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Abstract

Expressions for e-entropy rate, e-mutual information rate and e-divergence rate are introduced.
These quantities, which consist of the quantiles of the asymptotic information spectra, generalize
the inf/sup-entropy /information/divergence rates of Han and Verdd. The algebraic properties
of these information measures are rigorously analyzed, and examples illustrating their use in the
computation of the e-capacity are presented. In Part II of this work, these measures are employed
to prove general source coding theorems for block codes and the general formula of the Neyman-
Pearson hypothesis testing type-II error exponent subject to upper bounds on the type-I error
probability.



I. Introduction and Motivation

Entropy, divergence and mutual information are without a doubt the most important infor-
mation theoretic quantities. They constitute the fundamental measures upon which information
theory is founded. Given a discrete random variable X with distribution Py, its entropy is defined
by [3]

H(X)2 =Y Px(x)log, Px(z) = Ep, [~ log Px(X)].

H(X) is a measure of the average amount of uncertainty in X. The divergence, on the other
hand, measures the relative distance between the distributions of two random variables X and X

that are defined on the same alphabet :

D(X[|X)2Ep, [mg2 PX(X)] |

Py (X)
As for the mutual information I(X;Y’) between random variables X and Y, it represents the

average amount of information that Y contains about X. It is defined as the divergence between

the joint distribution Pxy and the product distribution Px Py:

XY
I(X;Y)2D(Pyy||PxPy) = Ep,, [logQ v ) ]

X
Px(X)Py(Y)

More generally, consider an input process X defined by a sequence of finite dimensional
distributions [11]: X2{X" = (X", ..., X®)1=  Let Y2{y" = (1;,..., Y ™)} be the
corresponding output process induced by X via the channel Wé{W” = Pynjxn : X" = Y10,
which is an arbitrary sequence of n-dimensional conditional distributions from X™ to ", where
X and Y are the input and output alphabets respectively. The entropy rate for the source X is
defined by [2], [3]

H(X)2 lim LB [~ log Py (X")].

n—oo n,
assuming the limit exists. Similarly the expressions for the divergence and mutual information

rates are given by
D(X||X)= lim —F |log ——=
(X11302 Jim 1 flog 10,



and

1 Pxnyn (X™ YT
élim—Elog oy (X7, V)

I(X,Y) n=y00 1, (PXn(Xn)PYn)(Yn) ’

respectively.

The above quantities have an operational significance established via Shannon’s coding theo-
rems when the stochastic systems under consideration satisfy certain regularity conditions (such
as stationarity and ergodicity, or information stability) [9], [11]. However, in more complicated
situations such as when the systems are non-stationary (with time-varying statistics), these infor-
mation rates are no longer valid and lose their operational significance. This results in the need
to establish new information measures which appropriately characterize the operational limits of

arbitrary stochastic systems.

This is achieved in [10] and [11] where Han and Verdd introduce the notions of inf/sup-
entropy/information rates and illustrate the key role these information measures play in proving
a general lossless (block) source coding theorem and a general channel coding theorem. More
specifically, they demonstrate that for an arbitrary finite-alphabet source X, the expression for
the minimum achievable (block) source coding rate is given by the sup-entropy rate H(X), defined
as the limsup in probability of (1/n)log1/Px~(X™) [10]. They also establish in [11] the formulas
of the e-capacity C. and capacity’ C of arbitrary single-user channels without feedback (not

necessarily information stable, stationary, ergodic, etc.). More specifically, they show that
supsup{RR: F'x (R) < e} < C, <supsup{R: Fx(R) < ¢},
X X

and

C=sup[(X;Y),
X

! Definition ([8],[11]): Given 0 < € < 1, an (n, M, €) code for the channel W has blocklength n, M codewords
and average (decoding) error probability not larger than e. A non-negative number R is an e-achievable rate if for
every 0 > 0, there exist, for all n sufficiently large, (n, M, €) codes with rate %logM > R — 6. The supremum of
all e-achievable rates is called the e-capacity, C.. The capacity C is the supremum of rates that are e-achievable
for all 0 < € < 1 and hence C' = lim,, C-.

In other words, C. is the largest rate at which information can be conveyed over the channel such that the
probability of decoding error is below a fixed threshold e, for sufficiently large blocklengths. Furthermore, C'
represents the largest rate at which information can be transmitted over the channel with asymptotically vanishing
error probability.




where

Fx (R)2limsup Pr{(1/n) ixny«(X";Y") < R],

n—o0

(1/n) ixnyn(X™;Y™) is the sequence of normalized information densities defined by

P n n n n
ixmyn (2" y") = log — -t )
and [(X;Y) is inf-information rate between X and Y, which is defined as the liminf in probability

By adopting the same technique as in [10] (also in [11]), general expressions for the capacity of
single-user channels with feedback and for Neyman-Pearson type-1I error exponents are derived
in [5] and [4], respectively. Furthermore, an application of the type-II error exponent formula to

the non-feedback and feedback channel reliability functions is demonstrated in [4] and [6].

The above inf/sup-entropy/information rates are expressed in terms of the liminf/limsup in
probability of the normalized entropy/information densities. The liminf in probability of a sequence
of random variables is defined as follows [10]: if A, is a sequence of random variables, then its

limanf in probability is the largest extended real number U such that for all £ > 0,

lim Pr(A, <U—¢&]=0. (1.1)

n—0o0

Similarly, its limsup in probability is the smallest extended real number U such that for all £ > 0,

lim Pr(A, >U+¢] =0. (1.2)

n—0o0

Note that these two quantities are always defined; if they are equal, then the sequence of random

variables converges in probability to a constant.

It is straightforward to deduce that equations (1.1) and (1.2) are respectively equivalent to

liminf Pr(A, < U —¢] = limsup Pr[A, <U —¢] =0, (1.3)
n—oo n—00
and
lirgianr[An > U + & =limsup Pr[A, > U + &) =0. (1.4)
n—oo n—00



We can observe however that there might exist cases of interest where only the liminfs of the
probabilities in (1.3) and (1.4) are equal to zero; while the limsups do not vanish. There are
also other cases where both the liminfs and limsups in (1.3)-(1.4) do not vanish; but they are
upper bounded by a prescribed threshold. Furthermore, there are situations where the interval
[U,U] does not contain only one point; for e.g., when A, converges in distribution to another
random variable. Hence, those points within the interval [U, U] might possess a Shannon-theoretic
operational meaning when for example A,, consists of the normalized entropy density of a given

source.

The above remarks constitute the motivation for this work in which we generalize Han and
Verdu’s information rates and prove general data compression and hypothesis testing theorems

that are the counterparts of their e-capacity channel coding theorem [11].

In Part I, we propose generalized versions of the inf/sup-entropy/information/divergence rates.
We analyze in detail the algebraic properties of these information measures, and we illustrate
their use in the computation of the e-capacity of arbitrary additive-noise channels. In Part II of
this paper [7], we utilize these quantities to establish general source coding theorems for arbitrary

finite-alphabet sources, and the general expression of the Neyman-Pearson type-II error exponent.
II. Generalized Information Measures

Definition 2.1 (Inf/sup-spectrum) If {A4,}2°, is a sequence of random variables, then its

inf-spectrum u(-) and its sup-spectrum @(-) are defined by
u(®) = liminf Pr{4, <0},

and

u(0) £ lim sup Pr{A, <6}.

n— 00

In other words, u(-) and u(-) are respectively the liminf and the limsup of the cumulative dis-

tribution function (CDF) of A,. Note that by definition, the CDF of A, — Pr{A, < 6} —is



non-decreasing and right-continuous. However, for u(-) and @(-), only the non-decreasing prop-

erty remains 2.

Definition 2.2 (Quantile of inf/sup-spectrum) For any 0 < ¢ < 1, the quantiles Uy and Uy

of the sup-pectrum and the inf-spectrum are defined by?

ol = if {6:a(f) <} =0,
=07 sup{f:u(h) <J}, otherwise,
and
i st if {6:u(0) <} =10,
"=\ sup{f:u(f) <6}, otherwise,

respectively. If follows from the above definitions that Uy and Us are right-continuous and non-

decreasing in 9.

Note that the liminf in probability U and the limsup in probability U of A,, satisfy

Q = QU;
and
U= Ul—a
respectively, where the superscript “” denotes a strict inequality in the definition of U;-; i.e.,

Ug—ésup{e cu(f) <o}
Note also that
U<U;<Us <U.

Remark that Us and Us always exist. Furthermore, if Uy = Us V § € [0, 1], then the sequence of
random variables A,, converges in distribution to a random variable A, provided the distribution

sequence of A, is tight.

2Tt is pertinent to also point out that even if we do not require right-continuity as a fundamental property
of a CDF, the spectrums u(-) and @(-) are not necessarily legitimate CDFs of (conventional real-valued) random
variables since there might exist cases where the “probability mass escapes to infinity” (cf. [1, page 346]). A
necessary and sufficient condition for u(-) and u(-) to be conventional CDFs (without requiring right-continuity)
is that the sequence of distribution functions of A,, be tight [1, page 346]. Tightness is actually guaranteed if the
alphabet of A, is finite.

3Note that the usual definition of the quantile function ¢(8) of a non-decreasing function F(-) is slightly different
from our definition [1, page 190]: ¢(8) = sup{f : F(f) < §}. Remark that if F(-) is strictly increasing, then the
quantile is nothing but the inverse of F(-): ¢(§) = F~1(6).



For a better understanding of the quantities defined above, we depict them in Figure 1.

0 ] ] Rt

Q UO Qd Ud Q1 - U

Figure 1: The asymptotic CDF's of a sequence of random vari-
ables {A,}2° . @(-) = sup-spectrum of A,,; u(-) = inf-spectrum
of A,.

In the above definitions, if we let the random variable A,, equal the normalized entropy density
of an arbitrary source X, we obtain two generalized entropy measures for X: the d-inf-entropy
rate Hs(X) and the &-sup-entropy rate Hs(X) as described in Table 1. Note that the inf-
entropy-rate H(X) and the sup-entropy-rate H(X) introduced in [10] are special cases of the

d-inf/sup-entropy rate measures:

H(X)=Hy(X), and H(X)=H_(X).

Analogously, for an arbitrary channel WéPY‘ x with input X and output Y (or respectively
for two observations X and X ), if we replace A, by the normalized information density (resp.
by the normalized log-likelihood ratio), we get the J-inf/sup-information rates (resp. d-inf/sup-

divergences rates) as shown in Table 1.

The algebraic properties of these newly defined information measures are investigated in the

next section.



I1I. Properties of the Generalized Information Measures

Lemma 3.1 Consider two arbitrary random sequences, {A4,,}°°, and {B,,}52,. Let @(-) and u(-)

denote respectively the sup-spectrum and inf-spectrum of {A4,}5° . Similarly, let v(-) and v(-)

denote respectively the sup-spectrum and inf-spectrum of { B, }5° ;. Define Q(gé sup{f : u(#) < d},

Us2 sup{0 : w(0) < 6}, V= sup{f : v(0) < 6}, V= sup{f : v(6) < 6},

(U + V), =suplf : (wF0)(0) <6 +1},
(T F V)5 Zsup{f : (u+v)(0) <6+7},

(wFv)(0)= limsup Pr{A, + B, < 0},

n—00

and

(u+v)(9)=lim inf Pr{A, + B, < 6}.
Then the following statements hold.
1. Uy and Us are both non-decreasing functions of § € [0, 1].
2. For0 >0,v>0,and 1 > 6§ + 7,
U+ V)sy 2 Us + 1V,

and

(U+V)siy > Us+ V.
3. Ford >0,v>0,and 1 > § + 7,
(U+V)s <Usiy 4+ Viay-,

and

(U+V)s < Usiy + Viiy)-

(3.5)

(3.6)

(3.7)

(3.8)



Proof: The proof of property 1 follows directly from the definitions of U; and U; and the

fact that the inf-spectrum and the sup-spectrum are non-decreasing in ¢.
To show (3.5), we first observe that
Pr{A,+ B, <Us+V, } < Pr{A, <Us} + Pr{B, <V, }.
Then

limsup Pr{A, + B, <U; + V. }

— 00

lim sup (Pr{An < U} + Pr{B, < K’y})

n— 00

VAN

VAN

limsup Pr{A, < U,} +limsup Pr{B, <V}
n— 00

n— 00

VAN

0+,

which, by definition of (U 4+ V)44, yields (3.5).

Similarly, we have
Pr{A,+ B, <Us+V,} < Pr{A, < U} + Pr{B, <V,}.
Then

lim inf Pr{4, + B, < U; + V;}

IN

lim inf (Pr{4, < Us} + Pr{B, < V,})

IN

lim sup Pr{A4, < Us} + li%r_lg)ngr{Bn <V}

n—0o0

IN

0+,
which, by definition of (U + V)54, proves (3.6).

To show (3.7), we remark from (3.5) that (U+V); + (=V), < (U+V =V)siy = Usy,.

Hence,

(U4+V)s <Usiy — (=V),.

(Note that the cases e4+v = 1 or 7 = 1 are not allowed here because they result in U; = =V, = o0,
and the subtraction of two infinite terms is undefined. That is why the condition for property 2,

1> 0+ 7, is replaced by 1 > § + v in property 3.)

8



The proof is completed by showing that

~(=V)y < Voo (3.9

By definition,

(Z0)(6) £ limsup Pr{—B, < 0}

n— 00

= 1—liminf Pr {B, < -0}

= 1—u(-07).

|
>

sup{6 : v(0) <1—~}
sup{f:v(0) <1—~}

= sup{—0:uv(—0") <1 -~}

= sup{-0:1—(=v)(8) <1—~}
= —inf{0: (Z0)(0) > 7}

= —sup{f: (Z0)(0) <}

= —(=V),,

v

where the inequality follows from v(f) > v(6~). Finally, to show (3.8), we observe from (3.6) that
U+V)s+ (=V), < (U+V =V)s4, = Usy,. Hence,

(U+V)s < Usiy = (=V)s.
Using (3.9), we have the desired result. O
If we take d =~ =0 in (3.5) and (3.7), we obtain
U4+V)>U+V and (U+V)<U+V,

which mean that the liminf in probability of a sequence of random variables A, + B,, is upper [resp.
lower] bounded by the liminf in probability of A, plus the limsup [resp. liminf] in probability of
B,,. This fact is used in [11] to show that

H(Y)-H(Y|X)<I(X;Y)<H(Y)- HY|X),

9



which is a special case of property 3 in Lemma 3.2 .

The next lemmas will show some of the analogous properties of the generalized information

measures.

Lemma 3.2 For d, v, § + € [0, 1), the following statements hold.

1. H;(X) > 0. H;(X) = 0if and only if the sequence { X" = (Xl(n), o, XY s ultimately

deterministic (in probability).

(This property also applies to Hy(X), I5(X;Y), I;(X;Y), Ds(X|X), and Ds(X|| X).)

2. I;(X;Y) = I;(Y; X) and I;)(X;Y) = I;(Y; X).

3.
1;(X;Y) < Hyy (Y) = H,(Y]X), (3.10)
I;(X;Y) < Hypo(Y) — H,(Y|X), (3.11)
L(X3Y) < Hsy(Y) - Hs(Y|X), (3.12)
L;1,(X;Y) > Hy(Y) — Ha—yy- (Y|X), (3.13)

and
Isy(X5Y) > Hy(Y) — Hiy—y- (Y]X). (3.14)

4. 0 < Hy(X) < Hs(X) < log|X|, where each X"ex i=1,...,nandn=12,... and
X is finite.

5. I;( XY Z) > 1;(X; Z).

Proof: Property 1 holds because

1
Pr {——logPXn(X”) < 0} =0,
n

1 dPxn
Pri—1 X" -0 < —
T{n og d-PXn( ) < 6} < exp{—dn},

10



and

]_ dPXnYn
Pr{—log—— (X", Y") < =6, < —on}.
Property 2 is an immediate consequence of the definition.

To show the inequalities in property 3 we first remark that
L (V) = Ly (X Y™) 4 L by (V7 X)
— n = —1 n yn S — nyn
nY n(X,Y) ) n(X,Y) )
1 1
where —h(Xnyyn)(Yn|Xn)é — —log Pynx»(Y"|X"). With this fact, (3.10) follows directly from
n n
(3.5), (3.11) and (3.12) follow from (3.6), (3.13) follows from (3.7), and (3.14) follows from (3.8).

Property 4 follows from the fact that Hs(-) is non-decreasing in 0: Hs(X) < H,- = H(X),
and that H(X) is the minimum achievable (i.e., with asymptotically negligible probability of

decoding error) fixed-length coding rate for X as seen in [7, Theorem 3.2] and [10].

Property 5 can be proved using the fact that

1. 1. 1.
gZ(Xn,Yn,Zn)(Xn, Yn; Zn) = gZ(X",Z”)(Xn; Zn) + EZ(XnyYnyZn)(Yn; Zn|Xn)
By applying (3.5), and letting v = 0, we obtain the desired result. O

Lemma 3.3 (Data processing lemma) Fix ¢ € [0,1). Suppose that for every n, X]* and X7

are conditionally independent given XJ'. Then

Ls(Xl; X3) < Ls(Xli X2)'

Proof: By property 5, we get
I5(X 15 X3) < I5( X5 X, X3) = L;(X 15 X)),

where the equality holds because

1 dPXf'X;‘XQ 1 dPX”X."
—log b o b\
no o d(

11



Lemma 3.4 (Optimality of independent inputs) Fix ¢ € [0,1). Consider a finite alphabet,
discrete memoryless channel — i.e., Pynx» = [[}*; Py;x;, for all n. For any input X and its
corresponding output Y,

Li(X;Y) < L(X:Y) = [(X;Y),
where Y is the output due to X, which is an independent process with the same first order

statistics as X, i.e., Py = [[i2, Pkx;.

Proof: First, we observe that

]_ dpyn|Xn ]_ dpyn ]_ dpyn|Xn
—1 X" Y") +—1 XMyYy") =—1 X" y"
nt d Py (X% 7) + n 8 dPyn( ) n B dPgn (X%, ¥7)
In other words,
—log ————— (X", Y") + —1 XYY" =—-log ——"——(X",Y"
n Og d(PXn X Pyn)( ’ ) + n Og dP?n( ’ ) n Og d(PYn X P?n)( ’ )

By evaluating the above terms under Pxny» and letting

AL 1 d Psgnyn
z(0)=1 Pxnyn § —log ——2F——
S0 sy P {10 g S

(XY™ < 0}
and
Z5(X:Y)Esup{0: 2(0) < 5},
we obtain from (3.5) (with v = 0) that
Z5(X:Y) > Li(X;Y) + DY [IY) > L(X;Y),
since D(Y||Y") > 0 by property 1 of Lemma 3.2 .
Note that the summable property of (1/n) log[dPgnyn /d(Psn X Pyn)]|(X™, Y™) (i.e., it is equal to
(1/n) XL, logldPx v, /d(Px, % Pg,)](Xi, Y:)), the Chebyshev inequality and the finiteness of the
channel alphabets imply
I(X;Y)=1;X;Y) and Z(X;Y)=Z;X;Y).
It finally remains to show that
I(X;Y) > Z(X;Y),

which is proved in [11, Theorem 10]. O



IV. Examples for the Computation of c-Capacity

In [11], Verdi and Han establish the general formulas for channel capacity and e-capacity. In

terms of the e-inf-information rate, the expression of the s-capacity becomes
sup .- (X;Y) < C. <sup L (X;Y),
X

where ¢ € (0,1).

We now provide examples for the computation of C,. They are basically an extension of some

of the examples provided in [11] for the computation of channel capacity.

Let the alphabet be binary X = Y = {0, 1}, and let every output be given by
Yi=X;0® Z

where & represents the addition operation modulo-2 and Z is an arbitrary binary random process

independent of X.

To compute the s-capacity we use the results of property 3 in Lemma 3.2 :
I (X;Y) > Hy(Y) - H(lfs—)_ (Y]X) = Hy(Y) - H(1_5>(Y|X), (4.15)

and

L(X;Y) < min{H, . (Y) — H,(Y|X), H.1,(Y) — H,(Y|X)}. (4.16)

where ¢ > 0, v > 0 and 1 > £ 4+ 7. The lower bound in (4.15) follows directly from (3.13) (by
taking 0 = 0 and v = ¢7). The upper bounds in (4.16) follow from (3.10) and (3.11) respectively.

C. < supl.(X;Y)
X
< S};{P {He+7(Y) - H’Y(Y|X)} .

Since the above inequality holds for all 0 <y < 1 — ¢, we have:

Ce = ogiyriflfg S_l)l(p {H8+7(Y) - H’Y(Y|X)} : (4.17)
= os}rgfi—s {s;p Heio(Y) = I}I(f H’Y(Y|X)} :

13



By the symmetry of the channel, H,(Y|X) = H,(Z) which is independent of X. Hence,

C. < inf {supHg+7(Y)—H7(Z)}
X

0<y<1—¢

< inf {log2-H,(2)} = inf {1-H,(2)}

0<y<1—¢ 0<y<1—¢
where the last step follows by taking a Bernoulli uniform input. Since 1— H.(Z) is non-increasing

in v,

C.<1-Hy .- (2).

(Note that the superscript “-” indicates a strict inequality in the definition of H.(-); this is

consistent with the condition v +¢ < 1.)

On the other hand, we can derive the lower bound to C. by choosing a Bernoulli uniform

input in (4.15). We thus obtain

1—Hy (Z) < C. <1—Hu_oy-(2).

Note that there are actually two upper bounds in (4.16). In this example, the first upper
bound 1 — H; .)-(Z) (which is no less than 1 — H,_.)-(Z)) is a looser upper bound, and hence,
can be omitted. In addition, we demonstrate in the above derivation that the computation of the
upper bound to C. involves in general the infimum operation over the parameter 7. Therefore,

if the optimizing input distribution does not have a “nice” property (such as independence and

uniformity), then the computation of (4.17) may be complicated in general.

Remark: An alternative method to compute C, is to derive the channel sup-spectrum in terms
of the inf-spectrum of the noise process. Under the optimizing equally likely Bernoulli input X™

we can write

1>

. 1 Pyupxn (Y"/X7)

n—00

1
= limsup Pr< —log Pz (Z") <0 — 1}
n

n—00

= limsup Pr
n—r00

1 1
= limsup Pr {ﬁ log Pyn(Z") — - log Pyn(Y") < 9}

= 1-hgz((1-6)7).

14



Hence,

L(X5Y) = sup{0:1-hg((1-6))<¢)
= sup{0:hg((1-0))>1-¢}
= sup{(L-P):hgy(s)21-¢}
= 1+sup{(-f):hg(B ) >1-¢}
= 1-wf{f:hg(f)>1-¢}
= l-sup{f:hgz(f)<1l-c}

— 1 — H(]_,g)— (Z)

Similarly,
L-(X%Y)=1-Hu(2).
Therefore,
1—-Hy (Z) = L-(XY) <C. < L(X5Y) =1-Hy o-(2).
Example 4.1 Let Z be an all-zero sequence with probability # and Bernoulli (with parameter
p) with probability 1 — #. Then the sequence of random variables (1/n)hy.(Z™) converges to
atoms 0 and hb(p)é —plogp— (1 —p)log(l—p) with respective masses 5 and 1 — 3. The resulting

hz(#) is depicted in Figure 2. From (4.18), we obtain i x.y(6) as shown in Figure 3.

1 |

|

ﬁ | |

| |

| |

0 A |
0 hy(p)

Figure 2: The spectrum of (1/n)hzn(Z") for Example 4.1.

Therefore,

o - 1—hy(p), fO0<e<1-—0;
=T 1, ifl-pg<e<l

When € = 1 — 3, C. lies somewhere between 1 — hy(p) and 1.

15



1 ®
|

1-4 e———&

| |
| |
| |
0 & |
L—hy(p) 1
Figure 3: The spectrum of (1/n)i(xn;y»)(X";Y") for Example 4.1.

Example 4.2 If Z is a non-stationary binary independent sequence with Pr{Z, = 1} = p;,

then by the uniform boundedness (in 7) of the variance of random variable — log Py, (Z;), namely,

Var|[—log Pz, (Z;)]

IN

E|(log Pz,(Z:))*]

< sup pi(logp)? + (1 — pi)(log(1 — p;))?
0<p;<1
< 1,
we have (by Chebyshev’s inequality)
1 I
Prs|—=log Pz (Z") — =Y H(Z)| <7 —0,
n )

for any v > 0. Therefore, H(l_g)f (Z) is independent of £, and C. is equal to 1 minus the largest
cluster point of (1/n) Y1 | H(Z;), i.e.,

_ 1

H_gy- (Z) = lim sup — Z H(Z;),
n—oo 1 i—1

and

_ 12
C.=1-H(Z)=1-limsup—»_ H(Z),

n—oo T im1

where H(Z;) = hy(p;). This result is illustrated in Figures 4 and 5.

16



H(Z) cluster points H(Z)
Figure 4: The spectrum of (1/n)hy«(Z") for Example 4.2.

1 — H(Z) cluster points 1 — H(Z)
Figure 5: The spectrum of (1/n)i xn;yn)(X™;Y™) for Example 4.2.

V. Conclusions

In light of the work of Han and Verdi in [10] and [11], generalized entropy, mutual-information,
and divergence rates are proposed. The properties of each of these information quantities are
analyzed, and examples illustrating the computation of the e-capacity of channels with arbitrary

additive noise are presented.

In [7], we use these information measures to prove a generalized version of the Asymptotic

Equipartition Property (AEP) and general source coding and hypothesis testing theorems.
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Nomenclature

(1 — e)-achievable data compaction rate T .(X)

(1 — e)-achievable data compression rate T (D, X)
at distortion D

d-inf-divergence rate Ds(X||X)
d-inf-entropy rate Hy(X)
d-inf-information rate 1;(X;Y)
d-sup-divergence rate Ds(X || X)
J-sup-entropy rate Hj;(X)
d-sup-information rate Ii(X;Y)
e-sup-distortion rate A(X,)Y)
e-capacity Ce

channel capacity C

channel transition distribution Pyn = Pynxn
distortion inf-spectrum AX 5 X))
divergence inf-spectrum d X| %<
divergence sup-spectrum d X| X(H)
entropy density hxn(X™)
entropy inf-Spectrum hx (6)
entropy sup-Spectrum hx (6)
inf-divergence rate D(X||X)
inf-entropy rate H(X)
inf-information rate I[(X;Y)
information density ixnpwn (2™ y™)
information inf-spectrum ixy)®)
information sup-spectrum ixy)®)
input alphabet A

input distributions Pxn
log-likelihood ratio dxn (X™||X7)
output alphabet B
sup-divergence rate D(X||X)
sup-entropy rate H(X)
sup-information rate I(X;Y)
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Entropy Measures

System Arbitrary source X

1 1
A, : Norm. Entropy Density —hxn (X”)é — —log Px»(X™)

n n
Entropy Sup-Spectrum hx (6)2 lim sup Pr {%hxn (X™ < 9}
Entropy Inf-Spectrum hx (e)élirginf Pr {%hxn (X™) < 9}
§-Inf-Entropy Rate ga(X)é sup{6 : hux (6) < 6}
6-Sup-Entropy Rate Hy(X)Zsup{6 : hx (0) < 6}
Sup-Entropy Rate H(X)éﬁl (X)
Inf-Entropy Rate H(X)2H,(X)

Mutual Information Measures

System

Arbitrary channel WéPY‘ X
with input X and output Y

A, : Norm. Information Density

1 A ]_ dPXnyn

EZ(X",Y")(X ;Y )ZEIOgW(X Y")

Information Sup-Spectrum

N AL ]' . n n
Z(X7Y)(0):hmsupPr {EZ(Xn’Yn)(X ;Y") <6

n—o0

Information Inf-Spectrum

1
Q(X’Y) (Q)éhm 1nf PT {_Z(Xﬂ,Yn)(Xn, Yn) S 9}

d-Inf-Information Rate

L;(X; Y)—sup{9 Z(X Y)(Q) < 4}

0-Sup-Information Rate (X;Y)2su p{f: i x y,)(®) <4}
Sup-Information Rate (X )éj (X;Y)
Inf-Information Rate I(X; Y)élo( )

Divergence Measures

System Arbitrary sources X and X
1 dPxn

A,, : Norm. Log-Likelihood Ratio —an(X"||X")£ lo dPX (X™)
n

Divergence Sup-Spectrum

dX||X (9): lim sup Pr

n—00

{den(X”IIX”) < 9}

Divergence Inf-Spectrum

_X”X(e)_hmmf Pr {1an (X" X™) < 9}

d-Inf-Divergence Rate D,(X || X)2 sup{6 : dx, x® <9}
0-Sup-Divergence Rate Ds(X||1X)2 sup{# : dXHX(G) <4}
Sup-Divergence Rate D(X||X)ED,-(X||X)
Inf-Divergence Rate Q(X||X)éQO(X||X)

Table 1: Generalized information measures where ¢ € [0, 1].

20




