Capacity of Finite-State Two-Way Channels

Jian-Jia Weng
National Taiwan Ocean University
Keelung City 202301, Taiwan
jiweng @email.ntou.edu.tw

Abstract—This paper addresses the capacity problem for a
class of finite-state two-way channels (FS-TWCs). Specifically,
inner and outer bounds for the channel capacity of FS-TWCs are
derived, and they are combined to characterize the capacity re-
gion in a limiting expression for some special FS-TWCs. Although
such an expression is often incomputable, it is illustrated via an
example that a reduction to single-letter form is possible as long
as the system variables exhibit stationarity and the associated
“average channel” satisfies certain symmetry properties.

I. INTRODUCTION

Channels with state [1, Section 4], being simplified models
to capture intrinsic impairments of signal transmissions such
as inter-symbol interference (ISI), burst errors, unwanted inter-
ference, and correlated fading, have been gaining importance
in developing next-generation communication systems. In par-
ticular, a considerable amount of research, e.g., [2]-[12], has
been devoted to the determination of channel capacity for one-
way channels (OWCs) under various scenarios, ranging from
specific state and noise dynamics to the presence of feedback
and/or multiple users. Closed-form expressions of channel ca-
pacity and computable bounds [12], [13] were also derived for
some cases. Apart from the OWC setup, this paper considers
a version of Shannon’s two-way communication channels [14]
with state, in order to understand the limits of full-duplex
transmission under more realistic channel assumptions.

Although the capacity region for discrete-memoryless two-
way channels (DM-TWCs) is generally unknown in single-
letter form, the recent work in [15] has characterized several
channel symmetry properties under which Shannon’s (non-
adaptive) random coding inner bound is tight. In addition,
Shannon’s DM-TWCs were studied in various directions such
as error exponent analysis [16], joint source-channel coding
[17], Q-graph coding for common-output DM-TWCs [18], and
the existence of a helper [19], a jammer [20], or an eavesdrop-
per [21]. Capacity results for continuous Gaussian and Poisson
TWCs were also given in [22] and [23], respectively, and a
practical adaptive linear coding scheme for Gaussian TWCs
was proposed in [24]. Compared to these findings, relatively
little is known about TWCs with state.

In the literature, the first TWC with state appeared in the
original work of Shannon [14, Section 16], where he derived a
capacity region in a limiting form [14, Theorem 6] for a class
of TWCs with state that exhibits a “recoverable” property,
i.e., where there exists a finite-length joint channel input that
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can reset the TWC to its initial state. The dirty paper coding
problem on TWCs in [25] viewed external interferences as
channel state. A capacity result was derived assuming that the
state is additive Gaussian interference and that the state is
partially and non-causally known to each transmitter. Another
related channel model is the TWCs with memory in [15,
Section IV] whose channel outputs are deterministic functions
of channel inputs and a jointly stationary and ergodic noise
process. Under some mild conditions, the capacity region was
determined.

This paper considers a class of finite-state TWCs (FS-
TWCs) inspired by prior work on FS-OWCs. We note that the
proposed channel model does not cover all possible FS-TWCs,
but it is sufficiently rich to study as a first step. The contribu-
tion of the paper includes a series of transmissibility results
for the FS-TWCs with/without the statistical information of
the initial state. Here, the derivations of the achievability part
are based on Gallager’s maximum likelihood (ML) decoding
[1] for the codebook that is obtained by concatenating multiple
(adaptive) code trees [26]. The converse part follows standard
steps, in which a dependency graph technique [26] is employed
to identify the required conditional independence. Moreover,
we combine the two parts to obtain the channel capacity for
some special cases in a limiting expression. Although this
expression is often incomputable, we show via an example
that it is possible to reduce it to a single-letter form. However,
such a reduction heavily relies on a stationarity property for
the state process and on a channel symmetry property [15];
this illustrates the difficulty in obtaining the capacity region
in single-letter form for FS-TWCs.

The rest of this paper is organized as follows. In Section II, a
channel model of FS-TWCs is proposed. Section III develops
inner and outer bounds for the capacity region for the FS-
TWC with different channel state information; their capacity
regions are also established for special cases. In Section 1V,
an example of the FS-TWC whose capacity region can be
obtained in single-letter form is presented, followed by some
comments on the related TWC models with state. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

Throughout this paper, all alphabets are assumed to be
finite. Random variables are denoted using capital letters,
and we use lower case letters to represent their realization
from an alphabet. We also adopt the convention that W" £
(W1, Wa,...,W,), where W;’s are random variables taking
values from an identical alphabet V. Moreover, the indices
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Fig. 1. The proposed FS-TWC model, where S~ represents the channel state
determined by the previous transmission and it influences the outputs at the
current transmission. Before transmission, an initial state, sg, will be given
by nature or generated according to some probability distribution Ps,.

7,3 € {1,2}, where j # j', are reserved for denoting
terminals. The message M, to be sent by terminal j via
N channel uses takes values from the message set M; =
{1,2,...,2M8} randomly and uniformly, where R; > 0 is
the transmission rate (bits/channel use) and NR; is assumed
to be a non-negative integer for simplicity. We also assume
that the messages M; and M, are independent.

A. Channel Model

An FS-TWC with channel input alphabets X;, output alpha-
bets V;, j = 1,2, and channel state alphabet S is described
by the conditional probability distribution

e))

forall x; € &}, y; € Yy, and 5,5~ € S, with a time-invariant
Markov property that at each time instant n > 1, we have that

Py, v, 81x1,X2,5- (Y1, Y2, 8|T1,72,57)

n n n—1
PYl‘,,,,Y27,l,S,,,\XI",X;HS’”*HSO(yl,na Y2,n, 5n|$1 y Lo, S ,50)

= Py, v,,51X1,X2,5 W1L.n> Y2,m5 5n|T1m, T2, Sn—1), (2)

where x; , and y; ,, represent the realizations of channel input
and output of terminal j at time-n, respectively.

In this channel model, we neither assign an initial state sg
nor impose a probability distribution Pg, for the initial state
Sy to make our channel model general. However, when using
the FS-TWC, we always assume that an initial state sq is given
and determined by nature or generated according to some Pk,
independently of the terminals’ message. In the latter case, we
only consider Pg,(so) > 0 for all so € S. Furthermore, we
also assume that the two terminals cannot access the initial
state (as shown in Fig. 1), but the terminals might know the
probability distribution Ps,. Below, we introduce some special
cases of the FS-TWCs. Note that our objective is not to analyze
each case, but to show some extensions from FS-OWCs.

B. Special Cases of the FS-TWCs

At first glance, the above channel model may look restrictive
(as the outputs depend only on the most recent channel state),
but in fact it generates a rich family of FS-TWCs, some of
which we list in what follows.

Definition 1. An FS-TWC is said to be indecomposable if for
every € > 0, there exists an integer No such that for N > Ny,

|PSN\X{\’,X§’,SO(SN|33{V?$§V750)

3)

—Psy1xv x5, (vl x5, 50)] < e

for all sg, s}, sy €8, 2V € AN, and z¥ € &Y.

We remark that the FS-TWC with independent and identical
distributed (i.i.d.) states (Sp,S1,...,) belongs to this class.
For indecomposable channels, the effect of the unknown initial
state sg dies out eventually.

Definition 2. An FS-TWC is said to have ISI if
“)

for all possible arguments of the conditional probabilities,
where Pg|x, x, s- models the ISI effect.

PY17Y27S‘X1»X2737 = PY17Y2\X17X2,57 PS\X1»X2757

An FS-TWC model without ISI can be obtained by setting
PS\Xl,Xg,S* (S|1‘1,{E2,8_) = PS\S* (S‘S_) for all T; € Xj,
y; €Y;, and s, s~ €S. If the ISI-free FS-TWC is additionally
indecomposable, then limy o0 Psy s, (8[s0) =7s(s) for all
so € S and the probability distribution 7g is the unique
stationary distribution of the underlying state process. Note
that the uniqueness of 7g is due to the finite alphabet and the
ISI-free assumptions and the properties in (2) and (3). An ISI-
free indecomposable FS-TWC is called stationary if Ps, =mg.

C. Codes and Definitions for Channel Capacity

Due to the continuous exchange of information between
the two channel terminals during transmission, each terminal
can generate its channel input by adapting to the previously
received signals in addition to its own message. This feature
enables the use of adaptive channel codes in the following
form.

Definition 3. An (N, Ry, R2) adaptive channel code C for
the FS-TWCs consists of two message sets My and M, two

sequences of encoding functions fi = (fi1, fi2,---» f1.N)
and fo = (fa1, fa,2,-- -, fa,n) such that

X1 = fir(Mr), X1 = fin(M, Y,

Xo1 = for1(My), Xon= fon(Ms, Yy ),
for n = 2,3,...,N, and two decoding functions g, and g
such that My = gy (M1, Y{N) and My = go(Ma, Yy are the
reconstructed messages at terminals 1 and 2, respectively.
Remark 1. The above encoder f; can be represented by 2™V
rooted trees, where each tree is associated with one possible
message (see [26, Section 4.1] for more details). As a code
is selected and given to terminals before any channel use, the
rooted trees only depend on its associated message. The tree
on the left in Fig. 2 is an N = 2 adaptive codeword for some

message mq.

Given an FS-TWC and a channel code (f1, f2,91,92), the
joint probability distribution of all involved system variables
conditional on Sy = s¢ is given by

N N N _ N N
PMl,Mg,SN,X{V,XéV,YIN,YQNwO(mlam275 y L1 T 5 Y1 Y2 \80)
N
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Fig. 2. The tree on the left represents a length-two (i.e., N = 2) adaptive
codeword for some message m1, where X1 = Y1 = {0, 1}; we concatenate
this type of codes (each with length L) multiple times to generate a code
as shown on the right for the proof of achievability. The boxes of the same
color contain an identical tree; the trees in the boxes of different colors are
generated randomly and independently.

where the equality holds due to (2). When Pg, is known, one
can further obtain Pg, rs, az, 55 xN xN yN v

Let Pe(];[())(O) = PI‘(Ml 35 Ml,MQ # M2|SO = So) denote
the average error probability of using the above channel code
C for an FS-TWC given initial state sq.

Definition 4. A rate pair (R1, R2) is said to be achievable for
an FS-TWC when Ps, is unavailable if there exists a sequence
of (N, Ry, Ra) codes such that

lim PN)(C) =0 for all sy €S.

5
N—ooo @90 ( )
Definition 5. The capacity region C1 of an FS-TWC with
unknown Ps, is the closure of all achievable rate pairs.

When Ps, is known, the average error probability is defined
as PV (C) = Yees Ps, (s0)PY)(C) and the achievability

condition in (5) changes to

lim PMY)(C) = 0.

N—oo ©)
Letting Cy denote the corresponding capacity region, we have
that C; C Cy since the condition in (5) implies the condition
in (6). Moreover, any inner (resp., outer) bound of C; (resp.,
C») is clearly an inner (resp., outer) bound of Cy (resp., C1).
In the next section, we develop inner and outer bounds for C;
and Co followed by some results on the capacity regions.

III. CAPACITY REGIONS FOR FS-TWCs

Here we present achievability results based on Gallager’s
analysis [1, Section 5] with ML decoding for the codebook
constructed by concatenating multiple adaptive code trees [26,
Section 2]. An illustration of this type of code is given in
Fig. 2. Such a proof technique has been seen in the context
of DM-TWCs [26] and FS-OWCs with/without feedback [8].
We also present outer bounds, the derivation of which mainly
follows standard steps and a dependency graph [26, Section 2]
is employed to reveal the required conditional independence.

A. Capacity Bounds for Cy

Theorem 1 (Inner Bound for C;). For any L € N, the convex
hull of the set of non-negative rate pairs (Ry, Ra) satisfying

1 . log, |S
Ry < 7 min 1AL 5[ As, 8 = s0) — 2225 )
1 . log, |S
R2<E‘gé%I(Az;E|A1,50=SO)—g#H, (7b)

is achievable, where Aj = [A;1,A;,, ...,
L-level tree code and the sub-vector A;  is of length |Y;
for 1 <[ < L, each component in Aj,l takes value in X;,
Y; = (Y;1,Y2,....Y, 1), § =1,2 and the joint probability
distribution of all involved random variables is marginalized
from

Al denoteslaif
-

PA, Ay,X1,X2,Y1,Y0]S0 (@1, @2, 1, T2, Y1, Y2|S0)
= PAl (al)PA2 (G'Z)
L

-1 1—
H PX1,1|A17Y1171 (@1]a@r, vy )PXz,L\A27Y;71 (z2,]az, y2 1)
=1
(®)

The proof of Theorem 1 follows Gallager’s approach in [27,
Section 4], which is similar to the proof of the achievability
result for DM-TWCs [27, Section 4] and for FS-OWCs in [8].
We omit the details here for the sake of brevity.

Py, vy,81%2,x2,5~ Y1,0,Y2,0, 51|T1,0, T2,0, 51-1)-

Remark 2. The inequalities in (7) can be rewritten in terms
of the causally conditional directed information [8]:

L. log, |S]|
Z min I(A, — Ya||Xa, S0 = s0) —
R < 7 [nin (A1 — Y3|| X2, S0 = s0) T (9a)
1 . log, |S
R2<ZglégI(AQ%YEHXl,SOZSO)—gQTH. (9b)

Here, I(UN — VN[|WN 2SN [(U VWi VimlS).
Moreover, if the FS-TWC is indecomposable, then the mini-
mum over all sg € S can be replaced with the maximum. Note
that L = 1 corresponds to the case of non-adaptive coding.

Theorem 2 (Outer Bound for Cy). Any achievable rate pair
(R1, Ro) must satisfy

1
0<R < NI(AI — Y5|| X2, S0 = s0) + €n,s,

1
0< Ry < NI(AQ = Y1[| X1, So = s0) + €n.sp

(10a)
(10b)

for all s € S, N > 1, and some joint probability distribution
of the form in (8), where limn_,oc €5, = 0 for all sy € S.
Proof: The proof follows the standard approach. First,
NR1 = H(Ml) = H(M1|S() = 80)
= I(My; My, Az, X5, Y5 [So = s0)
+H (M| My, Ay, X3, Y5V, Sy = s0)

< I(My; Mo, Ag, X3, Y|S0 = s0) + Nens, (11)
= I(My, A1; Mz, Ag, X3V, Y3 [So = s0) + Nens, (12)
=I(A1; X9, Y580 = s0) + New,s (13)



Ay X2,na Yé,n|X;_17 YVQn_lv So = 50) + NEN,SO

AL Yo o | X5, Y So = s0) + Nens,

(14)

N
> I
n;l
> I

= I(A; = Y5|| X5, S0 = s0) + Nen s, (15)

where Fano’s inequality [28] is applied in (11), (12) and (13)
hold since A; and M; have a one-to-one correspondence and
(X, YN Sy) d-separates [26] A; from (Ma, As), (14) holds
since (X;“l, Y] -1 Sp) d-separates Aﬁ;l from X ,,, and we
set V¥ = Y5 and X' = X in the last line. By symmetry, we
also have that NRy < I(Ag — E_HXI,SO = 80) + N€N7SO,
which completes the proof. ]
Let Ry 1, denote the achievable region of Theorem 1 for a
given L € N. A limiting expression of C; is given below.

Theorem 3. For ISI-free indecomposable and stationary FS-
TWCs, we have that C; = limy,_,oc R1 L.

Proof: Since (10) holds for all sy € S, it must also hold
when taking minimum over all sy € S. Letting N — oo then
results in that

. 1
0 < Rl < ]\/lgnoo g?é% NI(AI — Yé|‘X27SO = 50)7 (163)

0< Ry < 1\}51100 glé% %I(AQ — YFlHXLSO = SO). (16b)
Together with Remark 2, the set of rate pairs (R;, R2) that
satisfies the above two inequalities is equal to limy_, . R, ]
Since limy_,o R, is achievable, the outer bound matches
the achievable region asymptotically, i.e., C; = limp_,oc R1,L.
Note that a super-additivity of Ry 1 [8] is used to ensure the
existence of the limit. [ |

B. Capacity Bounds for Cy
Theorem 4 (Inner Bound for Cs). For any L € N, the convex

hull of the set of non-negative rate pairs (R1, Ry) satisfying

1
Ry < EI(Al;Y2|A2)

1
Ry < ZI(Az;YﬂAl)

(17a)
(17b)

is achievable, where A; and Y; are defined in the same way
as those in Theorem 1, and the joint probability distribution
of all involved random variables is given by (with (8))

PSO>A17A2,X17X2,Y17Y2 (807 ai,az, Ty, T2, y17y2) = PSO (50)

‘P, A,,X,,X2,Y1,Y5|50 (01,82, 1, T2, Y1, Y2|50). (18)

We omit the proof here (it is similar to the proof of Theo-
rem 1). The key is to consider a new channel law Py, y,|x, x,
that is obtained by averaging the FS-TWC with respect to all

States, 1.€., PY1,Y2|X1,X2 = Zso PY17Y2‘X17X275—=80PSO (S()).

A sequence of sets A, C R? is said to converge to a set A C R? if
limsup,, A, = liminf, Ay, ie., Up>1 Nim>n Am = Np>1 Um>n Am.

Remark 3. The inequalities in (17) can be rewritten as

1
R, < ZI(Al - Y3[| X32), (19a)

1
Ry < ZI(Az — Y1[|X1). (19b)

Also, setting L = 1 produces a non-adaptive coding result for
the FS-TWC with the knowledge Ps,.

We next obtain an outer bound for C based on Theorem 2.
Specifically, we “average” the conditions in (10) with respect
to all initial states, i.e.,

1
> Ps,(s0) [NI(Al = Y3| Xy, S0 = s0) + €ns
soES

I(A; = Y5 X2,50) + en

2=zl

log, |S
< I(A1—>1/2‘X2)+Og2T||+€N,
where the inequality is due to that |[(A — B|C,D)—I(A —

B|C)| < log|D| [8], which yields the following bound.

Theorem 5 (Outer Bound for Cy). Any achievable rate pair
(Ry1, Ro) must satisfy

]
)+ Og#"g' Fen (20a)

1

log, |S|
N

1

for every N € N and some joint probability distribution given
in (18), where limpy_,oo ey = 0.

Letting N — oo in (20), we further obtain that

1
0<Ri < lim —~I(A > Y||Xs),  Qla)
N—oco N
1
< < li —
0< Ry < Nh_fgo NI(Az — Y| X1), (21b)

where the two limits exist due to a super-additive property
for I(A; — Yy || X ;) for 4,5 = 1,2 with j # j' [26]. For
ISI-free indecomposable and stationary FS-TWCs, it can be
shown that the region enclosed by the above two inequalities
is equal to limy_, . Ro, 1, Where Ro 1, denotes the achievable
region described in Remark 3 for any fixed L € N and its limit
exists. We summarize this result in the following theorem.

Theorem 6. For ISI-free indecomposable and stationary FS-
TWCs, we have that C; = limr,_,o Ro 1.

IV. A CASE STUDY AND DISCUSSION

Similar to FS-OWCs with feedback, a capacity region in
single-letter form is hard to obtain for FS-TWCs. Evaluating
directed information is also difficult. However, using a sta-
tionarity property for the involved random variables can help
us simplify and compute the limiting expression. As a first
step, we derive a capacity result for a simple case: ISI-free
indecomposable and stationary TWC with i.i.d. states.

Theorem 7. The capacity region Co of FS-TWCs with i.i.d.
states such that Py, y,|x, x, = 2., T5(5) Py, v,|X1,X2,5 =s



satisfies the symmetry property in [15, Theorem 1] is the
convex closure of all rate pairs (R1, Ry) satisfying

Ry < I(X1;Y5|X3) and Ry < I(X9;Y1|1X1), (22)

where the joint probability distribution of all involved random
variables is given by

*
PS7X17X2,Y17Y2\50:SO - PX1PX2PY1,Y27S|X17X2,S’:SU’ (23)

and Py is the common optimal channel input distribution for
the one-way channels Py,|x, x,=z, T2 € Xa.

Proof: We begin with the summation in (14) to obtain a
simpler form of outer bound in this case:

N
> H(Yan|X35, Y3, 8o = s0)
n=1

—H (Yo, AT, X3, Y31, So = 50)

M) =

H(Y2n|Xom) — H(Y2,n|X1,n, X2,0) (24)

3
Il
-

I
] =

I(X1 ;Yo 0] Xon) < N-I(X1; Y2 X2), (25)

n=1

which results in that R; < I(X;;Y3]|X5) as N — oo, where
(24) holds since (X, Xo,) d-separates (A7, Y7 Sp)
from Y5 ,,, and (25) holds due to a concavity of the conditional
MI and we set Px, x, = &+ S0, Px, , x,.. By symmetry,
one also has that Ry < I(X7;Y3|X5). Here, the joint proba-
bility distribution of all involved random variables is:

= Px, x, E 75(8) Py, va| X1, X2,5-=s-
SES

PX17X27Y1,Y2

We next invoke the same proof of [15, Theorem 1] to show that
independent channel inputs of the form Py Px, can attain the
outer bound, where Py is the common optimal channel input
distribution for the marginal channels Py, |x, x,=z,> T2 € Xa.
Finally, choosing L = 1 and considering the joint probability
distribution of the form (23) in (19) completes the proof. M

Remark 4. Theorem 7 is the two-way counterpart of the ca-
pacity result for OWCs with i.i.d. state (see [29, Section 7.4])
where the state is unavailable at the sender and the receiver;
in this case, coding for an “average channel” achieves channel
capacity. However, as TWCs allow adaptive coding, a channel
symmetry property is further required for the average channel
to yield a capacity region in single-letter form.

To end this section, we distinguish our channel model from
other models. In [15], a TWC model with memory is described
by the following equations:

YLn = Fl (Xl,nv X2,n7 Zl,n)a
Y2,n = FQ(XLru X2,717 Z2,n)a

(26a)
(26b)
where I and F5 are deterministic and time-invariant functions

while {(Z1 p, Z2,,)}52; is a two-dimensional stationary and
ergodic noise process which is independent of the terminals’

Xy Xo
FS-TWC

Py, v,1X,,X2,51.82
)1 Y,

5 ) S
NG

i.i.d. state process

Terminal 1 Terminal 2

Fig. 3. Block diagram of the FS-TWCs in [25], where S1 and S2 are assumed
to be non-causally known the terminal 1 and 2, respectively.

messages M; and Ms. We compare this channel model with
the following special setting in our channel model (in (1))

Py, v, s1x:1,%2,5- = Py, v21X1,%2,5- Ps|s- 27

with Pg|s- being the transition kernel of a stationary and time-
invariant Markov chain. Given the marginal channels with state
Py x, x,,5-» J = 1,2, the functional representation lemma
[29, Appendix B] ensures the existence of functions F} -,
indexed by s~ € S, and corresponding Z " _’s such that Y =

s— (X1, X2, 7} ). Our channel mode is more general than
(26) in the sense that the channel input-output relationship can
be time-varying deterministic functions and that we do not
make any assumptions on Z’ __’s. Still, a detailed examination
is required to differentiate the channel models in (26) and (27).

Furthermore, the two-way writing on dirty paper [25] looks
at the system in Fig. 3; the state process {S1 5, S2.n}n>0 18
assumed to be an i.i.d. process and partial state information is
non-causally available at each terminal. Although the partial
state information enables a more general adaptive channel code
than the one in Definition 3, the channel model in [25] is a spe-
cial case of ours realized by setting S = (51, S2) in the above
ii.d. example. Indeed, capacity regions and bounds for this
model can be further investigated under different configura-
tions, e.g., the state information is partially/fully/causally/non-
causally known at encoders/decoders, which we leave for
future research. As a side remark, the results in [25] yield
a capacity region in single-letter form due to the Gaussianity
of the i.i.d. additive interferences (states) and noise variables
and the fact that adaptive coding is useless for Gaussian TWCs
[22].

V. CONCLUSION

We determined two capacity regions in a limiting expression
for a class of FS-TWCs depending on whether or not the sta-
tionary distribution of the initial state is known. In particular,
when this statistical information is available and the states are
i.i.d., the optimal coding scheme for this FS-TWC is simply
the optimal coding scheme for the associated average DM-
TWC. Via an example, we also found that the capacity region
in single-letter form for FS-TWCs requires much more than a
stationarity condition on the channel states, which highlights
the difficulty of fully solving the capacity problem. Future
research includes deriving computable bounds, finding more
conditions for single-letterization, and investigating the FS-
TWCs under other scenarios such as compound TWCs.
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