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I. Introduction and MotivationEntropy, divergence and mutual information are without a doubt the most important infor-mation theoretic quantities. They constitute the fundamental measures upon which informationtheory is founded. Given a discrete random variableX with distribution PX , its entropy is de�nedby [3] H(X)4=�Xx PX(x) log2 PX(x) = EPX [� logPX(X)] :H(X) is a measure of the average amount of uncertainty in X. The divergence, on the otherhand, measures the relative distance between the distributions of two random variables X and X̂that are de�ned on the same alphabet :D(XkX̂)4=EPX "log2 PX(X)PX̂(X)# :As for the mutual information I(X;Y ) between random variables X and Y , it represents theaverage amount of information that Y contains about X. It is de�ned as the divergence betweenthe joint distribution PXY and the product distribution PXPY :I(X;Y )4=D(PXY kPXPY ) = EPXY "log2 PXY (X; Y )PX(X)PY (Y )# :More generally, consider an input process X de�ned by a sequence of �nite dimensionaldistributions [11]: X4=fXn = (X(n)1 ; : : : ; X(n)n )g1n=1: Let Y 4=fY n = (Y (n)1 ; : : : ; Y (n)n )g1n=1 be thecorresponding output process induced by X via the channelW 4=fW n = PY njXn : X n ! Yng1n=1;which is an arbitrary sequence of n-dimensional conditional distributions from X n to Yn, whereX and Y are the input and output alphabets respectively. The entropy rate for the source X isde�ned by [2], [3] H(X)4= limn!1 1nE [� logPXn(Xn)] ;assuming the limit exists. Similarly the expressions for the divergence and mutual informationrates are given by D(XkX̂)4= limn!1 1nE "log PXn(Xn)PX̂n(Xn)# ;1



and I(X;Y )4= limn!1 1nE "log PXnY n(Xn; Y n)(PXn(Xn)PY n)(Y n)# ;respectively.The above quantities have an operational signi�cance established via Shannon's coding theo-rems when the stochastic systems under consideration satisfy certain regularity conditions (suchas stationarity and ergodicity, or information stability) [9], [11]. However, in more complicatedsituations such as when the systems are non-stationary (with time-varying statistics), these infor-mation rates are no longer valid and lose their operational signi�cance. This results in the needto establish new information measures which appropriately characterize the operational limits ofarbitrary stochastic systems.This is achieved in [10] and [11] where Han and Verd�u introduce the notions of inf/sup-entropy/information rates and illustrate the key role these information measures play in provinga general lossless (block) source coding theorem and a general channel coding theorem. Morespeci�cally, they demonstrate that for an arbitrary �nite-alphabet source X, the expression forthe minimum achievable (block) source coding rate is given by the sup-entropy rate �H(X), de�nedas the limsup in probability of (1=n) log 1=PXn(Xn) [10]. They also establish in [11] the formulasof the "-capacity C" and capacity1 C of arbitrary single-user channels without feedback (notnecessarily information stable, stationary, ergodic, etc.). More speci�cally, they show thatsupX supfR : FX (R) < "g � C" � supX supfR : FX (R) � "g;and C = supX I(X;Y );1De�nition ([8],[11]): Given 0 < " < 1, an (n;M; �) code for the channel W has blocklength n, M codewordsand average (decoding) error probability not larger than ". A non-negative number R is an "-achievable rate if forevery � > 0, there exist, for all n su�ciently large, (n;M; �) codes with rate 1n logM > R � �. The supremum ofall "-achievable rates is called the "-capacity, C". The capacity C is the supremum of rates that are "-achievablefor all 0 < " < 1 and hence C = lim"#0 C".In other words, C" is the largest rate at which information can be conveyed over the channel such that theprobability of decoding error is below a �xed threshold ", for su�ciently large blocklengths. Furthermore, Crepresents the largest rate at which information can be transmitted over the channel with asymptotically vanishingerror probability. 2



where FX (R)4= lim supn!1 Pr[(1=n) iXnY n(Xn;Y n) � R];(1=n) iXnY n(Xn;Y n) is the sequence of normalized information densities de�ned byiXnY n(xn; yn) = log PY njXn(ynjxn)PY n(yn) ;and I(X;Y ) is inf-information rate betweenX and Y , which is de�ned as the liminf in probabilityof (1=n) iXnY n(Xn;Y n).By adopting the same technique as in [10] (also in [11]), general expressions for the capacity ofsingle-user channels with feedback and for Neyman-Pearson type-II error exponents are derivedin [5] and [4], respectively. Furthermore, an application of the type-II error exponent formula tothe non-feedback and feedback channel reliability functions is demonstrated in [4] and [6].The above inf/sup-entropy/information rates are expressed in terms of the liminf/limsup inprobability of the normalized entropy/information densities. The liminf in probability of a sequenceof random variables is de�ned as follows [10]: if An is a sequence of random variables, then itsliminf in probability is the largest extended real number U such that for all � > 0,limn!1Pr[An � U � �] = 0: (1.1)Similarly, its limsup in probability is the smallest extended real number �U such that for all � > 0,limn!1Pr[An � �U + �] = 0: (1.2)Note that these two quantities are always de�ned; if they are equal, then the sequence of randomvariables converges in probability to a constant.It is straightforward to deduce that equations (1.1) and (1.2) are respectively equivalent tolim infn!1 Pr[An � U � �] = lim supn!1 Pr[An � U � �] = 0; (1.3)and lim infn!1 Pr[An � �U + �] = lim supn!1 Pr[An � �U + �] = 0: (1.4)3



We can observe however that there might exist cases of interest where only the liminfs of theprobabilities in (1.3) and (1.4) are equal to zero; while the limsups do not vanish. There arealso other cases where both the liminfs and limsups in (1.3)-(1.4) do not vanish; but they areupper bounded by a prescribed threshold. Furthermore, there are situations where the interval[U; �U ] does not contain only one point; for e.g., when An converges in distribution to anotherrandom variable. Hence, those points within the interval [U; �U ] might possess a Shannon-theoreticoperational meaning when for example An consists of the normalized entropy density of a givensource.The above remarks constitute the motivation for this work in which we generalize Han andVerdu's information rates and prove general data compression and hypothesis testing theoremsthat are the counterparts of their "-capacity channel coding theorem [11].In Part I, we propose generalized versions of the inf/sup-entropy/information/divergence rates.We analyze in detail the algebraic properties of these information measures, and we illustratetheir use in the computation of the "-capacity of arbitrary additive-noise channels. In Part II ofthis paper [7], we utilize these quantities to establish general source coding theorems for arbitrary�nite-alphabet sources, and the general expression of the Neyman-Pearson type-II error exponent.II. Generalized Information MeasuresDe�nition 2.1 (Inf/sup-spectrum) If fAng1n=1 is a sequence of random variables, then itsinf-spectrum u(�) and its sup-spectrum �u(�) are de�ned byu(�) 4= lim infn!1 PrfAn � �g;and �u(�) 4= lim supn!1 PrfAn � �g:In other words, u(�) and �u(�) are respectively the liminf and the limsup of the cumulative dis-tribution function (CDF) of An. Note that by de�nition, the CDF of An { PrfAn � �g { is4



non-decreasing and right-continuous. However, for u(�) and �u(�), only the non-decreasing prop-erty remains 2.De�nition 2.2 (Quantile of inf/sup-spectrum) For any 0 � � � 1, the quantiles U � and �U�of the sup-pectrum and the inf-spectrum are de�ned by3U �4=( �1; if f� : �u(�) � �g = ;;supf� : �u(�) � �g; otherwise;and �U�4=( �1; if f� : u(�) � �g = ;;supf� : u(�) � �g; otherwise;respectively. If follows from the above de�nitions that U � and �U� are right-continuous and non-decreasing in �.Note that the liminf in probability U and the limsup in probability �U of An satisfyU = U 0;and �U = �U1� ;respectively, where the superscript \-" denotes a strict inequality in the de�nition of �U1� ; i.e.,�U��4=supf� : u(�) < �g:Note also that U � U � � �U� � �U:Remark that U � and �U� always exist. Furthermore, if U � = �U� 8 � 2 [0; 1], then the sequence ofrandom variables An converges in distribution to a random variable A, provided the distributionsequence of An is tight.2It is pertinent to also point out that even if we do not require right-continuity as a fundamental propertyof a CDF, the spectrums u(�) and �u(�) are not necessarily legitimate CDFs of (conventional real-valued) randomvariables since there might exist cases where the \probability mass escapes to in�nity" (cf. [1, page 346]). Anecessary and su�cient condition for u(�) and �u(�) to be conventional CDFs (without requiring right-continuity)is that the sequence of distribution functions of An be tight [1, page 346]. Tightness is actually guaranteed if thealphabet of An is �nite.3Note that the usual de�nition of the quantile function �(�) of a non-decreasing function F (�) is slightly di�erentfrom our de�nition [1, page 190]: �(�) = supf� : F (�) < �g: Remark that if F (�) is strictly increasing, then thequantile is nothing but the inverse of F (�): �(�) = F�1(�).5



For a better understanding of the quantities de�ned above, we depict them in Figure 1.
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U1��U0 �U�U �Figure 1: The asymptotic CDFs of a sequence of random vari-ables fAng1n=1. �u(�) = sup-spectrum of An; u(�) = inf-spectrumof An.In the above de�nitions, if we let the random variable An equal the normalized entropy densityof an arbitrary source X, we obtain two generalized entropy measures for X: the �-inf-entropyrate H�(X) and the �-sup-entropy rate �H�(X) as described in Table 1. Note that the inf-entropy-rate H(X) and the sup-entropy-rate �H(X) introduced in [10] are special cases of the�-inf/sup-entropy rate measures:H(X) = H0(X); and �H(X) = �H1�(X):Analogously, for an arbitrary channel W 4=PY jX with input X and output Y (or respectivelyfor two observations X and X̂), if we replace An by the normalized information density (resp.by the normalized log-likelihood ratio), we get the �-inf/sup-information rates (resp. �-inf/sup-divergences rates) as shown in Table 1.The algebraic properties of these newly de�ned information measures are investigated in thenext section. 6



III. Properties of the Generalized Information MeasuresLemma 3.1 Consider two arbitrary random sequences, fAng1n=1 and fBng1n=1. Let �u(�) and u(�)denote respectively the sup-spectrum and inf-spectrum of fAng1n=1. Similarly, let �v(�) and v(�)denote respectively the sup-spectrum and inf-spectrum of fBng1n=1. De�ne U �4=supf� : �u(�) � �g,�U�4=supf� : u(�) � �g, V �4=supf� : �v(�) � �g, �V�4=supf� : v(�) � �g,(U + V )�+
4=supf� : (u+ v)(�) � � + 
g;(U + V )�+
4=supf� : (u+ v)(�) � � + 
g;(u+ v)(�)4= lim supn!1 PrfAn +Bn � �g;and (u+ v)(�)4= lim infn!1 PrfAn +Bn � �g:Then the following statements hold.1. U � and �U� are both non-decreasing functions of � 2 [0; 1].2. For � � 0, 
 � 0, and 1 � � + 
, (U + V )�+
 � U � + V 
; (3.5)and (U + V )�+
 � U � + �V
: (3.6)3. For � � 0, 
 � 0, and 1 > � + 
,(U + V )� � U �+
 + �V(1�
)� ; (3.7)and (U + V )� � �U�+
 + �V(1�
)� : (3.8)
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Proof : The proof of property 1 follows directly from the de�nitions of U � and �U� and thefact that the inf-spectrum and the sup-spectrum are non-decreasing in �.To show (3.5), we �rst observe thatPrfAn +Bn � U � + V 
g � PrfAn � U �g+ PrfBn � V 
g:Then lim supn!1 PrfAn +Bn � U � + V 
g� lim supn!1 �PrfAn � U �g+ PrfBn � V 
g�� lim supn!1 PrfAn � U �g+ lim supn!1 PrfBn � V 
g� � + 
;which, by de�nition of (U + V )�+
 , yields (3.5).Similarly, we havePrfAn +Bn � U � + �V
g � PrfAn � U �g+ PrfBn � �V
g:Then lim infn!1 PrfAn +Bn � U � + �V
g� lim infn!1 �PrfAn � U �g+ PrfBn � �V
g�� lim supn!1 PrfAn � U �g+ lim infn!1 PrfBn � �V
g� � + 
;which, by de�nition of (U + V )�+
 , proves (3.6).To show (3.7), we remark from (3.5) that (U + V )� + (�V )
 � (U + V � V )�+
 = U �+
 .Hence, (U + V )� � U �+
 � (�V )
 :(Note that the cases "+
 = 1 or 
 = 1 are not allowed here because they result in U1 = �V 1 =1,and the subtraction of two in�nite terms is unde�ned. That is why the condition for property 2,1 � � + 
, is replaced by 1 > � + 
 in property 3.)8



The proof is completed by showing that�(�V )
 � �V(1�
)� : (3.9)By de�nition, (�v)(�) 4= lim supn!1 Pr f�Bn � �g= 1� lim infn!1 Pr fBn < ��g= 1� v(��+):So v(��+) = 1� (�v)(�). Then�V(1�
)� 4= supf� : v(�) < 1� 
g� supf� : v(��) < 1� 
g= supf��̂ : v(��̂+) < 1� 
g= supf��̂ : 1� (�v)(�) < 1� 
g= � inff�̂ : (�v)(�) > 
g= � supf�̂ : (�v)(�) � 
g= �(�V )
 ;where the inequality follows from v(�) � v(��). Finally, to show (3.8), we observe from (3.6) that(U + V )� + (�V )
 � (U + V � V )�+
 = �U�+
 . Hence,(U + V )� � �U�+
 � (�V )
 :Using (3.9), we have the desired result. 2If we take � = 
 = 0 in (3.5) and (3.7), we obtain(U + V ) � U + V and (U + V ) � U + �V ;which mean that the liminf in probability of a sequence of random variables An+Bn is upper [resp.lower] bounded by the liminf in probability of An plus the limsup [resp. liminf] in probability ofBn. This fact is used in [11] to show thatH(Y )� �H(Y jX) � I(X;Y ) � H(Y )�H(Y jX);9



which is a special case of property 3 in Lemma 3.2 .The next lemmas will show some of the analogous properties of the generalized informationmeasures.Lemma 3.2 For �, 
, � + 
 2 [0; 1), the following statements hold.1. �H�(X) � 0. �H�(X) = 0 if and only if the sequence fXn = (X(n)1 ; : : : ; X(n)n )g1n=1 is ultimatelydeterministic (in probability).(This property also applies to H�(X), �I�(X;Y ), I�(X;Y ), �D�(XkX̂), and D�(XkX̂).)2. I�(X;Y ) = I�(Y ;X) and �I�(X;Y ) = �I�(Y ;X).3. I�(X;Y ) � H�+
(Y )�H
(Y jX); (3.10)I�(X;Y ) � �H�+
(Y )� �H
(Y jX); (3.11)�I
(X;Y ) � �H�+
(Y )�H�(Y jX); (3.12)I�+
(X;Y ) � H�(Y )� �H(1�
)�(Y jX); (3.13)and �I�+
(X ;Y ) � �H�(Y )� �H(1�
)�(Y jX): (3.14)4. 0 � H�(X) � �H�(X) � log jX j, where each X(n)i 2 X , i = 1; : : : ; n and n = 1; 2; : : :, andX is �nite.5. I�(X;Y ;Z) � I�(X;Z).Proof : Property 1 holds becausePr �� 1n logPXn(Xn) < 0� = 0;P r(1n log dPXndPX̂n (Xn) < ��) � expf��ng;10



and Pr(1n log dPXnY nd(PXn � PY n)(Xn; Y n) < ��) � expf��ng:Property 2 is an immediate consequence of the de�nition.To show the inequalities in property 3 we �rst remark that1nhY n(Y n) = 1ni(Xn ;Y n)(Xn;Y n) + 1nh(Xn;Y n)(Y njXn);where 1nh(Xn ;Y n)(Y njXn)4= � 1n logPY njXn(Y njXn). With this fact, (3.10) follows directly from(3.5), (3.11) and (3.12) follow from (3.6), (3.13) follows from (3.7), and (3.14) follows from (3.8).Property 4 follows from the fact that �H�(�) is non-decreasing in �: �H�(X) � �H1� = �H(X),and that �H(X) is the minimum achievable (i.e., with asymptotically negligible probability ofdecoding error) �xed-length coding rate for X as seen in [7, Theorem 3.2] and [10].Property 5 can be proved using the fact that1ni(Xn ;Y n;Zn)(Xn; Y n;Zn) = 1ni(Xn;Zn)(Xn;Zn) + 1ni(Xn ;Y n;Zn)(Y n;ZnjXn):By applying (3.5), and letting 
 = 0, we obtain the desired result. 2Lemma 3.3 (Data processing lemma) Fix � 2 [0; 1). Suppose that for every n, Xn1 and Xn3are conditionally independent given Xn2 . ThenI�(X1;X3) � I�(X1;X2):Proof : By property 5, we getI�(X1;X3) � I�(X1;X2;X3) = I�(X1;X2);where the equality holds because1n log dPXn1Xn2 Xn3d(PXn1 � PXn2 Xn3 )(xn1 ; xn2 ; xn3 ) = 1n log dPXn1Xn2d(PXn1 � PXn2 )(xn1 ; xn2 ): 211



Lemma 3.4 (Optimality of independent inputs) Fix � 2 [0; 1). Consider a �nite alphabet,discrete memoryless channel { i.e., PY njXn = Qni=1 PYijXi, for all n. For any input X and itscorresponding output Y , I�(X;Y ) � I�( �X; �Y ) = I( �X; �Y );where �Y is the output due to �X , which is an independent process with the same �rst orderstatistics as X, i.e., PXn = Qni=1 PXi.Proof : First, we observe that1n log dPY njXndPY n (Xn; Y n) + 1n log dPY ndPY n (Xn; Y n) = 1n log dPY njXndPY n (Xn; Y n):In other words,1n log dPXnY nd(PXn � PY n)(Xn; Y n) + 1n log dPY ndPY n (Xn; Y n) = 1n log dPXnY nd(PXn � PY n)(Xn; Y n):By evaluating the above terms under PXnY n and letting�z(�)4= lim supn!1 PXnY n (1n log dPXnY nd(PXn � PY n)(Xn; Y n) � �)and Z�( �X; �Y )4=supf� : �z(�) � �g;we obtain from (3.5) (with 
 = 0) thatZ�( �X; �Y ) � I�(X;Y ) +D(Y k �Y ) � I�(X;Y );since D(Y k �Y ) � 0 by property 1 of Lemma 3.2 .Note that the summable property of (1=n) log[dPXnY n=d(PXn �PY n)](Xn; Y n) (i.e., it is equal to(1=n)Pni=1 log[dPXiY i=d(PXi � PY i)](Xi; Yi)), the Chebyshev inequality and the �niteness of thechannel alphabets implyI( �X; �Y ) = I�( �X; �Y ) and Z( �X; �Y ) = Z�( �X; �Y ):It �nally remains to show that I( �X; �Y ) � Z( �X; �Y );which is proved in [11, Theorem 10]. 212



IV. Examples for the Computation of "-CapacityIn [11], Verd�u and Han establish the general formulas for channel capacity and "-capacity. Interms of the "-inf-information rate, the expression of the "-capacity becomessupX I"�(X;Y ) � C" � supX I"(X;Y );where " 2 (0; 1).We now provide examples for the computation of C". They are basically an extension of someof the examples provided in [11] for the computation of channel capacity.Let the alphabet be binary X = Y = f0; 1g, and let every output be given byYi = Xi � Ziwhere � represents the addition operation modulo-2 and Z is an arbitrary binary random processindependent of X .To compute the "-capacity we use the results of property 3 in Lemma 3.2 :I"�(X;Y ) � H0(Y )� �H(1�"�)�(Y jX) = H0(Y )� �H(1�")(Y jX); (4.15)and I"(X;Y ) � minfH"+
(Y )�H
(Y jX); �H"+
(Y )� �H
(Y jX)g: (4.16)where " � 0, 
 � 0 and 1 > " + 
. The lower bound in (4.15) follows directly from (3.13) (bytaking � = 0 and 
 = "�). The upper bounds in (4.16) follow from (3.10) and (3.11) respectively.C" � supX I"(X;Y )� supX n �H"+
(Y )� �H
(Y jX)o :Since the above inequality holds for all 0 � 
 < 1� ", we have:C" � inf0�
<1�" supX n �H"+
(Y )� �H
(Y jX)o : (4.17)� inf0�
<1�"(supX �H"+
(Y )� infX �H
(Y jX)) :13



By the symmetry of the channel, �H
(Y jX) = �H
(Z) which is independent of X. Hence,C" � inf0�
<1�"(supX �H"+
(Y )� �H
(Z))� inf0�
<1�"nlog 2� �H
(Z)o = inf0�
<1�" n1� �H
(Z)owhere the last step follows by taking a Bernoulli uniform input. Since 1� �H
(Z) is non-increasingin 
, C" � 1� �H(1�")�(Z):(Note that the superscript \-" indicates a strict inequality in the de�nition of �H
(�); this isconsistent with the condition 
 + " < 1.)On the other hand, we can derive the lower bound to C" by choosing a Bernoulli uniforminput in (4.15). We thus obtain1� �H(1�")(Z) � C" � 1� �H(1�")�(Z):Note that there are actually two upper bounds in (4.16). In this example, the �rst upperbound 1�H(1�")�(Z) (which is no less than 1� �H(1�")�(Z)) is a looser upper bound, and hence,can be omitted. In addition, we demonstrate in the above derivation that the computation of theupper bound to C" involves in general the in�mum operation over the parameter 
. Therefore,if the optimizing input distribution does not have a \nice" property (such as independence anduniformity), then the computation of (4.17) may be complicated in general.Remark: An alternative method to compute C" is to derive the channel sup-spectrum in termsof the inf-spectrum of the noise process. Under the optimizing equally likely Bernoulli input X�we can write �i(X�;Y )(�) 4= lim supn!1 Pr( 1n log PY njXn(Y n=Xn)PY n(Y n) � �)= lim supn!1 Pr � 1n logPZn(Zn)� 1n logPY n(Y n) � ��= lim supn!1 Pr � 1n logPZn(Zn) � � � 1�= lim supn!1 Pr �� 1n logPZn(Zn) � 1� ��= 1� hZ ((1� �)�): 14



Hence, I"(X�;Y ) = sup�� : 1� hZ ((1� �)�) � "	= sup�� : hZ ((1� �)�) � 1� "	= sup�(1� �) : hZ (��) � 1� "	= 1 + sup�(��) : hZ (��) � 1� "	= 1� inf �� : hZ (��) � 1� "	= 1� sup�� : hZ (��) < 1� "	= 1� �H(1�")�(Z):Similarly, I"�(X�;Y ) = 1� �H(1�")(Z):Therefore, 1� �H(1�")(Z) = I"�(X�;Y ) � C" � I"(X�;Y ) = 1� �H(1�")�(Z):Example 4.1 Let Z be an all-zero sequence with probability � and Bernoulli (with parameterp) with probability 1 � �. Then the sequence of random variables (1=n)hZn(Zn) converges toatoms 0 and hb(p)4=�p log p� (1�p) log(1�p) with respective masses � and 1��. The resultinghZ (�) is depicted in Figure 2. From (4.18), we obtain �i(X;Y )(�) as shown in Figure 3.
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Figure 2: The spectrum of (1=n)hZn(Zn) for Example 4.1.Therefore, C" = ( 1� hb(p); if 0 < " < 1� �;1; if 1� � < " < 1 :When " = 1� �, C" lies somewhere between 1� hb(p) and 1.15
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Figure 3: The spectrum of (1=n)i(Xn;Y n)(Xn;Y n) for Example 4.1.Example 4.2 If Z is a non-stationary binary independent sequence with PrfZ1 = 1g = pi,then by the uniform boundedness (in i) of the variance of random variable � logPZi(Zi), namely,Var[� logPZi(Zi)] � E[(logPZi(Zi))2]� sup0<pi<1 pi(log pi)2 + (1� pi)(log(1� pi))2� 1;we have (by Chebyshev's inequality)Pr(������ 1n logPZn(Zn)� 1n nXi=1H(Zi)����� < 
)! 0;for any 
 > 0. Therefore, �H(1�")�(Z) is independent of ", and C" is equal to 1 minus the largestcluster point of (1=n)Pni=1H(Zi), i.e.,�H(1�")�(Z) = lim supn!1 1n nXi=1H(Zi);and C" = 1� �H(Z) = 1� lim supn!1 1n nXi=1H(Zi);where H(Zi) = hb(pi). This result is illustrated in Figures 4 and 5.
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-� � �H(Z) �H(Z)cluster pointsFigure 4: The spectrum of (1=n)hZn(Zn) for Example 4.2.
-� � �1� �H(Z) 1�H(Z)cluster pointsFigure 5: The spectrum of (1=n)i(Xn;Y n)(Xn;Y n) for Example 4.2.V. ConclusionsIn light of the work of Han and Verd�u in [10] and [11], generalized entropy, mutual-information,and divergence rates are proposed. The properties of each of these information quantities areanalyzed, and examples illustrating the computation of the "-capacity of channels with arbitraryadditive noise are presented.In [7], we use these information measures to prove a generalized version of the AsymptoticEquipartition Property (AEP) and general source coding and hypothesis testing theorems.AcknowledgmentThe authors would like to thank Prof. S. Verd�u for his valuable advice and constructive criticismwhich helped improve the paper.
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Nomenclature(1� ")-achievable data compaction rate T1�"(X)(1� ")-achievable data compression rate T1�"(D;X)at distortion D�-inf-divergence rate D�(XkX̂)�-inf-entropy rate H�(X)�-inf-information rate I�(X;Y )�-sup-divergence rate �D�(XkX̂)�-sup-entropy rate �H�(X)�-sup-information rate �I�(X;Y )"-sup-distortion rate ��"(X;Y )�-capacity C�channel capacity Cchannel transition distribution PWn = PY njXndistortion inf-spectrum �(X;f(X))(�)divergence inf-spectrum dXkX̂ (�)divergence sup-spectrum �dXkX̂ (�)entropy density hXn(Xn)entropy inf-Spectrum hX (�)entropy sup-Spectrum �hX (�)inf-divergence rate D(XkX̂)inf-entropy rate H(X)inf-information rate I(X;Y )information density iXnWn(xn; yn)information inf-spectrum i(X;Y )(�)information sup-spectrum �i(X;Y )(�)input alphabet Ainput distributions PXnlog-likelihood ratio dXn(XnkX̂n)output alphabet Bsup-divergence rate �D(XkX̂)sup-entropy rate �H(X)sup-information rate �I(X;Y )
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Entropy MeasuresSystem Arbitrary source XAn : Norm. Entropy Density 1nhXn(Xn)4=� 1n logPXn(Xn)Entropy Sup-Spectrum �hX (�)4= lim supn!1 Pr� 1nhXn(Xn) � ��Entropy Inf-Spectrum hX (�)4= lim infn!1 Pr� 1nhXn(Xn) � ���-Inf-Entropy Rate H�(X)4=supf� : �hX (�) � �g�-Sup-Entropy Rate �H�(X)4=supf� : hX (�) � �gSup-Entropy Rate �H(X)4= �H1�(X)Inf-Entropy Rate H(X)4=H0(X)Mutual Information MeasuresSystem Arbitrary channel W 4=PY jXwith input X and output YAn : Norm. Information Density 1ni(Xn;Y n)(Xn;Y n)4=1n log dPXnY nd(PXn � PY n)(Xn; Y n)Information Sup-Spectrum �i(X;Y )(�)4= lim supn!1 Pr� 1ni(Xn;Y n)(Xn;Y n) � ��Information Inf-Spectrum i(X;Y )(�)4= lim infn!1 Pr� 1ni(Xn;Y n)(Xn;Y n) � ���-Inf-Information Rate I�(X ;Y )4=supf� : �i(X;Y )(�) � �g�-Sup-Information Rate �I�(X ;Y )4=supf� : i(X;Y )(�) � �gSup-Information Rate �I(X;Y )4=�I1�(X;Y )Inf-Information Rate I(X;Y )4=I0(X;Y )Divergence MeasuresSystem Arbitrary sources X and X̂An : Norm. Log-Likelihood Ratio 1ndXn(XnkX̂n)4=1n log dPXndPX̂n (Xn)Divergence Sup-Spectrum �dXkX̂ (�)4= lim supn!1 Pr� 1ndXn(XnkX̂n) � ��Divergence Inf-Spectrum dXkX̂ (�)4= lim infn!1 Pr� 1ndXn(XnkX̂n) � ���-Inf-Divergence Rate D�(XkX̂)4=supf� : �dXkX̂ (�) � �g�-Sup-Divergence Rate �D�(XkX̂)4=supf� : dXkX̂ (�) � �gSup-Divergence Rate �D(XkX̂)4= �D1�(XkX̂)Inf-Divergence Rate D(XkX̂)4=D0(XkX̂)Table 1: Generalized information measures where � 2 [0; 1].20


