of yn’s satisfying d(xn(i), y
n) = ` + 1 + m and d(xn(i), y

n) >
d(xn(j), y

n) for 0 ≤ m ≤ n− 2`+ 1.
Taking `′ = 0 in (53) and (54) gives a lower bound on

Pr
(
Y n ∈ Ωi,j

∣∣xn(i)) as follows:

Pr
(
Y n ∈ Ωi,j

∣∣∣Xn = xn(i)

)

≥



n−2`∑
m=0

(
2`
`+1

)(
n−2`
m

)
(1− p)n−`−1−mp`+1+m,

if d(xn(i), x
n
(j)) = 2`

n−2`+1∑
m=0

(
2`−1
`+1

)(
n−2`+1

m

)
(1− p)n−`−1−mp`+1+m,

if d(xn(i), x
n
(j)) = 2`− 1

(55)

=

{(
2`
`+1

)
p`+1(1− p)`−1, if d(xn(i), x

n
(j)) = 2`(

2`−1
`+1

)
p`+1(1− p)`−2, if d(xn(i), x

n
(j)) = 2`− 1

(56)

≥ `

(`+ 1)

p

(1− p)
Pr
(
Y n ∈ Bi,j

∣∣∣Xn = xn(i)

)
(57)

≥ p

2(1− p)
Pr
(
Y n ∈ Bi,j

∣∣∣Xn = xn(i)

)
, (58)

where (57) follows from (52) and (58) holds since ` ≥ 1.



Step 3: We next can write

Ti =

{
yn ∈ Yn : d(xn(i), y

n) = min
un∈Cn\{xn

(i)
}
d(un, yn)

}
(59)

⊆
Mn⋃

j=1,j 6=i

{
yn ∈ Yn : d(xn(i), y

n) = d(xn(j), y
n)
}

(60)

=

Mn⋃
j=1,j 6=i

Bi,j , (61)

which implies, as already shown in (44), that

Pr
(
Y n ∈ Ti

∣∣∣Xn = xn(i)

)
≤ (Mn − 1) Pr

(
Y n ∈ Bi,j∗i

∣∣∣Xn = xn(i)

)
, (62)

where j∗i is the maximizer in (44). Therefore with this j∗i , we
have that

Pr
(
Y n ∈ Ni

∣∣∣Xn = xn(i)

)
≥ Pr

(
Y n ∈ Ωi,j∗i

∣∣∣Xn = xn(i)

)
(63)

≥ p

2(1− p)
Pr
(
Y n ∈ Bi,j∗i

∣∣∣Xn = xn(i)

)
(64)

≥ p

2(1− p)
1

(Mn − 1)
Pr
(
Y n ∈ Ti

∣∣∣Xn = xn(i)

)
, (65)

where (64) follows from (58), and (65) is based on (62).
Step 4: We conclude from (65) that

bn =

Mn∑
i=1

PXn(xn(i)) Pr
(
Y n ∈ Ni

∣∣∣Xn = xn(i)

)
(66)

≥ p

2(1− p)
1

(Mn − 1)
·

Mn∑
i=1

PXn(xn(i)) Pr
(
Y n ∈ Ti

∣∣∣Xn = xn(i)

)
(67)

=
p

2(1− p)
1

(Mn − 1)
δn, (68)

which implies that

lim sup
n→∞

1

n
log

(
1 +

δn
bn

)
≤ lim sup

n→∞

1

n
log

(
1 +

2(1− p)
p

(Mn − 1)

)
(69)

= lim sup
n→∞

1

n
log(Mn), (70)

where the last step holds whether either Mn is bounded or
unbounded.

Finally, we directly obtain that (31) holds when the (asymp-
totic) rate of the code sequence considered in Theorem 1
is zero, hence confirming the exponential tightness of the
asymptotic generalized Poor-Verdú bound for the BSC at rate
zero.

Corollary 2: For any sequence of zero-rate codes {Cn}∞n=1

used over the BSC, we have

lim sup
n→∞

1

n
log

an
bn
≤ lim sup

n→∞

1

n
log |Cn| = 0.

Remark 1: It is worth emphasizing that Corollary 2 does
not hold for the memoryless binary erasure channel (BEC);
i.e., the asymptotic generalized Poor-Verdú bound is not
exponentially tight for this channel. Indeed for the BEC, the
bound in (3) is unchanged for every θ ≥ 1 (including when
θ → ∞) and is hence identical to the original Poor-Verdú
bound. The latter bound was shown in [17] not to achieve the
BEC’s error exponent at low rates.

IV. CONCLUSION

We derived a closed-form formula for the asymptotic gen-
eralized Poor-Verdú error bound to the multihypothesis testing
error probability and proved that, unlike the case for the
BEC [17], it achieves the zero-rate error coding exponent of
the BSC.

The proof of Theorem 1 relies largely on the analysis of
δn = Pr(T(Cn)), which is the probability of ties among com-
peting pairs of codewords and received words. In particular,
we used the union bound for estimating the probability of
ties given Xn = xn(i) in (62), which may be loose when
the sequence of codes is no longer of zero rate. Thus, if
a sharper bound can be employed, the multiplicative factor

p
2(1−p)

1
(Mn−1) in (68) may be improved. We conjecture that

Corollary 2 holds not just for zero-rate codes but that it can be
indeed extended to arbitrary code sequences of positive rate.
Proving this conjecture is an interesting future direction.

Other future work includes studying the relationship be-
tween the generalized Poor-Verdú bound and the meta-
converse channel coding bound [18], [19]2 and the further
examination of tight bounds for codes with small blocklength
(e.g., see [16], [18], [20]) used over channels with and without
memory.
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