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Abstract — We study, from an information the-
oretic perspective, the merits of joint source-
channel (JSC) coding versus traditional tan-
dem coding, which consists of separately per-
forming and concatenating source and channel
coding. Specifically, we provide a systematic
comparison of the JSC coding error exponent
EJ (Q, W ) with the tandem coding error expo-
nent ET (Q, W ) for communication systems with
discrete memoryless source and channel pairs
(Q, W ). We establish sufficient conditions under
which EJ (Q, W ) > ET (Q, W ), which are satisfied
for a large class of (Q, W ) pairs. We also show
that EJ (Q, W ) can sometimes be twice as large as
ET (Q, W ), hence illustrating the substantial gain
that joint coding can achieve over tandem coding.

I. Introduction

In [3], we investigate the analytical computation of
Csiszár’s [2] random-coding lower bound and sphere-
packing upper bound for the lossless joint source-channel
(JSC) error exponent, EJ(Q, W ), of a communication
system consisting of a discrete memoryless source (DMS)
with distribution Q and a discrete memoryless chan-
nel (DMC) with transition distribution W . We provide
equivalent expressions for these bounds which are readily
computable for arbitrary source-channel pairs, and we de-
rive explicit conditions under which the bounds coincide,
thereby exactly determining EJ(Q, W ).

In this work, we employ our results in [3] to provide a
systematic comparison between the JSC coding exponent
EJ(Q, W ) and the tandem coding exponent ET (Q, W ).
Since EJ(Q, W ) ≥ ET (Q, W ) in general (as tandem
coding is a special case of JSC coding), we are partic-
ularly interested to investigate the situation for which
EJ(Q, W ) > ET (Q, W ). Indeed, this inequality, when
it holds, provides a theoretical underpinning and justifi-
cation for JSC coding design as opposed to the widely
used classical tandem or separate coding approach, since
the former method will yield a faster exponential rate
of decay for the error probability, which often translates
into substantial reductions in complexity and delay for
real world communication systems. We establish suffi-
cient computable conditions (see Theorems 1, 2 and 3
in Section III) for which EJ(Q, W ) > ET (Q, W ) for any
given source-channel pair (Q, W ). Furthermore, for some
communication systems, we can show that joint coding
design can improve the error exponent by a factor of two
– i.e., EJ(Q, W ) can be twice as large as ET (Q, W ). Typ-
ical numerical examples show that our conditions hold for
a large class of (Q, W ) pairs.

1This work was supported in part by NSERC and PREA.

II. Preliminaries: JSC Error Exponent

Definition 1 A JSC code with blocklength n for a DMS
with finite alphabet S and distribution Q, and a DMC
with finite input alphabet X , finite output alphabet Y
and transition probability W , PY |X is a pair of map-
pings2 fn : Sn −→ Xn and ϕn : Yn −→ Sn. The code’s
average error probability is

P (n)
e (Q, W ) ,

∑

{(sn,yn):ϕn(yn) 6=sn}

Q(sn)PY |X(yn | fn(sn)).

Definition 2 The JSC error exponent EJ(Q, W ) for
source {Q : S} and channel {W : X → Y} is defined
as the largest number E for which there exists a sequence
of JSC codes (fn, ϕn) with

E ≤ lim inf
n→∞

− 1

n
log P (n)

e (Q, W ).

We know from the JSC coding theorem that EJ(Q, W )
can be positive if and only if H(Q) < C (otherwise
EJ(Q, W ) = 0), where H(Q) is the source entropy and
C is the channel capacity. Note that EJ(Q, W ) depends
only on the source and channel distributions.

Proposition 1 [2] The JSC error exponent EJ(Q, W )
satisfies minR[e(R, Q) + Er(R, W )] ≤ EJ(Q, W ) ≤
minR[e(R, Q) + Esp(R, W )], where e(R, Q) is the source
error exponent. Er(R, W ) and Esp(R, W ) are the
random-coding lower bound and the sphere-packing up-
per bound for the channel error exponent E(R, W ), re-
spectively.3

Proposition 2 [3] For a DMS {Q : S} and DMC
{W : X → Y } pair with H(Q) < C, the JSC random-
coding and sphere-packing bounds of Proposition 1 can
be written as

max
0≤ρ≤1

[Eo(ρ)−Es(ρ)] ≤ EJ(Q, W ) ≤ max
ρ≥0

[Eo(ρ)−Es(ρ)],

where

Eo(ρ) , max
PX

[
− log

∑

y∈Y

(
∑

x∈X

PX(x)P
1

1+ρ

Y |X (y | x)

)1+ρ]

and Es(ρ) , (1 + ρ) log
∑

s∈S Q(s)
1

1+ρ are Gallager’s
channel and source functions, respectively.

2We assume that the lengths of messages and codewords are
identical for the sake of convenience. The results easily follow
when k source symbols are mapped to n channel symbols, with
k/n converging to an arbitrary positive constant.
3We hence call the lower bound the “JSC random-coding
bound” and the upper bound the “JSC sphere-packing
bound.”



III. Joint versus Tandem Coding Exponents

The tandem coding exponent, which is the exponent
resulting from separately performing and concatenating
optimal source and channel coding, is given by [2]

ET (Q, W ) = max
R

min{e(R, Q), E(R, W )},

where e(R, Q) and E(R, W ) are the source and channel
error exponents, respectively. Hence, the random cod-
ing (respectively sphere packing) bound to ET (Q, W )
is obtained by replacing E(R, W ) in the expression of
ET (Q, W ) by Er(R, W ) (respectively Esp(R, W )). We
note that ET (Q, W ) is positive if and only if H(Q) < C.
Otherwise, ET (Q, W ) is zero. In the following, Rcr is the
channel critical rate [4], and Q(α), α ≥ 0, is a distribution
defined by

Q(α)(s) ,
Q

1
1+α (s)

∑
s′∈S Q

1
1+α (s′)

, s ∈ S.

Theorem 1 For a DMS {Q : S} and DMC {W : X →
Y} pair with H(Q) < C and log |S| > Rcr, if

max
(
H(Q(1)), Eo(1) − D(Q(β̂) ‖ Q)

)
≥ Rcr,

then EJ(Q, W ) > ET (Q, W ), where β̂ is the root of
H(Q(β)) = Rcr if H(Q) < Rcr < log |S| and 0 if H(Q) ≥
Rcr. Here, D(· ‖ ·) is the Kullback-Leibler divergence [6].
Furthermore, if we denote ρ̂ = arg maxρ>0 E(ρ), where
E(ρ) , Eo(ρ) − Es(ρ), then we obtain the following.

1) If min
(
H(Q(1)), Eo(1) − D(Q(β̂) ‖ Q)

)
≥ Rcr, then

0 <
1

2
E(ρ̂) −

∣∣∣∣
1

2
E(ρ̂) − D(Q(ρ̂) ‖ Q)

∣∣∣∣

≤ EJ(Q, W ) − ET (Q, W ) ≤ 1

2
EJ(Q, W ),

where EJ(Q, W ) is exactly given by EJ(Q, W ) = E(ρ̂);

2) If H(Q(1)) ≤ Rcr ≤ Eo(1) − D(Q(β̂) ‖ Q), then

0 < Rcr − Es(1) ≤ EJ(Q, W ) − ET (Q, W )

≤ E(ρ̂) − 1

2
[Eo(1) − Rcr + D(Q(β̂) ‖ Q)],

where EJ(Q, W ) satisfies E(1) ≤ EJ(Q, W ) ≤ E(ρ̂);

3) If Eo(1) − D(Q(β̂) ‖ Q) ≤ Rcr ≤ H(Q(1)), then

0 < E(ρ̂) − D((Q(β̂) ‖ Q)) ≤ EJ(Q, W ) − ET (Q, W ) ≤
E(ρ̂) − 1

2
[Eo(1) − Rcr + D(Q(β̂) ‖ Q)] ≤ 1

2
EJ(Q, W ),

where EJ(Q, W ) is exactly given by EJ(Q, W ) = E(ρ̂).

Observation 1 Eo(ρ) and Rcr , (∂Eo(ρ)/∂ρ)|ρ=1 do
not admit analytical expressions for arbitrary DMCs;
however, ρ̂, Eo(ρ̂) and Rcr can be easily obtained nu-
merically via Arimoto’s algorithm in [1]. Furthermore,
for the class of DMCs satisfying a certain symmetry (as
defined in [4, p. 94]), Eo(ρ) can be analytically expressed,
and then ρ̂, Eo(ρ̂) and Rcr can be solved from exact para-
metric expressions.

We know that if the minimum of the sum of e(R, Q)
and E(R, W ) is attained at Rm not less than Rcr, then
the JSC exponent is exactly determined; similarly, if
e(Ro, Q) = E(Ro, W ) for some Ro ≥ Rcr, then the tan-
dem exponent is also exactly determined. In this case,
if the minimum of the sum is attained at the intersec-
tion of e(R, Q) and E(R, W ), i.e., if Rm = Ro, then
the source-channel exponent is twice the tandem expo-
nent. An equivalent condition to the sufficient condition
for EJ(Q, W ) = 2ET (Q, W ) is: 1

2
E(ρ̂) = D(Q(ρ̂) ‖ Q) ≤

D(Q(1) ‖ Q) ⇐⇒ Ro = Rm ≥ Rcr, which easily fol-
lows from condition 1 of Theorem 1 and the fact that
D(Q(x) ‖ Q) = e(H(Q(x)), Q) is increasing in x.

When condition 1 is satisfied, we note that the dif-
ference between EJ(Q, W ) and ET (Q, W ) can be half of
EJ(Q, W ); moreover, as we will see in the examples, the
quantity 1

2
EJ(Q, W ) − D(Q(ρ̂) ‖ Q) can be fairly small

in practice. In this case, EJ(Q, W ) is around twice as
large as ET (Q, W ) for a large class of source-channel
pairs, i.e., the rate of decay of the error probability for
the JSC coding system can be twice that for the tan-
dem coding system. For conditions 2 and 3, we also
have precise bounds for EJ(Q, W )−ET (Q, W ). In these
cases, joint coding can still substantially outperforms tan-
dem coding, since both the lower and upper bounds for
EJ(Q, W )−ET (Q, W ) are close to 1

2
E(ρ̂) (in condition 2)

or 1
2
EJ(Q, W ) (in condition 3).

Lemma 1 If there exists an R1 such that e(R1, Q) =
Esp(R1, W ), then when E(1) > e(R1, Q), we have
EJ(Q, W ) > ET (Q, W ); if such R1 does not exist, then

when E(1) > − log
(
|S|Q(s)

)
, we also have EJ(Q, W ) >

ET (Q, W ), where Q(s) is the geometric mean of the
source probabilities, i.e.,

Q(s) ,



∏

s∈|S|

Q(s)




1
|S|

≤ 1/|S|.

Lemma 2 For any DMC such that Eex(0, W ) ,

limR↓0 Eex(R, W ) < ∞, if there exists an intersec-
tion R2 such that e(R2, Q) = Esl(R2, W ), then when
E(1) > e(R2, Q), we have EJ(Q, W ) > ET (Q, W ),
where Eex(R, W ) and Esl(R, W ) are the expurgated
lower bound and the straight-line upper bound for the
channel error exponent, respectively [6].

Using Lemmas 1 and 2, we obtain the following result.

Theorem 2 For a DMS Q and a DMC W for which
Eex(0, W ) < ∞, if E(1) ≥ ERl

, where

ERl
,

k2 log |S|
(
k1 + 1

|S|

∑
s∈S log Q(s)

)
+ k1Eex(0, W )

k1 − k2
,

k1 =
D
(
Q(1) ‖ Q

)
+ log |S| + 1

|S|

∑
s∈S log Q(s)

H (Q(1)) − log |S|
and

k2 =
Eo(1) − Rcr − Eex(0, W )

Rcr

,

then EJ(Q, W ) > ET (Q, W ).



Observation 2 We point out that ERl
in Theorem 2

can actually be easily computed since it only requires the
knowledge of Rcr and Eex(0, W ). Note that the condi-
tion Eex(0, W ) < ∞ in Lemma 2 and Theorem 2 implies
that the DMC has zero-error capacity equal to 0, see [6,
p. 187]. Thus, Lemma 2 and Theorem 2 apply to equidis-
tant channels ([5, p. 231]), in particular, to every channel
with binary input alphabet. An expression of Eex(0, W )
for the DMC with 0 zero-error capacity is given in [4,
Problem 5.24].

Theorem 3 If E(1) > D
(
Q(β̃) ‖ Q)

)
, where

β̃ =





root of H(Q(β)) = Rcr if H(Q) < Rcr < log |S|
0 if H(Q) ≥ Rcr

+∞ if log |S| ≤ Rcr

then EJ(Q, W ) > ET (Q, W ).

IV. Examples

Example 1 When Does the JSC Exponent Out-
perform the Tandem Exponent?

Consider a binary DMS {q, 1−q} and a binary erasure
channel (BEC) with parameter α, then E(1) = 1−log(1+
α) − 2 log(

√
q +

√
1 − q) and Eex(0, W ) = − log(α)/2.

If any of the conditions in Theorems 1, 2 and 3 holds,
then EJ(Q, W ) > ET (Q, W ). The above conditions are
summarized by Region F in Fig. 1:

F , (A ∪ B ∪ C ∪ D) ∩ E

= {(α, q) : EJ(Q, W ) > ET (Q, W )} ,

where

A ,

{
(α, q) : H(Q(1)) ≥ Rcr

}
,

B ,

{
(α, q) : Eo(1) − D(Q(β̂) ‖ Q) ≥ Rcr

}
,

C ,

{
(α, q) : E(1) > D(Q(β̂) ‖ Q)

}
,

D , {(α, q) : E(1) ≥ ERl
} ,

E , {(α, q) : H(Q) < C} .

Indeed, Region F shows that EJ(Q, W ) > ET (Q, W )
for a wide range of (α, q) pairs. Region G consists
of the pairs (α, q) such that H(Q) ≥ C; in this case,
EJ(Q, W ) = ET (Q, W ) = 0. Finally, note that when
(α, q) falls in Region H (i.e., when both α and q are
small), we are not sure whether EJ(Q, W ) is still strictly
bigger than ET (Q, W ).

Example 2 By How Much Can the JSC Exponent
Be Larger Than the Tandem Exponent?

We next compare the JSC exponent with the tandem
exponent for a binary DMS {q, 1 − q} and a binary sym-
metric channel (BSC) with parameter ε. Fig. 2 illustrates
condition 1 of Theorem 1 by showing the lower and upper
bounds for EJ(Q, W ) − ET (Q, W ) versus ε for different

values of q, when min[H(Q(1)), Eo(1) − D(Q(β̂) ‖ Q)] ≥
Rcr is satisfied. For example, when q = 0.1, H(Q(1)) ≥
Rcr is satisfied for ε ≥ 0.0005, while Eo(1) − D(Q(β̂) ‖
Q) ≥ Rcr is satisfied for ε ≥ 0.0012. Thus, plotting the

lower and upper bounds for ε ≥ 0.0012, we note that the
two bounds are very close (tight). Given that the upper
bound is actually equal to half of EJ(Q, W ), we conclude
that EJ(Q, W ) is nearly twice as large as ET (Q, W ) for
all ε ≥ 0.0012. The same behavior is observed for q = 0.2;
in this case, condition 1 holds for ε ≥ 0.001.
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Figure 1: The regions for the (α,q) pairs in the binary
DMS and BEC system.
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Figure 2: The lower and upper bounds of Theorem 1
(condition 1) for EJ (Q,W )−ET (Q,W ) for the binary
DMS and BSC system.
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