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Abstract — We study the analytical computation of
Csiszar’s [2] random-coding lower bound and sphere-
packing upper bound for the lossless joint source-
channel (JSC) error exponent, E;(Q,W), for a dis-
crete memoryless source (DMS) Q and a discrete
memoryless channel (DMC) W. We provide equiva-
lent expressions for these bounds, which can be read-
ily calculated for arbitrary (Q, W) pairs. We also es-
tablish explicit conditions under which the bounds co-
incide, thereby exactly determining E;(Q,W).

I. CsiszArR’S UPPER AND LOWER BOUNDS

Definition 1 A JSC code with blocklength n for a DMS with
finite alphabet S and distribution @, and a DMC with finite
input alphabet X, finite output alphabet ) and transition
probability W £ Py |x is a pair of mappings f, : S — &A™
and ¢, : Y" — S™. The code’s average error probability is

P(Q,W) £ Q") Pyix ("™ | fn(s")).
{(s™y™):pn (y™)#s™}
Definition 2 The JSC error exponent E;(Q, W) for source
{Q : S8} and channel {W : X — Y} is defined as the largest
number F for which there exists a sequence of JSC codes
(fas n) with E < liminf,—ec — 2+ log P(Q, W).

Proposition 1 [2] The JSC error exponent E;(Q, W) satis-
fies ming[e(R, Q)+ E-(R,W)] < E;(Q,W) < mingle(R, Q)+
Esp(R,W)], where e(R, Q) is the source error exponent, and
E.(R,W) and Esp(R,W) are the random-coding lower bound
and the sphere-packing upper bound for the channel error ex-
ponent, respectively.?

II. MAIN RESULTS

Theorem 1 The JSC random-coding and sphere-packing
bounds of Proposition 1 can be written as®
max [E,(p) = Es(p)] < E;(Q,W) < max[E,(p)—Es(p)], (1)
0<p<1 p=0
where E,(p) is Gallager’s channel function

1+4p
1
oY (X peonRula) |
yeY \zeX
and F;(p) is Gallager’s source function
1
Ey(p) £ (14 p)log Y Q(s) ™.
s€S
From Theorem 1, we first note that Csiszar’s JSC random cod-
ing lower bound, ming[e(R, Q)+ FE, (R, W)], is indeed identical
to Gallager’s lower bound established in [4, Problem 5.16] — as
the latter bound is exactly the left-hand side bound in (1). We

Ay
Eo(p) = max
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2We thus call the lower bound the “JSC random-coding bound”
and the upper bound the “JSC sphere-packing bound.”

3We assume that H(Q) < C, since otherwise E;(Q, W) = 0.

also remark that the minimizations in Proposition 1 are equiv-
alent to more concrete maximizations of E(p) £ E,(p)—FEs(p),
which boil down to determining F,(p). Although E,(p) does
not admit an analytical expression for arbitrary DMCs,* it
can be obtained numerically via Arimoto’s algorithm in [1].
Therefore, we can always numerically determine the upper

and lower bounds for E;(Q, W).

Lemma 1 If we denote p £ argmax,>o F(p), then the JSC
sphere-packing bound of Proposition 1 is attained for rate
Ry = H(Q®), where distribution Q®, @ > 0, is defined by
QW (s) & Qﬁ(s)/(zs,esQﬁ(s/)), s € 8. Furthermore,
if we let p £ min(p, 1), then the JSC random-coding bound of
Proposition 1 is attained for rate Ry, = H(QWY), seS.

We know that if the lower (or upper) bound in Proposition 1
is attained for rate R’ no less than R.., where R., is the
channel critical rate, then E;(Q,W) is determined exactly
[2]. In light of this fact, Theorem 1 and Lemma 1, we obtain
the following explicit (computable) conditions.

Lemma 2 Define distribution Q* by Q*(s) £ QW (s), s € S.
Then the following hold.

e H(Q") > Rer < p < 1 <= R = Rm > Rer. Thus,
E;(Q,W) = E(p).

e H(Q") < Rer <= p > 1 <= Ry, > Ry = H(Q").
Thus, E(1) < E,(Q, W) < E(p).

We also have examined Csiszar’s JSC expurgated lower bound
using a similar approach, and we have partially addressed the
computation of Csiszdr’s bounds for the (lossy) JSC exponent
with distortion threshold [3]. Finally, in [5], we provide a sys-
tematic comparison of E;(Q,W) and the tandem exponent
Er(Q,W), the exponent resulting from concatenating opti-
mal source and channel codes. Sufficient conditions for which
E;(Q,W) > Er(Q,W) are also established.
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4Note that for symmetric DMCs (in the Gallager sense [4]),
E,(p) can be analytically solved, hence yielding closed-form para-
metric expressions for the bounds in (1).



