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Abstract

We study the maximum a posteriori (MAP) decod-
ing of space-time orthogonal block coded memoryless
non-uniform sources transmitted over multiple input-
multiple output channels with flat Rayleigh fading. We
use the pairwise error probability and the probability
of the intersection of two pairwise error events to estab-
lish tight algorithmic Bonferonni-type upper and lower
bounds on the symbol error rate (SER) and bit error
rate of PSK and QAM signaling schemes under MAP
decoding. The problem of mapping the binary sequence
to the constellation points is also studied. It is shown
that for a binary source with P(X = 0) = 0.9 and with
64-QAM signaling and MAP decoding, a judiciously
constructed mapping can achieve a channel signal-to-
noise ratio (CSNR) gain of 3.64 dB over Gray-type
mappings at SER = 1073. The advantage of MAP
decoding over separate (tandem) source and channel
coding is also explored.

1. INTRODUCTION

The original papers published on space-time trellis
codes and space-time orthogonal block (STOB) codes
[11] adopt the Chernoff upper bound to estimate the
pairwise error probability of codewords and build code
design criteria. Although the Chernoff bound results in
successful code constructions, it is quite loose even at
high values of the channel signal-to-noise ratio (CSNR).
It is common practice in the literature to use the union
bound to approximate the system SER. However, the
union bound is intrinsically loose particularly at low
CSNR. Therefore, using the Chernoff bound together
with the union bound results in poor approximations
to system performance. In [4], an exact closed form
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expression for the pairwise error probability (PEP) of
MAP-decoded STOB codes was derived and it was
shown that the PEP can be significantly lower un-
der MAP decoding as compared with ML decoding for
strongly non-uniform memoryless sources.

MAP decoding for sources with non-uniform distri-
bution and/or memory is a form of joint source-channel
coding. Most previous coding designs, such as the work
in [2, 9], show that independent (tandem) source and
channel coding outperforms joint source-channel cod-
ing above some threshold CSNR. An opposite behavior
is however observed in [14], where joint source-channel
coding based on Turbo coding (with significantly longer
block lengths) outperforms tandem coding. As can be
seen in the simulations of this paper, the CSNR thresh-
old beyond which tandem coding outperforms MAP
decoding is large. In particular, there are many ex-
amples in which joint source-channel coding outper-
forms tandem coding for the entire CSNR range of in-
terest. Indeed, in an information theoretic study [13],
it is proved that the error exponent (which is the rate
of asymptotic exponential decay of the probability of
block error) of optimal joint source-channel coding can
be as large as twice the error exponent of optimal tan-
dem systems, which concatenate optimal source coding
with optimal channel coding. This implies that for the
same probability of error, optimal joint source-channel
coding would require half the encoding/decoding delay
of the optimal tandem scheme.

In this paper, we establish very tight algorithmic
Bonferonni-type upper and lower bounds on the SER
and BER of STOB coded channels under MAP decod-
ing. The bounds are very close and often coincide up
to four significant digits even at moderate CSNR val-
ues. We also employ the results of [10] to study how
mapping from the binary bit-sequence (input to the
modulator) to the constellation points can improve the
symbol and bit error performance of STOB coded chan-



nels.

2. SYSTEM MODEL

The multiple input-multiple output (MIMO) com-
munication system considered here employs K trans-
mit and L receive antennas. The input to the system
is an i.i.d. bit-stream which can have non-uniform dis-
tribution. The baseband constellation points are de-
noted by {c()}7., where p is a positive integer. We
will assume that E{|c(,)[?} = 1. At symbol period ¢,
the signals {s¢}X | are simultaneously transmitted (see
below). The channel is assumed to be Rayleigh flat
fading, so that the complex path gain from transmit
antenna 4 to receive antenna j, denoted by Hj;, has
a zero-mean unit-variance complex Gaussian distribu-
tion, denoted by CA(0,1), with i.i.d. real and imagi-
nary parts. We assume that the receiver, but not the
transmitter, has perfect knowledge of the path gains.
Moreover, we assume that the channel is quasi-static,
meaning that the path gains remain unchanged during
a codeword transmission, but vary in an i.i.d. fashion
from one codeword interval to the other. The addi-
tive noise at receiver j at time ¢, N, is assumed to
be CN(0,1) distributed with i.i.d. real and imaginary
parts. We finally assume that the input, fading coef-
ficients, and channel noise are independent from each
other. Based on the above, for a CSNR of ~, at each
receive branch and at time ¢, the signal at receive an-
tenna j can be written as

K

i=1

Let ¢ = (c1,...,¢,)T be a vector of T consecutive con-
stellation points and S = (s, ..., Sy ) be the space-time
code corresponding to it, where w is the codeword
length, s; = (sf,...,s5)T, and T denotes transposition.
In the case of STOB codes, we have w = g7, where
g is the coding gain and SST = g||c|]L,, where I, is
the 7 x 7 identity matrix and ! represents complex con-
jugate transposition. As an example, for the code G®
in [11], w = 8, 7 = 4, and g = 2, and for Alamouti’s
G? code [3], g = 1 and w = 7 = 2. The input-output
relationship of STOB coded channels can be written

as [4]
7 =g, /%ch + 7,

where Y; = Y. |H;|? and @9 = (N{,..,N/)T is an
additive white Gaussian noise vector with i.i.d. compo-
nents of distribution Ny ~ N/(0, gY;).

3. SER AND BER BOUNDS UNDER MAP
DECODING

In this section, we derive the formulas to compute
Bonferroni-type upper and lower bounds on the SER
and BER of space-time orthogonal block coded chan-
nels under MAP decoding. Two computationally less
demanding bounds on the BER are also presented in
Subsection 4.2.

For a positive integer M, let Ay,..., Ay be events
in an arbitrary probability space. A stepwise algorithm
is proposed in [8] to compute the following Bonferroni-
type lower bound, due to Kounias [7], for the probabil-
ity of the union of the A;:

M
i=1 i€ ijez
1<j
(1)
where 7 C {1,2, ..., M}. Also, as shown in [8], one can
employ Kruskal’s greedy algorithm [1] to calculate the

Hunter [5] Bonferroni-type upper bound for the prob-
ability of the union of the A;, which is given by

M M
P (U Az-) <> P(4;) — max P(A;N Ay),

where 7 is the set of all spanning trees of the M indices,
i.e., the trees that include all indices as nodes.

3.1. The Symbol Error Rate

For a constellation of size M, the SER under symbol
MAP decoding is given by

M
SER = P (elcqw))p(cw)
u=1

= Z P, U €ui p(“)a (3)
u=1 iFu

where p(u) = p(cu), P (-lew)) £ P,(-) is the condi-
tional probability given that c(,) was sent, and €,; indi-
cates the error event that c(;) has a larger MAP metric
than c(y) (i-e., ¢(;) is preferred to c(,) at the receiver).
To find lower and upper bounds on the probability of
each union in (3), we need to find the probability of
€y; and its intersection with €,;, which we will refer
to as the 2-D PEP of ¢,y with ¢(; and ¢(;). We note
that Py (ey;) is indeed the PEP. It was shown in [4] that
the PEP between symbols c(,y and c(; is given in (4),
where
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and we have set E?:L Bi = 1for L > U. We can also
show that the 2-D PEP may be found via
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is the bivariate Gaussian function.

3.2. The Bit Error Rate
Under symbol MAP decoding, the BER is given by

M
BER = 3 p(u)Py(u), (6)

u=1

where Py(u) is the bit error probability given that
C(u) s sent. Noting that P(é=C(j)|C=C(u)) =

(1 - P, (U#j e,-j)), we have

ZDH gu) [1-Pu | e | |

1°g2 i
(7)

where Dy (j,u) is the Hamming distance between the
bit assignments of ¢(;) and c(,. From the above, it

10°

107 E
107°L 4
g
8107
S
PR 4
m
10°L E
10°k, E
© - Tandem, 16-state 5
—%- Tandem, 64-state
_,[L=— MAP decoded
10 : : ‘ ‘ ‘ ‘
5 10 15 20 25 30 35
CSNR indB
Figure 1: Comparison between tandem and MAP-

decoded 16-QAM schemes with Gray mapping for a
system with K =2, L = 1, and G2 STOB code.

is clear that finding the upper and lower bounds on
the BER requires the evaluation of lower and upper
bounds on the probability of the union in (7), respec-
tively. These bounds, in turn, require the computa-
tion of

rule = {Q <5mém %S f>}

and P,(e;; Neg;), which is the expected value of

v (pikj:Ai,ij\/?+ uk]\/_+

Aij Akj
5 VY’ S VY
with respect to Y, where A2 .. = (02;,—07,)/di;- There-

fore, the results of Section 3.1 can be used here to com-
pute the lower and upper bounds on the BER.

4. NUMERICAL RESULTS

4.1. Tandem vs. Joint Source-Channel Coding

Figure 1 compares a MAP decoded system with
two tandem systems for a dual transmit-single re-
ceive MIMO channel with G2 code, 16-QAM signaling,
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Figure 2: The star-QAM signaling scheme with quasi-
Gray mapping. A is a normalizing factor and equals

1/24/10 and i = /-1.

and Gray mapping. The input is an i.i.d. bit-stream
with P(X = 0) = 0.89 so that the source entropy is
H(X) = 0.5. The tandem systems comprise Huffman
coding of order 4 followed by 16-state or 64-state rate-
1/2 convolutional coding. The convolutional codes are
non-systematic and are the best codes reported in [6]
in terms of having the largest free distance. The length
of the input bit-stream is two million bits. The test is
repeated 1000 times and the average BER is reported.
For MAP decoding, ten million bits are used.

It is observed that the MAP-decoded system is su-
perior to the tandem system when the BER is larger
than 1076, which is the BER range of interest in many
applications. We have also observed that as the con-
stellation size increases, the MAP decoded system is
superior for a wider range of the CSNR. Note that the
memory and computational complexity of the tandem
system considered here is significantly higher than the
MAP-decoded system.

4.2. SER and BER Bounds for M-ary Signaling

In this subsection we study the SER and BER
bounds and the simulation results for i.i.d. inputs with
two dimensional signaling for a dual transmit-single re-
ceive system. Two systems are considered: one with
an equiprobable input and ML decoding and another
with P(X = 0) = 0.9 and MAP decoding. For SER,
the union bound given by

Union Bound = Zp(u) Z P, (i)

is also plotted. To have an estimate of the BER, one
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Figure 3: (a) SER and (b) BER curves for 8-Point Star
QAM modulation with quasi-Gray mapping, K = 2,
L =1, and G2 STOB code.

can replace P (&= c(j)lc = cq,) with Pu(ey;) in (7).
This will result in an upper bound on the BER, because
Py(euj) > P (¢ =¢(j)|c = ¢(u))- Since Gray mapping is
used, SER/ log, (M) is plotted as a lower bound on the
BER.

In order to emphasize the fact that the bounding
technique presented in this paper puts no constraints
on the signaling or mapping schemes, we consider a
non-standard (neither PSK nor square-QAM) 8-point
Star-QAM signaling scheme in Figure 2, where a quasi-
Gray signal mapping is indicated in brackets. The SER
and BER curves of this scheme are plotted in Figures
3.a and 3.b, respectively, and demonstrate the tightness
of the bounds. Note that the bounds become tighter
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Figure 4: BER curves for 32-PSK modulation with
Gray mapping for a system with K =2, L. = 1, and G2
STOB code.
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Figure 5: SER curves for 64-QAM modulation with
Gray mapping for a system with K =2, L = 1, and G
STOB code.

as the source becomes more biased.

We observe from Figure 4 that the BER bounds
provide an excellent approximation even for negative
CSNR values and large constellations such as 32-PSK.
This figure also shows that the PEP-based BER esti-
mate is often very loose (as compared with the other
bounds). The gain of MAP decoding over ML decoding
is 1.85 dB at BER = 103. Figure 5 presents the SER
curves for 64-QAM and Gray mapping. It is interesting
to note again that as the source becomes more biased,
the bounds become tighter (this is specially true for
the upper bound). The curves also show that, as ex-
pected, the union bound becomes looser as the CSNR
decreases. The MAP decoding gain at SER = 1073 is as
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Figure 6: The star-QAM signaling scheme with M1
mapping.

large as 6.7 dB. The upper bound for the ML-decoded
system is up to 10% larger than the lower bound at low
CSNR values, but it becomes tight as the CSNR grows.
Both bounds are tight for the MAP-decoded case.

Further tests show that the bounds are tighter for
smaller constellations and they are as tight for other
values of P(X =0).

4.3. The Effect of Constellation Mapping

We next demonstrate that a large gain can be
achieved via signal mappings designed according to the
source non-uniform distribution over Gray and quasi-
Gray mappings. The M1 mapping was introduced in
[10] and was designed for the transmission of non-
uniform binary sources over single antenna additive
white Gaussian noise channels. It was shown in [12]
that the M1 map minimizes the SER union bound for
single antenna Rayleigh fading channels with M-ary
PSK and square QAM signaling.

Based on the design criteria proposed in [10], we
construct an M1-type signal mapping for the star-QAM
signaling scheme as shown in Figure 6. The SER per-
formance of the M1 and quasi-static mappings are com-
pared in Figure 7. It is observed that even for this small
signaling scheme, the CSNR gain of M1 mapping over
quasi-Gray mapping is nearly 2 dB with MAP decoding
at SER = 10~2. The gain due to source redundancy
when the source distribution varies between 0.5 to 0.9
is 7 dB with M1 mapping. Figure 8 compares the SER
curves for the Gray and M1 mappings for 64-QAM sig-
naling. This figure shows that the M1 map performs
very well for MIMO channels. The gain of the M1 map-
ping over Gray mapping is 3.7 dB at SER = 10~3. The
gain due to source redundancy is 10.4 dB.
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