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Abstract

This work addresses the problem of designing Turbo codes for non-uniform binary
memoryless or independent and identically distributed (i.i.d.) sources over noisy chan-
nels. The extrinsic information in the decoder is modified to exploit the source redun-
dancy in the form of non-uniformity; furthermore, the constituent encoder structure is
optimized for the considered non-uniform i.i.d. source to further enhance the system
performance. Some constituent encoders are found to substantially outperform Berrou’s
(37,21) encoder. Indeed, it is shown that the bit error rate (BER) performance of the
newly designed Turbo codes is greatly improved as significant coding gains are obtained.
Comparisons to the optimal Shannon limit are also provided.

Keywords: Turbo codes, non-uniformi.i.d. sources, joint source-channel coding, AWGN
and Rayleigh fading channels, Shannon limit.

1 Introduction

In channel coding, the source is usually assumed to be a binary memoryless Bernoulli
(1/2) source, i.e., it generates uniform i.i.d. bit streams {dj}{2,, where Pr{d, = 0} =
Pr{d, =1} = 1/2. In reality, however, natural sources (e.g., image and speech sources)
often exhibit substantial amounts of redundancy in the form of memory and/or non-
uniformity [2]; in this case, a source encoder would be used. An ideal source encoder
would be able to eliminate all the source redundancy and hence produce a uniform i.i.d.
sequence of bits, which would then be used as the input of the channel encoder. However,
most existing source encoders are suboptimal. As a result, the input to the channel en-
coder contains a certain amount of residual redundancy. For example, the 4.8 kbits/s US
Federal Standard 1016 CELP speech vocoder produces an output that contains 41.5% of
residual redundancy due to non-uniformity and memory [3]. For uncompressed sources,
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it has been observed that many binary images (e.g., facsimile and medical images) may
contain as much as 80% of redundancy in the form of non-uniformity (e.g., [7], [14]), this
corresponds to the a priori probability Pr{d, = 0} = 0.97. Therefore, transmission of
sources with a considerable amount of residual or natural redundancy is an important
practical issue. Several studies (e.g., [1], [4], [11], [16] and [19], etc.) have shown that
appropriate use of the source redundancy can significantly improve the system perfor-
mance.

Turbo codes [6] have demonstrated excellent performance for uniform i.i.d. sources
over additive white Gaussian noise (AWGN) channels; to the best of our knowledge, the
issue of using Turbo codes for non-uniform i.i.d. sources has not been systematically stud-
ied. In essence, this is a joint source-channel coding problem. In this work, we investigate
the issue of designing Turbo codes for non-uniform i.i.d. sources sent over noisy channels.
Our objective is to strive to come as close to the Shannon limit as possible. The extrinsic
information in the Turbo decoder is modified to take advantage of the source redundancy
(this simple method was briefly mentioned in [13] and [9]; however, its performance was
not explicitly studied, particularly wvis-a-vis the Shannon limit); as a result, the BER
performance of the Turbo coded system is significantly enhanced. We also observe that
while the original Berrou Turbo code which uses the (37,21) convolutional code in each
constituent encoder offers extraordinary performance (excellent “waterfall” region at very
low SNR’s) for uniform i.i.d. sources, it provides a relatively poor performance with a
considerably high error floor when the source is non-uniform. An analysis of the encoder’s
structure reveals to us that it is important to find more suitable constituent encoders for
non-uniform i.i.d. sources. Through a systematic search we performed by simulations,
we show that some constituent encoders substantially outperform Berrou’s (37,21) en-
coders for a given non-uniform i.i.d. source. Significant coding gains are further achieved
by combining this optimized encoder structure with the appropriately modified decoder
that exploits the source non-uniformity.

2 Turbo Codes for Non-uniform I.I.D. Sources

A non-uniform i.i.d. source is described by the non-equiprobable probability distribution
of the bit stream. The source emits a sequence of bits {dj};°; with probability Pr{d, =
0} =po, k=1,2,--.

Turbo codes [6] use two (or more) simple convolutional encoders in parallel concate-
nation linked by an interleaver; in the decoder, constituent decoders are placed in serial
concatenation with an interleaver in between, and a deinterleaver is used in the feedback
loop from the second constituent decoder to the first. Each constituent decoder employs
the BCJR algorithm [5], and the decoding process is realized in an iterative fashion by
exchanging the extrinsic information between the two constituent decoders. Extraordi-
nary BER performance has been demonstrated by using Turbo codes for uniform i.i.d.
sources (with pp=1/2) over AWGN channels [6] and Rayleigh fading channels [10].

In the following, we consider the problem of designing Turbo codes for the trans-
mission of non-uniform i.i.d. binary sources over AWGN and Rayleigh fading channels.
We propose some modifications for the Turbo decoder in order to take advantage of the
source redundancy in the form of non-uniformity. We also optimize the Turbo encoder
structure with respect to the considered non-uniform i.i.d. source.



2.1 Modifications of the Decoder Extrinsic Information

In the BCJR algorithm used by the Turbo decoder, we observe that the log-likelihood
ratio (LLR) produced by the Turbo decoder can be decomposed into three terms:

A(dk) = Len(dy) + Leg(di) + Lop(dy),

where Lep(di), Leg(di), and Lgy(dg) are the channel transition term, the extrinsic in-
formation term, and the a priori term, respectively, [6], [12]. The extrinsic information
produced by one constituent decoder is used as the a priori estimation for the other
constituent decoder. At the first iteration, for the first constituent decoder, if the source
is uniform i.i.d., which is the case investigated in [6], we have
Pld, =1
Ly (dy) = log % =0,

since P(dy = 1) = P(d, = 0) = 1/2.

When the source is non-uniform i.i.d., log((1 — po)/po) # 0 is used as the initial a
priori input for the first decoder in the first iteration. As a result, in the output A(dy)
produced by the first decoder, Ly, (dx) = log((1 — po)/po). By passing this term together
with the extrinsic information from the first decoder to the second decoder, a BER
performance gain is observed!. It can be shown via the BCJR algorithm’s derivation
that log((1 — po)/po) will appear in the output A(dg) as an extra term. In our design,
we then use L., +log((1 — po)/po) as the new extrinsic information for both decoders at
each iteration. With this simple procedure, the performance is greatly improved.

2.2 Optimizing the Encoder Structure

In the original design of Turbo codes, Berrou et al. used a 16-state (37,21) recursive
systematic convolutional (RSC) code in both constituent encoders. From our simulations,
we found that a Turbo code using Berrou’s encoder performs poorly for non-uniform i.i.d.
sources over a wide range of Ej, /Ny values, where Ej, is the average energy per information
bit, and Ny/2 is the additive noise variance. Analysis of the tap coefficients reveals that
for non-uniform i.i.d. sources, especially when their probability distributions are heavily
biased, many possible states of this encoder may rarely or never be reached. For example,
when py = 0.9, suppose the (37,21) encoder starts at the all zero state 0000, where each
digit represents the content of each shift register, then the encoder would remain in this
state until a “1” arrives, which would cause a transition to state 1000. Since p, = 0.9,
with high probability, a state transition would occur among very limited number of
states, such as 1000, 1100, 0110, 0011, and 0001, etc. Furthermore, the parity sequence
generated by this encoder has low weight. As a result, these drawbacks would cause
performance degradations in the decoder. Therefore, for non-uniform i.i.d. sources, it
is more important to find appropriate encoder structures that can overcome the above
mentioned problems and hence offer better BER performances.

!This simple modification of appropriately using the source information in the Turbo decoder for
non-uniform sources was also briefly mentioned in [13] (see Remark 4.d on page 433) and [9] but not
explicitly studied and evaluated. One of our goals in this paper is to explicitly assess the gains achieved

by this method and examine how close we can come to the Shannon limit.



With this motivation, we performed a systematic search for better constituent en-
coders for a given non-uniform probability distribution of the source. In our simulations,
we only focused on 16-state encoders. Denote the coefficients of the feedback and feed-
forward polynomials of a 16-state RSC encoder in binary form as { fy, f1, fo, f3, fa} and
{90, 91, 92, 93, 9a }, respectively, where f;,g; = 0or 1, 4,5 = 0,1,---,4. Altogether there
are 2% x (2% — 1) = 496 possible combinations; therefore, an exhaustive search is im-
practical. Instead, for a given non-uniform i.i.d. source, we choose to determine the
sub-optimal encoder among those with fy = f4 = go = g4 = 1. The total number of such
encoders is 2% x 23 = 64. Again, to avoid an exhaustive search, the sub-optimal encoders
are obtained through the following iterative steps:

1) Fix the feed-forward polynomial, (e.g., {90, 91, 92, 93,94} = {1,1,1,1,1}), find (by
simulation) the best feedback polynomial among the remaining possible choices;

2) Fix the feedback polynomial as the one found in step 1), find the best feed-forward
polynomial among all remaining possible choices;

3) Fix the feed-forward polynomial as found in step 2), go back to step 1), if the
feedback polynomial coincides with the one obtained in step 1), stop (otherwise, proceed
to the next step).

Via this procedure, for a given non-uniform probability distribution, several encoders
were found to outperform Berrou’s (37,21) encoder significantly; they also have consider-
ably lower error floors. Among them, the (35,23) encoder gives the best performance for
po = 0.7 and 0.8; when py = 0.9, the best encoder is (31,23). However, when the source
is uniform i.i.d, Berrou’s (37,21) encoder gives a better performance in the water-fall
region than the above encoders, though its error floor is higher. For uniform sources,
improving the error floor region of Turbo codes is usually achieved at the expense of the
waterfall region; however, for the non-uniform case, this tendency seems to decrease as
Po increases.

3 Simulation Results and Discussions

In this section, we present simulation results of Turbo codes for non-uniform i.i.d. sources
over BPSK-modulated AWGN and Rayleigh fading channels. All simulated Turbo codes
use the same pseudo-random interleaver introduced in [6]. The sequence length is N =
512 x 512 = 262144 and 200 blocks are used; this would guarantee a reliable BER
estimation at the 107° level with 524 errors. The number of iterations used in the
decoder is 20. Simulations for our selected codes and the Berrou code are performed for
rates R. = 1/3 and R, = 1/2, for py=0.5, 0.7, 0.8 and 0.9. To show the performance
gains due to using the modified extrinsic information, simulations are also performed
by using the unchanged extrinsic information; i.e., the decoder has no knowledge of the
probability distribution and assumes the source is uniform?.

’In this case, regardless of the source generated at the encoder (py = 0.9, 0.8, 0.7 or 0.5), the
performance of the system with unchanged extrinsic information at the decoder varies very slightly with

po; so for this system, we can assume that pg = 0.5 at both the encoder and the decoder.
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Figure 1: Turbo codes for non-uniform i.i.d. sources, R.=1/3, N=262144, AWGN chan-

nel.

3.1 Performance Evaluations

Figure 1 shows the performance comparison of Berrou’s rate-1/3 (37,21) Turbo code
and our selected Turbo codes for transmitting uniform and non-uniform i.i.d. sources
(with pp=0.5, 0.7, 0.8 and 0.9) over AWGN channels by using the modified extrinsic
information in the decoder. The (35,23) code offers the best performance from py=0.7
up to 0.8; when py = 0.9, the (31,23) seems to be the best choice. At the 107> BER level,
the gains over the Berrou (37,21) code due to optimization of the encoder for py=0.7,
0.8 and 0.9 are 0.09, 0.51 and 1.18 dB, respectively. Furthermore, the gains due to using
the modified extrinsic information for py=0.7 and 0.8 (with the (35,23) code) are 0.43
dB and 1.08 dB, respectively; for py=0.9 (with the (31,23) code) it is 2.46 dB. Similar
results can be observed in Figure 2, in which the rate is 1/2. For example, when py=0.9,
our selected (31,23) code gives a gain of 1.08 dB over the Berrou (37,21) code at the
10~° BER level, while the gain achieved due to exploiting the source redundancy in the
form of non-uniformity is 2.20 dB.

In Figure 3, we provide the performance comparison for the Rayleigh fading channel
with known channel state information. When py=0.7, the gain due to encoder opti-
mization is visible only below the 10> BER level, because the performance offered by
Berrou’s code has lower error floor than that in the AWGN channel case. When py=0.8,
our (35,23) Turbo code offers a 0.33 dB gain at the 107> BER level over its (37,21)
peer; when py=0.9, the gain is further increased up to 1.08 dB by using the (31,23)
encoder. Furthermore, the gains due to exploiting the source redundancy in the form
of non-uniformity become bigger than those obtained in the AWGN channel case: when
po=0.7 and 0.8, the gains at a BER of 107 produced by the (35, 23) Turbo code are 0.54
dB and 1.36 dB, respectively; when py=0.9, the (31,23) Turbo code realizes a significant
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Figure 2: Turbo codes for non-uniform i.i.d. sources, R.=1/2, N=262144, AWGN chan-

nel.
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Figure 3: Turbo codes for non-uniform i.i.d. sources, R.=1/3, N=262144, Rayleigh

fading channel.
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Figure 4: Turbo codes for non-uniform i.i.d. sources, R.=1/2, N=262144, Rayleigh

fading channel.

3.01 dB gain. Similar performances for rate-1/2 are shown in Figure 4. For example,
at the same BER level, and for py = 0.9, by using our selected (31,23) code, the gain
achieved by encoder optimization is 1.03 dB, while the gain achieved due to using the
modified extrinsic information is also 3.01 dB.

3.2 Shannon Limit

In his landmark papers [17], [18], Shannon established the Lossy Information Transmis-
ston Theorem, also known as the Joint Source-Channel Coding Theorem with Fidelity
Criterion [15]. From this theorem, we know that for a given memoryless source and a
given memoryless channel with capacity C', for sufficiently large source block lengths, the
source can be transmitted via a source-channel code over the channel at a transmission
rate of R, source symbols/channel symbols and reproduced at the receiver end within an
end-to-end distortion given by D if the following condition is satisfied [15]:

R.-R(D) < C, (1)

where R(D) is the rate-distortion function. For a discrete binary non-uniform i.i.d. source
with distribution py, we have that D = P, (BER) under the Hamming distortion measure
[8]; then R(D) becomes

r(p,) = { (o) = ho(Fe). 0 < P < minfpo, 1 = po}
e 0, P, > min{py,1 — po}

where hy(-) is the binary entropy function: hy(x) = —zlog, 2 — (1 — ) log,(1 — z).



For AWGN and Rayleigh fading channels, the channel capacity is a function of Ej,/Ny;
i.e., C = C(Ey/Ny). Therefore, the optimum value of Ej,/Nj to guarantee a bit error rate
of P, can be solved using (1) assuming equality. This optimum value of E,/Nj is called
the Shannon limit, or the optimal performance theoretically achievable (OPTA). The
Shannon limit cannot be explicitly solved for a BPSK-modulated input due to the lack
of a closed form expression [10]; so it is computed via numerical integration.

For the above simulations, we computed the OPTA at the 107> BER level for rates 1/2
and 1/3, and for py = 0.7, 0.8 and 0.9. Table 1 provides the gaps in Ej/Ny between the
performance of the designed systems and the corresponding OPTA values. We observe
that the performances of our selected Turbo codes are significantly closer to the OPTA
limit than those offered by their (37, 21) peer. When py increases, the gaps become wider;
meanwhile, the gains achieved by using our selected encoders over the (37,21) encoder
become more significant. Designing more sophisticated Turbo-based joint source-channel
codes that further fill the OPTA gap for heavily biased sources (e.g., with py = 0.9) is a
challenging and interesting future work. Finally, we observe that the OPTA gaps become
smaller when the rate is lower.

Turbo Coding AWGN Rayleigh
System R.=1/2|R.=1/3| R.=1/2 | R.=1/3
(37,21), po = 0.7 1.07 0.89 1.17 0.91
(35,23), po = 0.7 0.87 0.80 1.16 0.91
(37,21), pp = 0.8 2.02 1.70 2.18 1.61
(35,23), pp = 0.8 1.56 1.19 1.88 1.28
(37,21), po = 3.69 3.20 4.12 3.26
(31,23), po = 2.61 2.02 2.99 2.18

Table 1: OPTA gaps in E,/N, at BER=107° level (in dB).

4 Conclusion

In this work, we investigate the joint source-channel coding issue of designing Turbo
codes for non-uniform i.i.d. sources over noisy channels. Both AWGN and Rayleigh
fading channels are considered. The source redundancy in the form of non-uniformity
is exploited by the decoder via a modified extrinsic information, and the constituent
encoders are optimized to further enhance the performance. Simulation results demon-
strate significant coding gains due to exploiting the source redundancy in the decoder as
well as using the optimized encoder structure. When py increases, the gap between the
performance and OPTA becomes wider. In general, better performance can be obtained
when the rate decreases. Our results are sub-optimal, further gains might be achieved
by a more complete encoder optimization and the use of asymmetric Turbo codes.
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