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Abstract | General formulas for entropy, mu-

tual information, and divergence are estab-

lished. It is revealed that these quantities

are actually determined by three decisive se-

quences of random variables; which are, respec-

tively, the normalized source information den-

sity, the normalized channel information den-

sity, and the normalized log-likelihood ratio.

In terms of the ultimate cumulative distribu-

tion functions or spectrums of these random

sequences, entropy, mutual information and di-

vergence are respectively expressed in their

most general form. In light of the newly de-

�ned quantities, general data compaction and

data compression (source coding) theorems for

block codes, and the Neyman-Pearson type-II

error exponent subject to upper bounds on the

type-I error probability are derived.

I. Introduction

Entropy, divergence and mutual information are with-

out a doubt the most important quantities in the �elds

of information and communication theory. Almost all

information theoretical limits involve these quantities.

The simplest expressions for entropy, divergence and

mutual information are:
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for mutual information, where P
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and P
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are distributions de�ned over some proper observa-

tion spaces, and the subscript of E[�] indicates the

distribution employed in the expectation evaluation.

These formulas have an operational signi�cance only

when the theoretical limits are considered under an

independent and identically distributed environment.

However, in more complicated cases such as when

the statistics vary temporally, these formulas may no

longer be valid and some kind of generalization is re-

quired.

A straightforward generalization of these quantities

is to extend the simple per-letter formulas to their re-

spective ultimate average rates:
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for mutual information rate, where X denotes a se-

quence of �nite dimensional random variables; i.e.,
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and similar de�nitions apply for

^

X and Y . Therefore,

Shannon's coding theorems can be generalized for sys-

tems where the above limits exist [1, 7].

Constraints on the existence of the ultimate aver-

ages in the above formulas somewhat limit the use-

fulness of entropy, divergence and mutual information;

in some speci�c situations, a lot of e�orts is exerted to

show their existence instead of examining the underly-

ing theory itself. This leads us to raise the following

question: If all assumptions such as memorylessness,

stationarity, causality, ergodicity, information stabil-

ity, etc., are removed, do completely general formulas

for entropy, divergence and mutual information exist ?

The answer is indeed in the a�rmative for mutual in-

formation. In [10], Verd�u and Han show that the chan-

nel capacity of arbitrary single-user channels is equal

to the supremum, over all input processes, of the input-

output (mutual) inf-information rate. By adopting the

same technique as in [10], general expressions for the

capacity of single-user channels with feedback and for

Neyman-Pearson type-II error exponents are derived

in [3] and [2], respectively. Furthermore, an applica-

tion of the type-II error exponent formula to the non-

feedback and feedback channel reliability functions is

demonstrated in [2] and [5].

We therefore remark that the error probability of any

stochastic system is actually characterized by a se-

quence of random variables. In the case of channel

capacity, this sequence consists of the normalized in-

formation densities (evaluated under the optimal in-

put process); while in the case of the Neyman-Pearson

exponent, it consists of the normalized log-likelihood

ratios of the null hypothesis distribution against the



alternative hypothesis distribution (evaluated under

the null hypothesis distribution). The ultimate CDF

(cumulative distribution function) of this random se-

quence, which will be referred to in the next section as

the sup-spectrum of the sequence, then determines the

achievable error probability as illustrated in Figure 1.
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x

y

sup-spectrum of the random sequence

x is: 1. general "-capacity

2. general type-II error exponent

3. general source compression ratio

y is: 1. achievable channel coding error "

2. achievable type-I

3. achievable probability of correctly decoding

Figure 1: The random sequences are respectively: the

normalized information density under the optimal in-

put process for case 1, the normalized log-likelihood

ratio for case 2, and the normalized source density for

case 3.

The same argument can also be applied to the source

coding theorem; in this case, the decisive sequence of

random variables is the normalized source density. The

same �gure can therefore be used to illustrate the re-

lationship between the achievable source coding error

and the (lossless) data compression ratio. These ob-

servations lead us to conclude that such methodology

{ which consists of using the spectrum of a decisive

random sequence to formulate the corresponding er-

ror probability { is feasible for all three information

quantities.

Another issue considered in this paper is to coincide

the general expressions (which are written in terms of

the spectrum of the corresponding decisive random se-

quence) with the conventionally known formulas. In

[10], the general expression for "-capacity is of the form

sup

X

supfR : F

X

(R) < "g � C

"

� sup

X

supfR : F

X

(R) � "g;

where F

X

(�) is the sup-spectrum of the normalized in-

formation density. The general formula for the type-II

error exponent derived in [2] has a similar form:

supfD :

�

F (D) < "g � B(") � supfD :

�

F (D) � "g;

where

�

F (D) is the sup-spectrum of the normalized

log-likelihood ratio of the null hypothesis distribution

against the alternative hypothesis distribution, and "

is the largest type-I error probability achievable sub-

ject to a lower bound on the type-II error exponent

B. In terms of notation, one may �nd some di�culty

in connecting the above formulas to the conventional

expressions of the same quantities; this may therefore

obscure their physical meanings.

In this paper, we re-formulate the general expres-

sions of entropy, mutual information, and divergence

so that they coincide with their conventional counter-

parts as listed in Appendix A. The basic properties of

these quantities are also analyzed. The relationships

of these general expressions to the respective Shannon

theorems are presented in Appendix B.

II. General formulas and properties

For a sequence of random variables fG

n

g

1

n=1

, the inf-

spectrum u(�) and sup-spectrum �u(�) are de�ned:
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4

=supf� : �u(�) � �g; and

�

U

�

4

=supf� : u(�) � �g;

respectively, it can clearly be concluded that U =

U

0

, and

�

U =

�

U

1

� ; where the superscript \-" de-

notes a strict inequality in the de�nition of

�

U

1

�
; i.e.,

�

U

�

�

4

=supf� : u(�) < �g: For a better understanding of

these quantities, we depict them in Figure 2. Based on

the above notations, the general expressions of entropy,

mutual information, and divergence are re-formulated

in Appendix A. Some properties of entropy, mutual

information, and divergence are listed in the next the-

orem [4].

Theorem For �; 
; � + 
 2 [0; 1], the following state-

ments hold.

1.

�

H

�

(X) � 0.

�
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(X) = 0 if and only if fX

n
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is ultimately deterministic

in probability. (also applies toH
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�
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�
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Figure 2: The ultimate CDF of a sequence of random

variables fG

n

g

1

n=1

. �u(�) = sup-spectrum of G

n

; u(�) =

inf-spectrum of G

n

.
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4. 0 � H
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(X) � log jX j, where each

X

(n)

i

2 X , i = 1; : : : ; n and n = 1; 2; : : :, and

X is �nite.

5. I
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6. (Data processing lemma) Suppose X

n
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and X

n

3

are conditionally independent given X

n

2

. Then

I
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7. (Optimality of independent inputs) Consider a �-

nite alphabet, discrete memoryless channel { i.e.,

P
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P
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, for all n. For any input

X and its corresponding output Y ,

I
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(X ;Y ) � I

�

(

�

X ;

�

Y ) = I(

�

X;

�

Y );

where

�

Y is the output due to

�

X, which is an in-

dependent process with the same �rst order statis-

tics as X , i.e., P

X

n

=

Q

n

i=1

P

X

i

.

In Appendix B, we generalize the Shannon coding

theorems in terms of these new formulas. These gen-

eral coding theorems lead us to make the following ob-

servations.

� The block source coding theorem in [8], which

states that the minimum achievable �xed-length

source coding rate of any �nite-alphabet source

is

�

H(X) =

�

H

1

�(X), has been generalized. Note

that

�

H(X) also denotes the general formula of

the resolvability of X, which represents the min-

imal number of random bits per sample required

to reproduce the n-fold distribution of X with

arbitrary accuracy as n grows to in�nity [8].

� Consider the special case where �(1=n) log

P

X

n

(X

n

) converges in probability to a con-

stant H; this is indeed the AEP [6] which

is a weaker condition than the convergence of

(1=n)

P

n

i=1

H(X

i

), but implies information sta-

bility [9]. In this case, both h

X

(�) and

�

h

X

(�)

degenerate to a unit step function, yielding

H(X) =

�

H

"

(X) =

�

H(X) = H for all " 2 (0; 1).

Hence, our result reduces to the conventional

source coding theorem [9, Theorem 1].

� More generally, if �(1=n) logP

X

n

(X

n

) converges

in probability to a random variable Z whose CDF

is F

Z

(�), we have

Pe � 1� F

Z

(R) for R =

�

H

"

(X) = H

"

(X):

Therefore, the relationship between the code rate

and the ultimate optimal error probability is

clearly de�ned as well.

Appendix A : General formulas for entropy,

mutual-information, and divergence

Entropy

Observations : Arbitrary sequence of random

source X.

Decisive Random Sequence (normalized source den-

sity):
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Mutual information

Observations : Arbitrary sequence of channel in-

put and output processes X and Y .

Decisive Random Sequence (normalized information

density):
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Divergence

Observations : Arbitrary sequence of two ran-

dom observations X and

^

X.

Decisive Random Sequence (normalized log-likelihood

ratio):
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Appendix B : General Shannon theorems

General lossless source coding theorem

Minimum source coding error: 1� ".

General source compression ratio achievable:

�

H

"

(X).

General lossy source coding theorem

Source coding distortion constraint: "-distortion < D.

General source compression ratio achievable:

R

1�"

(D)

4

= min

fP

Y jX

: "�distortion�Dg

I(X;Y ).

For a de�nition of "-distortion refer to Appendix C.

General channel coding theorem

Minimum channel coding error: ".

General channel capacity: I

"

(X;Y ).

General Neyman-Pearson type-II error expo-

nent of �xed test level

Type-I error bound: ".

General limsup of type-II error exponent:

�

D
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X).

General liminf of type-II error exponent: D

"

(Xk

^

X).

General Neyman-Pearson type-II error expo-

nent of exponential test level

Achievable type-I and II error exponent pair:
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^

X

(s)

exhibits a tilted distribution de�ned in [4].

Appendix C : De�nition of "-distortion

Given a sequence of (arbitrary) distortion measures

�
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(�; �) for an arbitrary source X, a sequence of data

compression codes ff
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