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Abstract—We present new results on bounding the probability
of a finite union of events, P

(⋃N
i=1 Ai

)
for a fixed positive integer

N , using partial information on the events joint probabilities. We
first consider bounds that are established in terms of {P (Ai)}
and {

∑
j cjP (Ai ∩Aj)} where c1, . . ., cN are given weights. We

derive a new class of lower bounds of at most pseudo-polynomial
computational complexity. This class of lower bounds generalizes
the recent bounds in [1], [2] and can be tighter in some cases
than the Gallot-Kounias [3]–[5] and Prékopa-Gao [6] bounds
which require more information on the events probabilities. We
next consider bounds that fully exploit knowledge of {P (Ai)}
and {P (Ai ∩Aj)}. We establish new numerical lower/upper
bounds on the union probability by solving a linear programming
problem with (N−1)3+N+3

2
variables. These bounds coincide with

the optimal lower/upper bounds when N ≤ 7 and are guaranteed
to be sharper than the optimal lower/upper bounds of [1], [2]
that use {P (Ai)} and {

∑
j P (Ai ∩Aj)}.

Index Terms–Union probability, upper and lower bounds,
linear programming, probability of error analysis, com-
munication systems.

I. INTRODUCTION

Lower/upper bounds on the union probability P
(⋃N

i=1Ai

)
in terms of the individual event probabilities P (Ai)’s and
the pairwise event probabilities P (Ai ∩ Aj)’s were actively
investigated in the recent past. The optimal bounds can be
obtained numerically by solving linear programming (LP)
problems with 2N variables [6], [7]. Since the number of
variables is exponential in the number of events, N , some
suboptimal but numerically efficient bounds were proposed,
such as the bounds in [8] that employ the dual basic feasible
solutions to reduce the complexity of the LP problem, and the
algorithmic Bonferroni-type lower/upper bounds in [9], [10].

Among the established analytical bounds is the Kuai-
Alajaji-Takahara lower bound (for convenience, hereafter re-
ferred to as the KAT bound) [11] that was shown to be
better than the Dawson-Sankoff (DS) [12] and the D. de Caen
(DC) [13] bounds. Noting that the KAT bound is expressed
in terms of {P (Ai)} and only the sums of the pairwise
event probabilities, i.e., {

∑
j:j 6=i P (Ai ∩ Aj)}, in order to

fully exploit all pairwise event probabilities, it is observed in
[14]–[16] that the analytical bounds can be further improved
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algorithmically by optimizing over subsets. Furthermore, in
[6], the KAT bound is extended by using additional partial
information such as the sums of joint probabilities of three
events, i.e., {

∑
j,l P (Ai ∩Aj ∩Al), i = 1, . . . , N}. Recently,

using the same partial information as the KAT bound, i.e.,
{P (Ai)} and {

∑
j:j 6=i P (Ai ∩Aj)}, the optimal lower/upper

bound as well as a new analytical bound which is sharper than
the KAT bound were developed in [1], [2].

In this paper, we first establish a new class of lower bounds
on P

(⋃N
i=1Ai

)
using {P (Ai)} and {

∑
j cjP (Ai ∩ Aj)}

for a given weight or parameter vector c = (c1, . . . , cN )
T .

These lower bounds are shown to have at most pseudo-
polynomial computational complexity and to be sharper in
certain cases than the existing Gallot-Kounias (GK) [3]–[5]
and Prékopa-Gao (PG) [6] bounds, although the later bounds
employ more information on the events joint probabilities.
Furthermore, for bounds on P

(⋃N
i=1Ai

)
that fully exploit

knowledge of {P (Ai)} and {P (Ai ∩ Aj)}, a new numerical
lower/upper bound is proposed by solving an LP problem with
(N−1)3+N+3

2 variables. This numerical lower/upper bound is
proven to be an optimal lower/upper bound when N ≤ 7 and
to be always better than the optimal lower/upper bound which
uses {P (Ai)} and {

∑
j P (Ai∩Aj)}. Finally, we should note

that these general union probability bounds can be applied
to effectively estimate and analyze the error performance of
a variety of coded or uncoded communication systems (e.g.,
see [2], [9], [10], [14], [17]–[22]).

II. NEW BOUNDS USING {P (Ai)} AND
{
∑

j cjP (Ai ∩Aj)}
For simplicity, and without loss of generality, we assume

the events {A1, . . . , AN} are in a finite probability space
(Ω,F , P ), where N is a fixed positive integer. Let B denote
the collection of all non-empty subsets of {1, 2, . . . , N}. Given
B ∈ B, we let ωB denote the atom in the union ∪Ni=1Ai

such that for all i = 1, · · · , N , ωB ∈ Ai if i ∈ B and
ωB /∈ Ai if i /∈ B (note that some of these “atoms”
may be the empty set). For ease of notation, for a singleton
ω ∈ Ω, we denote P ({ω}) by p(ω) and p(ωB) by pB . Since
{ωB : i ∈ B} is the collection of all the atoms in Ai, we have
P (Ai) =

∑
ω∈Ai

p(ω) =
∑

B∈B:i∈B pB , and



P

(
N⋃
i=1

Ai

)
=
∑
B∈B

pB . (1)

Suppose there are N functions fi(B), i = 1, . . . , N such that∑N
i=1 fi(B) = 1 for any B ∈ B (i.e., for any atom ωB). If

we further assume that fi(B) = 0 if i /∈ B (i.e., ωB /∈ Ai),
we can write

P

(
N⋃
i=1

Ai

)
=
∑
B∈B

(
N∑
i=1

fi(B)

)
pB =

N∑
i=1

∑
B∈B:i∈B

fi(B)pB .

(2)

Note that if we define

fi(B) =

{ 1
|B| = 1

deg(ωB) if i ∈ B
0 if i /∈ B (3)

where the degree of ω, deg(ω), is the number of Ai’s that
contain ω, then

∑N
i=1 fi(B) = 1 is satisfied and (2) becomes

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
ω∈Ai

p(ω)

deg(ω)
. (4)

Note that many of the existing bounds, such as the DC bound
[13] and KAT bound [11] and the bounds in [1] [2], are based
on (4).

In the following lemma, we propose a generalized expres-
sion of (4). To the best of our knowledge this lemma is novel.

Lemma 1: Suppose {ωB , B ∈ B} are all the 2N − 1 atoms
in
⋃

iAi. If c = (c1, . . . , cN )T ∈ RN satisfies∑
k∈B

ck 6= 0, for all B ∈ B (5)

then we have

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B∈B:i∈B

cipB∑
k∈B ck

=

N∑
i=1

∑
ω∈Ai

cip(ω)∑
{k:ω∈Ak} ck

. (6)

Proof: If we define

fi(B) =

{ ci∑
k∈B ck

if i ∈ B
0 if i /∈ B

(7)

where the parameter vector c = (c1, c2, . . . , cN )T satisfies∑
k∈B ck 6= 0 for all B ∈ B (therefore ci 6= 0, i = 1, . . . , N ),

then
∑

i fi(ω) = 1 holds and we can get (6) from (2).
Note that (6) holds for any c that satisfies (5) and is clearly a
generalized expression of (4).

A. Relation to the Cohen-Merhav bound [19]

Let mi(ωB) be non-negative functions. Then by the
Cauchy-Schwarz inequality,[ ∑
B:i∈B

fi(B)pB

][ ∑
B:i∈B

pB
fi(B)

m2
i (ωB)

]
≥

[ ∑
B:i∈B

pBmi(ωB)

]2
.

(8)

Thus, using (2), we have

P

(
N⋃
i=1

Ai

)
≥

N∑
i=1

[∑
B:i∈B pBmi(ωB)

]2∑
B:i∈B

pB

fi(B)m
2
i (ωB)

. (9)

If we define fi(B) by (3), then (9) reduces to

P

(
N⋃
i=1

Ai

)
≥
∑
i

[∑
ω∈Ai

p(ω)mi(ω)
]2∑

j

∑
ω∈Ai∩Aj

p(ω)m2
i (ω)

, (10)

which is the Cohen-Merhav lower bound in [19, Theorem 2.1];
note that equality in (10) holds when mi(ω) = 1

deg(ω) (i.e.,
mi(ωB) = 1

|B| ).

B. Relation to the GK Bound [3], [4]

In this subsection, we assume that the elements of c are
positive, i.e., c ∈ RN

+ , and connect the GK bound [3] [4] with
(6). The GK bound was recently revisited in [5] where it is
reformulated as

`GK = max
c∈RN

[
∑

i ciP (Ai)]
2∑

i

∑
k cickP (Ai ∩Ak)

, (11)

and the optimal c for (11), denoted by c̃, can be computed by

c̃ = Σ−1α, (12)

where α = (P (A1), . . . , P (AN ))
T and Σ is the N×N matrix

whose (i, j)-th element is P (Ai ∩Aj).
First, consider c ∈ RN

+ fixed. Then, by the Cauchy-Schwarz
inequality, we have[ ∑

B:i∈B

cipB∑
k∈B ck

][ ∑
B:i∈B

(∑
k∈B ck

ci

)
pB

]
≥ P (Ai)

2.

(13)
Note that∑

B:i∈B

(∑
k∈B ck

ci

)
pB =

1

ci

N∑
k=1

∑
B:i∈B,k∈B

ckpB

=

∑
k ckP (Ai ∩Ak)

ci
.

(14)

Then for all i,∑
B:i∈B

cipB∑
k∈B ck

≥ c2iP (Ai)
2

ci
∑

k ckP (Ai ∩Ak)
(15)

By summing (15) over i, we get another new lower bound:

P

(⋃
i

Ai

)
≥

N∑
i=1

c2iP (Ai)
2

ci
∑

k ckP (Ai ∩Ak)
. (16)

Note that we can use Cauchy-Schwarz Inequality again:[
N∑
i=1

c2iP (Ai)
2

ci
∑

k ckP (Ai ∩Ak)

][∑
i

ci
∑
k

ckP (Ai ∩Ak)

]

≥

[∑
i

ciP (Ai)

]2
.

(17)



Since the above inequality holds for any positive c, we have

P

(⋃
i

Ai

)
≥ max

c∈RN
+

N∑
i=1

c2iP (Ai)
2

ci
∑

k ckP (Ai ∩Ak)

≥ max
c∈RN

+

[
∑

i ciP (Ai)]
2∑

i

∑
k cickP (Ai ∩Ak)

.

(18)

Note that the lower bounds in (18) are weaker than the GK
bound (11), however, if the optimal c of (11), c̃, happen to
satisfy c̃ ∈ RN

+ , then the bounds in (18) coincide with the GK
bound (11).

C. New Class of Lower Bounds

We only consider c ∈ RN
+ in this subsection. A new class

of lower bounds is given in the following theorem.
Theorem 1: Defining B− = B \ {1, . . . , N}, γ̃i :=∑
k ckP (Ai ∩Ak), α̃i := P (Ai) and

δ̃ := max
i

[
γ̃i − (

∑
k ck −mink ck) α̃i

mink ck

]+
, (19)

where c ∈ RN
+ , a class of lower bounds is given by

P

(
N⋃
i=1

Ai

)
≥ δ̃ +

N∑
i=1

`′i(c, δ̃), (20)

where

`′i(c, x) = [P (Ai)− x]

(
ci∑

k∈B(i)
1
ck

+
ci∑

k∈B(i)
2
ck

−
ci
∑

k ck [P (Ai ∩Ak)− x]

[P (Ai)− x]
(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
 ,

(21)

and

B
(i)
1 = arg max

{B∈B−:i∈B}

∑
k∈B ck

ci

s.t.
∑

k∈B ck

ci
≤
∑

k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
,

B
(i)
2 = arg min

{B∈B−:i∈B}

∑
k∈B ck

ci

s.t.
∑

k∈B ck

ci
≥
∑

k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
.

(22)

Proof: Let x = p{1,2,...,N} and consider
∑

i `
′
i(c, x) +

x as a new lower bound where where `′i(c, x) equals to the
objective value of the problem

min
{pB :i∈B,B∈B−}

∑
B:i∈B,B∈B−

cipB∑
k∈B ck

s.t.
∑

B:i∈B,B∈B−

pB = P (Ai)− x,

∑
B:i∈B,B∈B−

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ck [P (Ai ∩Ak)− x] ,

pB ≥ 0, for all B ∈ B− such that i ∈ B.
(23)

The solution of (23) exists if and only if

min
k
ck ≤

γ̃i − (
∑

k ck)x

α̃i − x
≤
∑
k

ck −min
k
ck. (24)

Therefore, the new lower bound can be written as

min
x

[
x+

N∑
i=1

`′i(c, x)

]
s.t.[

γ̃i − (
∑

k ck −mink ck) α̃i

mink ck

]+
≤ x ≤ γ̃i − (mink ck)α̃i∑

k ck −mink ck
,∀i.

(25)

We can prove that the objective function of (25) is non-
decreasing with x. Therefore, defining δ̃ as in (19), the new
lower bound can be written as (20) where `′i(c, δ̃) can be
obtained by solving (23), which is given in (21).

Remark 1: Note that the problems in (22) are exactly the 0/1
knapsack problem with mass equals to value [23], which can
be computed in pseudo-polynomial time, and can be arbitrarily
closely approximated by an algorithm running in polynomial
time [23].

Remark 2: It can readily be shown that if c = κ1 for any
non-zero constant κ with 1 being the all-one vector of length
N , the new lower bound reduces to the analytical lower bound
in [1], [2], which is sharper than the KAT bound. It can also be
shown that if the optimal c̃ of the GK bound satisfies c̃ ∈ RN

+ ,
then the new lower bound is sharper than the GK bound.

III. NEW BOUNDS USING {P (Ai)} AND {P (Ai ∩Aj)}

In this section, we derive new numerical lower/upper bounds
for P

(⋃N
i=1Ai

)
using {P (Ai)} and {P (Ai ∩ Aj)}. First,

consider the pB’s in (1) as variables. Then the following
(exhaustive) LP problem with 2N variables gives the optimal
lower/upper bound established using {P (Ai)} and {P (Ai ∩
Aj)}:

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB

s.t.
∑

i,j∈B,B∈B

pB = P (Ai ∩Aj), i, j ∈ {1, . . . , N},

pB ≥ 0, B ∈ B.
(26)

The optimality of (26) can be easily proved by showing its
achievability: for each pB , construct an atom ωB such that
p(ωB) = pB and let ωB ∈ Ai,∀i ∈ B. However, the
computational complexity of the optimal lower/upper bound



in (26) is exponential. Next, we consider a relaxed problem
of (26), which is given in the following:

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB ,

s.t.
∑

i,j∈B,B∈B

pB = P (Ai ∩Aj), i, j ∈ {1, . . . , N},∑
B:i,j,l∈B,|B|=k

pB ≥ 0,
∑

B:i,j∈B,l/∈B,|B|=k

pB ≥ 0,

∑
B:i∈B,j,l/∈B,|B|=k

pB ≥ 0,
∑

B:i,j,l/∈B,|B|=k

pB ≥ 0,

∀i, j, l, k ∈ {1, . . . , N}.
(27)

Since the solution of (27) is a lower/upper bound for the
union probability P

(⋃N
i=1Ai

)
, we next show that the so-

lution of (27) can be obtained by solving an LP problem
with (N−1)3+N+3

2 variables, which coincides with the optimal
lower/upper bounds when N ≤ 7. The main results are in the
following.

Lemma 2: The solution of problem (27) coincides with the
optimal lower/upper bound in (26) when N ≤ 7.

Lemma 3: The problem (27) shares the same solution with
the following LP:

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB ,

s.t.
∑

i,j∈B,B∈B

pB = P (Ai ∩Aj), i, j ∈ {1, . . . , N},∑
B:i,j,l∈B,|B|=k

pB +
∑

B:i,j∈B,l/∈B,|B|=k

pB ≥ 0,

∑
B:l∈B,i,j /∈B,|B|=k

pB +
∑

B:i,j,l/∈B,|B|=k

pB ≥ 0,

∑
B:i,j,l∈B,|B|=k

pB +
∑

B:i,j,l/∈B,|B|=k

pB ≥ 0,

∑
B:i,j∈B,l/∈B,|B|=k

pB +
∑

B:l∈B,i,j /∈B,|B|=k

pB ≥ 0,

∑
B:i,j∈B,|B|=k

pB +
∑

B:i∈B,j,l/∈B,|B|=k

pB ≥ 0,

∀i, j, l, k ∈ {1, . . . , N}.
(28)

Theorem 2: Defining aij(k) =
∑

i,j∈B,|B|=k pB , the LP
problem (28) can be reformulated as an LP of {aij(k)} (i.e.,
N3 variables). The number of variables can hence be reduced
from N3 to (N−1)3+N+3

2 .
Proof: Define a(k) =

∑
|B|=k pB and ai(k) =∑

i∈B,|B|=k pB , then it can be readily shown that a(k) =∑N
i=1

ai(k)
k and ai(k) =

∑N
j=1

aij(k)
k . Therefore, both a(k)

and ai(k) are linear functions of {aij(k)}.
We next demonstrate that the number of variables can

be reduced from N3 to (N−1)3+N+3
2 . Note that accord-

ing to the definition of aij(k), we have: i) aij(1) =

P ({x ∈ Ai ∩Aj ,deg(x) = 1}) = 0,∀i 6= j; ii) aij(k) =

aji(k); iii) aij(N) = P
(⋂N

i=1Ai

)
for any i and j. Therefore,

the number of variables for different values of k can be
reduced to 

N if k = 1
N(N−1)

2 if k = 2, . . . , N − 1
1 if k = N

(29)

Thus, the total number of variables is N + N(N−1)(N−2)
2 + 1.

Now it is suffices to show that the objective function and all
the constraints in (28) can be written as functions of aij(k) so
that all {pB} can be replaced using aij(k). In the following,
we directly give the results, which one can easily verify.

The objective function and the first constraint of (28) can
be written as∑

k

∑
i

∑
j

aij(k)

k2
=
∑
B∈B

pB ,∑
k

aij(k) =
∑

i,j∈B,B∈B

pB = P (Ai ∩Aj), ∀i, j.
(30)

Finally, for all i, j, l, k ∈ {1, . . . , N}, the other constraints
of (28) as functions of {pB} can be written as functions of
{aij(k)} as follows:

aij(k) =
∑

B:i,j,l∈B,|B|=k

pB +
∑

B:i,j∈B,l/∈B,|B|=k

pB ,

a(k)− ai(k)− aj(k) + aij(k)

=
∑

B:l∈B,i,j /∈B,|B|=k

pB +
∑

B:i,j,l/∈B,|B|=k

pB ,

a(k)− al(k)− ai(k)− aj(k) + aij(k) + ail(k) + ajl(k)

=
∑

B:i,j,l∈B,|B|=k

pB +
∑

B:i,j,l/∈B,|B|=k

pB ,

al(k) + aij(k)− ail(k)− ajl(k)

=
∑

B:i,j∈B,l/∈B,|B|=k

pB +
∑

B:l∈B,i,j /∈B,|B|=k

pB ,

ai(k)− aij(k) =
∑

B:i,l∈B,j /∈B,|B|=k

pB +
∑

B:i∈B,j,l/∈B,|B|=k

pB .

(31)

Therefore, the lower/upper bounds of (27) can be solved by
an LP with (N−1)3+N+3

2 variables.
Remark 3: According to Lemma 2, the new numerical

lower/upper bound coincides with the optimal lower/upper
bounds in (26) when N ≤ 7. Furthermore, we can show
that the new numerical lower/upper bounds are sharper than
the numerical bounds in [1], [2], which have been proved to
be the optimal lower/upper bounds in terms of {P (Ai)} and
{
∑

j P (Ai ∩Aj)}.

IV. NUMERICAL EXAMPLES

Due to the space limitation, we only present lower bounds
in this section. The same eight systems as in [1] are used
and the corresponding results are shown in Table I. For
comparison, we include bounds that utilize {P (Ai)} and



TABLE I
COMPARISON OF LOWER BOUNDS (* INDICATES c̃ ∈ RN

+ AND A BOLD NUMBER INDICATES COINCIDENCE WITH THE OPTIMAL BOUND (26)).

System I II* III* IV V VI VII VIII*
N 6 6 6 7 3 4 4 4

P
(⋃N

i=1 Ai

)
0.7890 0.6740 0.7890 0.9687 0.3900 0.3252 0.5346 0.5854

KAT Bound [11] 0.7247 0.6227 0.7222 0.8909 0.3833 0.2769 0.4434 0.5412
GK Bound [3], [4] 0.7601 0.6510 0.7508 0.9231 0.3813 0.2972 0.4750 0.5390

PG Bound [6] 0.7443 0.6434 0.7556 0.9148 0.3900 0.3240 0.5281 0.5726
Analytical Bound [2, Eq. (7)] 0.7247 0.6227 0.7222 0.8909 0.3900 0.3205 0.4562 0.5464
Numerical Bound [2, Eq. (5)] 0.7487 0.6398 0.7427 0.9044 0.3900 0.3252 0.5090 0.5531
New Bound (20) with c = c̃+ 0.7638 0.6517 0.7512 0.9231 0.3900 0.2951 0.4905 0.5412

New Bound (20) with random c 0.7783 0.6633 0.7810 0.9501 0.3900 0.3203 0.4992 0.5666
Stepwise Bound [9] 0.7890 0.6740 0.7890 0.9687 0.3900 0.3027 0.5009 0.5673

New Numerical Bound (27) 0.7890 0.6740 0.7890 0.9687 0.3900 0.3252 0.5090 0.5673

{
∑

j P (Ai ∩ Aj), i = 1, . . . , N}, such as the KAT bound
[11], the analytical bound in [1], [2], and the numerical optimal
bound in this class [1], [2]. We also include the GK bound [3],
[4] and the stepwise bound [9], which fully exploit {P (Ai)}
and {P (Ai ∩ Aj)}. The PG lower bound [6], which extends
the KAT bound by using {P (Ai)}, {

∑
j P (Ai ∩ Aj)} and

{
∑

j,l P (Ai ∩Aj ∩Al)}, is also investigated in the examples.
The Cohen-Merhav bound (10) [19] is not included since it is
not clear how to choose the function mi(ω) in our examples.

For the proposed bound (20) we consider two cases for
choosing c. The first choice for c, denoted by c̃+, has
components c̃+i = max(c̃i, ε) with c̃ given in (12) and ε > 0
close to zero. Therefore, if c̃ ∈ RN

+ then c̃+ = c̃, so that in
this case the new bound (20) is guaranteed to be sharper than
the GK bound. If c̃ /∈ RN

+ , on the other hand, we still have
c̃+ ∈ RN

+ . The second choice of c is to randomly generate
c ∈ RN

+ and compute (20). In the examples, we generate 1000
values for c and show the largest obtained value for (20).

From Table I, one remarks that for Systems II, III and VIII
we have c̃ ∈ RN

+ , so that the new bound (20) with c = c̃
is sharper than the GK bound, as expected. Also, the new
bound (20) can be further improved by randomly generating
additional c values as shown in the table. Furthermore, the PG
bound which uses sums of joint probabilities of three events,
may be even poorer (e.g., see Systems I and VI) than the
numerical bound in [1], [2] which utilizes less information
but is optimal in the class of lower bounds using {P (Ai)}
and {

∑
j P (Ai ∩ Aj)}. It is also weaker than (20) in several

cases (see Systems I-IV). Finally, our numerical bound (27)
is always sharper than the other tested bounds, and coincides
with the optimal bound (26) with exponential complexity in
N since N < 7 holds for these examples.
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