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Abstract — We study, from an information the-
oretic perspective, the merits of joint source-
channel (JSC) coding versus traditional tan-
dem coding, which consists of separately per-
forming and concatenating source and channel
coding. Specifically, we provide a systematic
comparison of the JSC coding error exponent
E;(Q,W) with the tandem coding error expo-
nent Er(Q, W) for communication systems with
discrete memoryless source and channel pairs
(Q,W). We establish sufficient conditions under
which E;(Q,W) > Er(Q, W), which are satisfied
for a large class of (Q, W) pairs. We also show
that F;(Q, W) can sometimes be twice as large as
Er(Q, W), hence illustrating the substantial gain
that joint coding can achieve over tandem coding.

I. INTRODUCTION

In [3], we investigate the analytical computation of
Csiszar’s [2] random-coding lower bound and sphere-
packing upper bound for the lossless joint source-channel
(JSC) error exponent, E;(Q,W), of a communication
system consisting of a discrete memoryless source (DMS)
with distribution @ and a discrete memoryless chan-
nel (DMC) with transition distribution W. We provide
equivalent expressions for these bounds which are readily
computable for arbitrary source-channel pairs, and we de-
rive explicit conditions under which the bounds coincide,
thereby exactly determining F;(Q,W).

In this work, we employ our results in [3] to provide a
systematic comparison between the JSC coding exponent
E;(Q,W) and the tandem coding exponent Er(Q,W).
Since E;(Q,W) > Er(Q,W) in general (as tandem
coding is a special case of JSC coding), we are partic-
ularly interested to investigate the situation for which
E;(Q,W) > Er(Q,W). Indeed, this inequality, when
it holds, provides a theoretical underpinning and justifi-
cation for JSC coding design as opposed to the widely
used classical tandem or separate coding approach, since
the former method will yield a faster exponential rate
of decay for the error probability, which often translates
into substantial reductions in complexity and delay for
real world communication systems. We establish suffi-
cient computable conditions (see Theorems 1, 2 and 3
in Section III) for which E;(Q,W) > Ep(Q, W) for any
given source-channel pair (Q, W). Furthermore, for some
communication systems, we can show that joint coding
design can improve the error exponent by a factor of two
—ie., E;(Q, W) can be twice as large as E7(Q, W). Typ-
ical numerical examples show that our conditions hold for
a large class of (Q, W) pairs.

1 This work was supported in part by NSERC and PREA.

II. PRELIMINARIES: JSC ERROR EXPONENT

Definition 1 A JSC code with blocklength n for a DMS
with finite alphabet S and distribution @, and a DMC
with finite input alphabet X, finite output alphabet )
and transition probability W £ Py |x is a pair of map-

pings® fn : S* — X" and ¢, : Y — S™. The code’s

average error probability is

PM(Q,W) 2 > Q(s")Pyix(y" | fu(s™)).
{(s™,y™):on (y™)#s"}

Definition 2 The JSC error exponent E;(Q,W) for
source {Q : S} and channel {W : X — Y} is defined
as the largest number E for which there exists a sequence
of JSC codes (fn, pn) with

E< hnm 1£f —— log PM(Q,W).

We know from the JSC coding theorem that E;(Q, W)
can be positive if and only if H(Q) < C (otherwise
E;(Q,W) = 0), where H(Q) is the source entropy and
C is the channel capacity. Note that E;(Q, W) depends
only on the source and channel distributions.

Proposition 1 [2] The JSC error exponent E;(Q, W)
satisfies ming[e(R,Q) + E-(R,W)] < E;Q,W) <
ming[e(R, Q) + Esp(R,W)], where e(R, Q) is the source
error exponent. E.(R,W) and E,,(R,W) are the
random-coding lower bound and the sphere-packing up-
per bound for the channel error exponent E(R, W), re-
spectively.?

Proposition 2 [3] For a DMS {Q : S} and DMC
{W : X — Y} pair with H(Q) < C, the JSC random-
coding and sphere-packing bounds of Proposition 1 can
be written as

max [Eo(p) = Ea(p)] < £5(Q, W) < max[Eo(p) — Ea(p)];

0<p<1
where
1+p
E.(p )—max[ logZ<ZPX P;?}? y|x)> }
yeEY \zEX
and Ei(p) £ (1 + p)logd s Q(s)ﬁ are Gallager’s

channel and source functions, respectively.

2We assume that the lengths of messages and codewords are
identical for the sake of convenience. The results easily follow
when k source symbols are mapped to n channel symbols, with
k/n converging to an arbitrary positive constant.

3We hence call the lower bound the “JSC random-coding
bound” and the upper bound the “JSC sphere-packing
bound.”



III. JOINT VERSUS TANDEM CODING EXPONENTS

The tandem coding exponent, which is the exponent
resulting from separately performing and concatenating
optimal source and channel coding, is given by [2]

Er(Q,W) = max min{e(R, Q), E(R,W)},

where e(R, Q) and E(R,W) are the source and channel
error exponents, respectively. Hence, the random cod-
ing (respectively sphere packing) bound to Er(Q, W)
is obtained by replacing E(R,W) in the expression of
Er(Q,W) by E.(R,W) (respectively Esp(R,W)). We
note that Er(Q, W) is positive if and only if H(Q) < C.
Otherwise, Er(Q, W) is zero. In the following, Re, is the
channel critical rate [4], and Q(®), a > 0, is a distribution

defined by
Qe QO
ZS/ES Qm (Sl)

, SES.

Theorem 1 For a DMS {Q : §} and DMC {W : X —
Y} pair with H(Q) < C and log|S| > Rer, if

max (H(QM), E,(1) = DQP || Q)) = Rer,

then E;(Q,W) > Er(Q,W), where 3 is the root of
H(QW) = R, if H(Q) < Rer < log|S| and 0 if H(Q) >
R.. Here, D(- || -) is the Kullback-Leibler divergence [6].
Furthermore, if we denote p = argmax,~o E(p), where
E(p) 2 E.(p) — Es(p), then we obtain the following.

1) If min (H(Q(l)),Eo(l) —D(QP || Q)) > Re,, then

0 < 3B~ |50 - D@ Q)

< EJ(Q7W)_ET(Q7W) < E-](Q7W)7

N =

where E;(Q, W) is exactly given by E;(Q, W) = E(p);
2) If H(QW) < Rer < Eo(1) = D(QP || Q), then

0 < Re —E (1) <E;QW)—Er(QW)
< B() - 5lE(1) - R + DQP | Q)

where E;(Q, W) satisfies E(1) < E;(Q,W) < E(p);
3) If E,(1) — D(QP || Q) < Rer < H(QW), then

0<E@p) - D(QP | Q) < Es(Q.W) ~ Er(Q.W) <
E(ﬁ) - %[EO(]') — Rer + D(Q(B> ” Q)] S %EJ(Qv W)7

where E;(Q, W) is exactly given by E;(Q,W) = E(p).

Observation 1 E,(p) and R.. 2 (0Eo(p)/0p)| =, do
not admit analytical expressions for arbitrary DMCs;
however, p, E,(p) and Rer can be easily obtained nu-
merically via Arimoto’s algorithm in [1]. Furthermore,
for the class of DMCs satisfying a certain symmetry (as
defined in [4, p. 94]), Eo(p) can be analytically expressed,
and then p, FE,(p) and R, can be solved from exact para-
metric expressions.

We know that if the minimum of the sum of e(R, Q)
and E(R,W) is attained at R,, not less than R.,, then
the JSC exponent is exactly determined; similarly, if
e(Ro,Q) = E(Ro, W) for some R, > R.r, then the tan-
dem exponent is also exactly determined. In this case,
if the minimum of the sum is attained at the intersec-
tion of e(R,Q) and E(R,W), ie., if Rm = Ro, then
the source-channel exponent is twice the tandem expo-
nent. An equivalent condition to the sufficient condition
for E;(Q,W) = 2Er(Q, W) is: 3E(p) = D(QP || Q) <
DQW || Q) <= R, = Rm > Rer, which easily fol-
lows from condition 1 of Theorem 1 and the fact that
DQ™ || Q) = e(H(Q™), Q) is increasing in .

When condition 1 is satisfied, we note that the dif-
ference between E;(Q, W) and Er(Q, W) can be half of
E;(Q,W); moreover, as we will see in the examples, the
quantity 1E;(Q, W) — D(QP || Q) can be fairly small
in practice. In this case, E;(Q,W) is around twice as
large as Er(Q,W) for a large class of source-channel
pairs, i.e., the rate of decay of the error probability for
the JSC coding system can be twice that for the tan-
dem coding system. For conditions 2 and 3, we also
have precise bounds for E;(Q,W) — Er(Q,W). In these
cases, joint coding can still substantially outperforms tan-
dem coding, since both the lower and upper bounds for
E;(Q,W)—Er(Q,W) are close to 2 E(p) (in condition 2)
or 2E;(Q,W) (in condition 3).

Lemma 1 If there exists an R; such that e(R1,Q) =
E;p(R1,W), then when FE(1) > e(R1,Q), we have
E;(Q,W) > Er(Q,W); if such Ry does not exist, then

when E(1) > —log (|S|Q(s)>7 we also have E;(Q, W) >

Er(Q,W), where Q(s) is the geometric mean of the
source probabilities, i.e.,

L
[ST

<1/|8].

Lemma 2 For any DMC such that Fe.(0,W) £
limpjo Eez (R, W) < o0, if there exists an intersec-
tion Ry such that e(R2,Q) = FEg(R2,W), then when
E() > e(R2,Q), we have E;(Q,W) > Er(Q,W),
where Ee.(R,W) and Eg(R,W) are the expurgated
lower bound and the straight-line upper bound for the
channel error exponent, respectively [6].

Using Lemmas 1 and 2, we obtain the following result.

Theorem 2 For a DMS @ and a DMC W for which
Eer(0,W) < o0, if E(1) > Eg,, where

_ kalog|S] (/cl + ok Yaes log Q(s)) 4 k1 B (0, W)

R k1 — ko
D(QU11Q) +10g1S] + X, 108 Q)
' H(QW) —log|S|
and Eo(l) — Rcr - Eea: (07 W)
k2 = R ’

then E;(Q,W) > Er(Q,W).



Observation 2 We point out that Er, in Theorem 2
can actually be easily computed since it only requires the
knowledge of R.r and E.,(0,W). Note that the condi-
tion Ferz(0, W) < 0o in Lemma 2 and Theorem 2 implies
that the DMC has zero-error capacity equal to 0, see [6,
p. 187]. Thus, Lemma 2 and Theorem 2 apply to equidis-
tant channels ([5, p. 231]), in particular, to every channel
with binary input alphabet. An expression of Fe, (0, W)
for the DMC with 0 zero-error capacity is given in [4,
Problem 5.24].

Theorem 3 If £(1) > D (Q(B> I Q)), where

_ root of H(QW) = R,
B= 0
+00

if H(Q) < Rer < log|S]|
if H(Q) > Rer
if log |S| < Rer

then EJ(Q: W) > ET(va)

IV. EXAMPLES
Example 1 When Does the JSC Exponent Out-
perform the Tandem Exponent?

Consider a binary DMS {¢,1— ¢} and a binary erasure
channel (BEC) with parameter ¢, then E(1) = 1—log(1+

a) — 2log(y/qg + v1—¢q) and Ec.(0,W) = —log(a)/2.
If any of the conditions in Theorems 1, 2 and 3 holds,
then E;(Q,W) > Er(Q,W). The above conditions are
summarized by Region F in Fig. 1:

F £ (AUBUCUD)NE
= {(a7q) : EJ(va) >ET(Q7W)}7

where
A 2 {(q:HQY) 2 Rer},
B 2 {(0,0:E0)-DQ7 Q> Ruy.
c 2 {@g:E0)>0Q7 |},
D £ {(aq): E(1) > Er,},
E 2 {(a,0):HQ <C}.

Indeed, Region F shows that F;(Q,W) > Er(Q,W)
for a wide range of (a,q) pairs. Region G consists
of the pairs («,q) such that H(Q) > C; in this case,
E;(Q,W) = Er(Q,W) = 0. Finally, note that when
(a,q) falls in Region H (i.e., when both a and ¢ are
small), we are not sure whether E;(Q, W) is still strictly
bigger than Ep(Q, W).

Example 2 By How Much Can the JSC Exponent
Be Larger Than the Tandem Exponent?

We next compare the JSC exponent with the tandem
exponent for a binary DMS {q,1 — ¢} and a binary sym-
metric channel (BSC) with parameter €. Fig. 2 illustrates
condition 1 of Theorem 1 by showing the lower and upper
bounds for E;(Q, W) — Er(Q, W) versus ¢ for different
values of ¢, when min[H(QW), E,(1) — D(QY || Q)] >
Re, is satisfied. For example, when ¢ = 0.1, H(Q") >
Re. is satisfied for ¢ > 0.0005, while E,(1) — D(Q" ||
Q) > Rer is satisfied for € > 0.0012. Thus, plotting the

lower and upper bounds for £ > 0.0012, we note that the
two bounds are very close (tight). Given that the upper
bound is actually equal to half of E;(Q, W), we conclude
that E;(Q, W) is nearly twice as large as E7(Q, W) for
all ¢ > 0.0012. The same behavior is observed for ¢ = 0.2;
in this case, condition 1 holds for € > 0.001.

Figure 1: The regions for the (a,q) pairs in the binary
DMS and BEC system.

0.12

T T T T T
—4&— The lower bound of EJfET when g=0.1, €2 0.0012.
—o— The upper bound of EJ—ET when g=0.1, €2 0.0012.
—s— The lower bound of EJ—ET when g=0.2, £2 0.001.
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Figure 2: The lower and upper bounds of Theorem 1
(condition 1) for E;(Q,W)—Er(Q, W) for the binary
DMS and BSC system.

REFERENCES

[1] S. Arimoto, “Computation of random coding exponent
functions,” IEEE Trans. Inform. Theory, vol. 22, pp. 665—
671, Nov. 1976.

[2] 1. Csiszdr, “Joint source-channel error exponent,” Probl.
Contr. Inform. Theory, vol. 9, pp. 315-328, 1980.

[3] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the compu-
tation of the joint source-channel error exponent for mem-
oryless systems,” Proc. IEEE ISIT 0/, June-July 2004.

[4] R. G. Gallager, Information Theory and Reliable Commu-
nication, New York: Wiley, 1968.

[5] F. Jelinek, Probabilistic Information Theory, New York,
McGraw Hill, 1968.

[6] I. Csiszdr and J. Korner, Information Theory: Coding

Theorems for Discrete Memoryless Systems, New York:
Academic, 1981.



