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Abstract: The error probability of block codes sent under a non-uniform input distribution over the
memoryless binary symmetric channel (BSC) and decoded via the maximum a posteriori (MAP)
decoding rule is investigated. It is proved that the ratio of the probability of MAP decoder ties
to the probability of error grows most linearly in blocklength when no MAP decoding ties occur,
thus showing that decoder ties do not affect the code’s error exponent. This result generalizes a
similar recent result shown for the case of block codes transmitted over the BSC under a uniform
input distribution.
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1. Introduction

Consider the classical channel coding context, where we send a block code through
the memoryless binary symmetric channel (BSC) with crossover probability 0 < p < 1/2.
Given a sequence of binary codes {Cn}n≥1 with n being the blocklength, we denote the
sequence of corresponding minimal probabilities of decoding error under maximum a
posteriori (MAP) decoding by {an}n≥1. The following result was recently shown in [1] when
the channel input selects codewords from Cn according to a uniform distribution.

Theorem 1 ([1]). For any sequence of codes {Cn}n≥1 of blocklength n and size |Cn| = M with
Cn ⊆ {0, 1}n, sent over the BSC with crossover probability 0 < p < 1/2 under a uniform channel
input distribution over Cn, its minimum probability of decoding error an satisfies

bn ≤ an ≤
(

1 +
(1− p)

p
n
)

bn, (1)

where

bn = PXn ,Yn

{
(xn, yn) ∈ X n ×Yn : PXn |Yn(xn|yn) < max

un∈Cn\{xn}
PXn |Yn(un|yn)

}
, (2)

where PXn ,Yn is the joint input–output distribution that Xn = (X1, X2, . . . , Xn) ∈ X n , {0, 1}n

is sent over the BSC (via n uses) and Yn = (Y1, Y2, . . . , Yn) ∈ Yn , {0, 1}n is received.

Noting that bn in (2) is the probability that a decoding error occurs without inducing
decoder ties (which occur when two or more codewords in Cn are identified by the decoder
as the estimated transmitted codeword; i.e., when more than one codeword in Cn maximize
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PXn |Yn(·|yn) for a given received word yn), the above result in (1) directly implies that
decoder ties do not affect the error exponent of an. The error exponent or reliability function
of a block coding communication system represents the largest rate of exponential decay of
the system’s probability of decoding error as the coding blocklength grows to infinity (e.g.,
see [2–14]).

It is known that uniformly distributed data achieves the largest entropy rate and leaves
no room for data compression. Thus, ideally compressed data should exhibit uniform
distribution for all blocklengths n. However, this setting is often impractical due to the
sub-optimality of the implemented data compression schemes. Instead, we generally have
non-uniformly distributed data after compression in the form of residual redundancy such
as in speech or image coding (e.g., [15,16]). Furthermore, one may have a compressed
source that can be divided into several groups, within each of which the symbols are
equally probable. Decoder ties can thus occur with respect to two (or more) codewords
corresponding to symbols within the same group.

In this paper, we consider a non-uniform prior distribution over Cn and prove that
decoder ties, under optimal MAP decoding, still have linear and hence sub-exponential
impact on the error probability an, thus extending Theorem 1 established for the case of a
uniform prior distribution over Cn. Since our problem falls within the general framework of
joint source-channel coding for point-to-point communication systems, we refer the reader
to [14–21] (Section 4.6) and the references therein for theoretical studies on this subject
as well as practical designs that outperform separate source and channel coding under
complexity or delay constraints.

The proof technique used in [1] to show (1) above is based on the observation that
there are two types of decoding errors. One is that the received tuple at the channel output
induces no decoder ties but the corresponding decoder decision is wrong. The other is
that the received tuple at the channel output causes a decoder tie, but the decoder picks
the wrong codeword. As a result, the MAP error probability an can be upper bounded by
the sum of two terms, bn and δn, where bn is the probability of the first type of decoding
errors as given in (2), and δn is the probability of decoder ties regardless of whether the tie
breaker misses the correct codeword or not. Under the assumption that the channel input is
uniformly distributed over block code Cn for each blocklength n and an arbitrary sequence
of codes {Cn}n≥1, it was shown in [1] that flipping a properly selected bit component of
the channel output that causes a decoder tie can produce a unique channel output that
leads to the first type of decoding errors. An analysis of this bit-flipping manipulation
shows that the ratio δn/bn grows at most linearly in n and hence yields the upper bound
in (1). However, this flipping technique no longer works when non-uniform channel inputs
are considered. To tackle this problem, we judiciously separate the channel output tuples
that induce decoder ties into two groups, one group consisting of output tuples that do
not fulfill the above flipping manipulation property and the other group composed of the
remaining output tuples (i.e., the complement group). We then show that the probability of
the former group is upper bounded by that of the latter group, and therefore δn/bn remains
growing at most linearly in blocklength n under arbitrary channel input statistics. Note that
the group that fails the flipping property is an empty set when channel input is uniformly
distributed over Cn, thereby making the result of Theorem 1 a special case of the extended
result in this paper. The rest of the paper is organized as follows. Section 2 presents the
main result and highlights the key steps of the proof to facilitate its understanding. The
proof is then provided in full detail, along with illustrative examples, in Section 3 and
Appendices A and B. Finally, conclusions and future directions are given in Section 4.

Throughout the paper, we denote [M] , {1, 2, . . . , M} for positive integer M and
set d(xn, yn|S) to be the Hamming distance between n-tuples xn = (x1, x2, . . . , xn) and
yn = (y1, y2, . . . , yn) with the indices of the tuples restricted to S ⊆ [n]. By convention, we
set d(xn, yn|S) = 0 when S = ∅ and use d(xn, yn) to represent d(xn, yn|[n]).
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2. Main Result

Consider a binary code Cn ⊆ {0, 1}n with fixed blocklength n and size M to be
used over the memoryless BSC with crossover probability 0 < p < 1

2 . Denote the prior
probability on Cn by PXn and hence PXn(Cn) = 1. Without loss of generality, we assume
that all codewords in Cn occur with positive probability, i.e., PXn(xn) > 0 for all xn ∈ Cn;
hence, Cn is the support of PXn .

It is known the minimal probability of decoding error is achieved by the MAP decoder,
which upon the reception of the channel output yn ∈ {0, 1}n estimates the codeword
xn ∈ Cn according to

e(yn) = arg max
un∈Cn

PXn |Yn(un|yn), (3)

where PXn |Yn is the posterior conditional distribution of Xn given Yn. We can see from (3)
that if more than one un ∈ Cn achieves the maximum value of PXn |Yn(un|yn) for a given yn,
a decoder tie occurs, in which case the set of these un, denoted conveniently as {e(yn)},
contains more than one element. As a result, an erroneous MAP decision is made if one of
the two situations occurs: i) the transmitted codeword does not belong to {e(yn)}; ii) the
transmitted codeword belong to {e(yn)} and |{e(yn)}| > 1, but the tie breaker picks the
wrong one from {e(yn)}. By conveniently denoting

Cn = {c1, c2, · · · , cM}, (4)

the probability of the first situation acts as a lower bound bn for an (i.e., bn ≤ an), where bn
is given in (2) and can be written as

bn =
M

∑
i=1

PXn(ci) PYn |Xn

({
yn ∈ {0, 1}n : PXn |Yn(ci|yn) < max

r∈[M]\{i}
PXn |Yn(cr|yn)

})
.(5)

It is shown in [22] that bn exactly equals the generalized Poor–Verdú (lower) bound [23,24]
as its tilting parameter approaches infinity. The probability of the second situation is
bounded above by the probability that the transmitted codeword belongs to {e(yn)} and
|{e(yn)}| > 1, disregarding whether the tie breaker picks the wrong codeword or not, and
this upper bound can be expressed as

δn ,
M

∑
i=1

PXn(ci) PYn |Xn

({
yn ∈ {0, 1}n : PXn |Yn(ci|yn) = max

r∈[M]\{i}
PXn |Yn(cr|yn)

})
. (6)

We thus have
bn ≤ an ≤ bn + δn. (7)

By proving the inequality
δn ≤ 2qnbn, (8)

where
q ,

1− p
p

> 1, (9)

we have our main result as follows.

Theorem 2. For any sequence of binary codes {Cn}n≥1 and prior probabilities {PXn}n≥1 used
over the BSC, we have

bn ≤ an ≤ (1 + 2qn)bn. (10)

Remark 1. Theorem 2 implies that the relative deviation of an from bn is at most linear in the
blocklength n and the impact of decoder ties in (6) to an is only sub-exponential. Consequently, an
and bn must have the same error exponent. Note also that the upper bound in (10) differs from the
result in Theorem 1 by an additional multiplicative factor of 2 in the qn term. As explained in the
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introduction section, this is a consequence of the fact that the probability of the group of channel
output tuples that cause decoder ties but fail the flipping manipulation property is upper bounded
by that of the remaining tie-inducing channel outputs. The full technical details are provided in
Section 3.2. Finally, we emphasize that Theorem 2 holds for arbitrary binary codes, including “bad”
codes for which high probability codewords have small Hamming distance between them. Hence,
tightening the upper bound in (10) by restricting the analysis for “sufficiently good" codes, in the
sense that their most likely codewords sit “sufficiently” far apart in {0, 1}n, is an interesting future
direction.

List of Main Symbols: Before providing an overview of the main steps of the proof of
Theorem 2 (which is presented in full detail in the next section), we describe in Table 1 the
main symbols used in the paper and indicate the equation where they are first introduced.
We emphasize that sets Tj|i, Nj|i and S (m)

1,j are defined differently from their counterparts
in [1] that use the same notation.

We also visually illustrate in Figure 1 some of the main sets defined in Table 1 under the
setting of Example 1, which is presented in Section 3 below for a non-uniformly distributed
binary code with M = 4 codewords and blocklength n = 4 given by C4 = {c1, c2, c3, c4} =
{0000, 0101, 0110, 0111}. More specifically, we only show the non-empty component subsets
in Yn = {0, 1}4 corresponding to codewords c1 and c2; refer to Table A2 in Appendix A for
a detailed listing of all component subsets in {0, 1}4 (including empty ones).

Table 1. Summary of the main symbols used in this paper.

Symbol Description Defined in

[M] A shorthand for {1, 2, . . . , M}

Cn The code
{

c1, c2, . . . , cn
}

with c1 being the all-zero codeword

d(un, vn|S) The Hamming distance between the portions of un and vn with indices in S
All terms below are functions of Cn (this dependence is not explicitly shown to simplify notation)

Ti The set of channel outputs yn inducing a decoder tie when ci is sent (12)

Ni The set of channel outputs yn leading to a tie-free decoder decision error when ci is sent (15)

Ii(yn) The set {m ∈ [M] \ {i} : yn ∈ Tm} for yn ∈ Ti (21)

Si,j The set of indices for which the components of ci and cj differ

`i,j The size of Si,j, i.e., |Si,j|
Tj|i The subset of Ti consisting of channel outputs yn such that j is the minimal (22a)

number r in Ii(yn) satisfying d(ci , yn|Si,r) < `i,r

Nj|i The subset of Ni consisting of channel outputs yn that satisfy PXn ,Yn (ci , yn) · q = (22b)
PXn ,Yn (cj, yn) · 1

q and that are not included in Nr|i for r ∈ [j− 1] ⊂ {i}

Tj|i The subset of Ti \
(⋃

h∈[M]\{i} Th|i

)
consisting of channel outputs yn (23)

such that j is the minimal number in Ii(yn)

S (m)
1,j

The subset of S1,j defined according to whether each index in S1,j is in each (43)
of S1,2, . . ., S1,j−1, S1,j+1, . . ., S1,M

S
(m)

1,j The union of S (1)1,j , S (2)1,j , . . ., S (m)
1,j

(48)

`
(m)
1,j The size of S

(m)
1,j , i.e., |S (m)

1,j |

ηk The mapping from k ∈ {0, 1, . . . , `j − 1} to [2M−2] used for partitioning Tj|1 into `1,j (49)
subsets {Tj|1(k)}0≤k<`1,j

Tj|1(k) The kth partition of Tj|1 for k = 0, 1, . . ., `1,j − 1 (52a)

Nj|1(k) The kth subset of Nj|1 for k = 0, 1, . . ., `1,j − 1 (52b)

Uj|1(k) The set of representative elements in Tj|1(k) for partitioning Tj|1(k)

Tj|1(un; k) The subset of Tj|1(k) associated with un ∈ Uj|1(k) (55a)

Nj|1(un; k) The subset of Nj|1(k) associated with un ∈ Uj|1(k) (55b)
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Figure 1. An illustration, based on the setting in Example 1 for a non-uniformly distributed binary
code (with M = n = 4) given by C4 = {c1, c2, c3, c4} = {0000, 0101, 0110, 0111} of the non-empty
component subsets of Yn defined in Table 1 and corresponding to codewords c1 = 0000 (left figure)
and c2 = 0101 (right figure).

Overview of the Proof : Given that codeword ci is sent over the channel, i ∈ [M], let Ti
denote the set of output tuples yn that result in MAP decoding ties:

Ti ,
{

yn ∈ {0, 1}n : PXn |Yn(ci|yn) = max
r∈[M]\{i}

PXn |Yn(cr|yn)

}
(11)

=

{
yn ∈ {0, 1}n : PXn ,Yn(ci, yn) = max

r∈[M]\{i}
PXn ,Yn(cr, yn)

}
, (12)

where (12) holds because PXn |Yn(xn|yn) =
PXn ,Yn (xn ,yn)

PYn (yn)
. Then, δn in (6) can be rewritten as

δn = ∑
i∈[M]

PXn(ci) PYn |Xn
(
Ti|ci

)
= ∑

i∈[M]

PXn ,Yn(ci, Ti). (13)

Similarly, letNi denote the set of output tuples yn which guarantee a tie-free MAP decoding
error when ci is transmitted over the channel:

Ni ,
{

yn ∈ {0, 1}n : PXn |Yn(ci|yn) < max
r∈[M]\{i}

PXn |Yn(cr|yn)

}
(14)

=

{
yn ∈ {0, 1}n : PXn ,Yn(ci, yn) < max

r∈[M]\{i}
PXn ,Yn(cr, yn)

}
. (15)

Hence, bn in (5) can be rewritten as:

bn = ∑
i∈[M]

PXn(ci) PYn |Xn(Ni|ci) = ∑
i∈[M]

PXn ,Yn(ci,Ni). (16)

Note if δn = 0, then (7) is tight and (10) holds trivially; so, without loss of generality, we
assume in the proof that δn > 0, which implies that there exists at least one non-empty Ti
for i ∈ [M]. Then, according to (13) and (16), we have that

δn

bn
=

∑i∈[M] PXn ,Yn(ci, Ti)

∑i∈[M] PXn ,Yn(ci,Ni)
≤

∑i∈[M]:Ti 6=∅ PXn ,Yn(ci, Ti)

∑i∈[M]:Ti 6=∅ PXn ,Yn(ci,Ni)
. (17)

We can upper-bound (17) by

∑i∈[M]:Ti 6=∅ PXn ,Yn(ci, Ti)

∑i∈[M]:Ti 6=∅ PXn ,Yn(ci,Ni)
≤ max

1∈[M]:Ti 6=∅

PXn ,Yn(ci, Ti)

PXn ,Yn(ci,Ni)
, (18)
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where for convenience we will refer to an inequality of the form given in (18) as the ratio-sum
inequality. As a result, Theorem 2 holds if we can substantiate that 2qn is an upper bound
for (18). To this end, we will find a proper partition of Ti and an equal number of disjoint
subsets of Ni, of which the individual probabilities can be evaluated. For ease of notation,
we denote the individual probabilities corresponding to the K-partition of Ti and K disjoint
subsets of Ni by {αk}K

k=1 and {βk}K
k=1, respectively. Then, we obtain that

PXn ,Yn(ci, Ti)

PXn ,Yn(ci,Ni)
≤ ∑K

k=1 αk

∑K
k=1 βk

. (19)

By showing that each individual ratio αk/βk, k ∈ [K] is bounded above by 2qn, the ratio-
sum inequality can again be applied to complete the proof.

3. Proof of Theorem 2

In [1], where a uniformly distributed prior probability PXn over Cn is assumed, one
can flip a properly selected bit in the output yn ∈ Ti to convert it to a corresponding

element in Ni. In light of this connection, one can evaluate the ratio
PYn |Xn (Ti |ci)

PYn |Xn (Ni |ci)
. This

approach, however, no longer works when a non-uniformly distributed prior probability is
considered. Therefore, we have to devise a more judicious approach to extend the result
in [1] for a general prior probability.

3.1. A Partition of Non-empty Ti and Corresponding Disjoint Subsets of Ni

In this section, instead of finding a disjoint covering of the set of decoder ties Ti as
in [1], we establish a proper partition of Ti from Definitions 1 and 2. This is one of the
key differences from the techniques used in [1]. Example 1 is given after Proposition 1 to
illustrate Definitions 1 and 2.

Given yn ∈ Ti defined in (12), there exists at least one m ∈ [M] \ {i} such that

PXn ,Yn(ci, yn) = PXn ,Yn(cm, yn) = max
r∈[M]\{i}

PXn ,Yn(cr, yn). (20)

We collect the indices m that satisfy (20) in Ii(yn) as follows:

Ii(yn) ,
{

h ∈ [M] \ {i} : PXn ,Yn(ci, yn) = PXn ,Yn(ch, yn) = max
r∈[M]\{i}

PXn ,Yn(cr, yn)
}

. (21)

Remark 2. First, we note that Ii(yn) is not empty as long as yn ∈ Ti. Also, for any yn ∈ Ti, we
can infer from (21) that h ∈ Ii(yn) if and only if yn ∈ Th.

In Definitions 1 and 2 that follow, we will assign each yn ∈ Ti to a subset indexed by
j ∈ Ii(yn). These subsets will form a partition of Ti as stated in Proposition 1.

Definition 1. For j ∈ [M] \ {i}, denoting by Si,j the set of indices where the bit components of ci
and cj differ, we define

Tj|i ,
{

yn ∈ Ti : j = min
r∈Ii(yn):d(ci ,yn |Si,r)<|Si,r |

r
}

;

Nj|i ,
{

yn ∈ Ni : PXn ,Yn(ci, yn) · q = PXn ,Yn(cj, yn) · 1
q

and PXn ,Yn(cj, yn) 6= PXn ,Yn(cr, yn) for r ∈ [j− 1] \ {i}
}

.

(22a)

(22b)
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Since there may exist yn ∈ Ti satisfying d(ci, yn|Si,r) = |Si,r| for all r ∈ Ii(yn), the col-
lection of all elements in

⋃
j∈[M]\{i} Tj|i may not exhaust the elements in Ti (see Example 1).

We thus go on to collect the remaining elements in Ti \
⋃

j∈[M]\{i} Tj|i as follows.

Definition 2. Define for j ∈ [M] \ {i},

Tj|i ,
{

yn ∈ Ti

∖( ⋃
h∈[M]\{i}

Th|i

)
: j = min

r∈Ii(yn)
r
}

. (23)

With the sets defined in Definitions 1 and 2, a partition of Ti and disjoint subsets of Ni
are constructed as proven in the following proposition.

Proposition 1. For non-empty Ti, the following two properties hold.

(i) The collection {Tj|i
⋃

Tj|i}j∈[M]\{i} forms a (disjoint) partition of Ti.
(ii) {Nj|i}j∈[M]\{i} is a collection of disjoint subsets of Ni.

Before proving Proposition 1, we provide the following example to illustrate the
above sets.

Example 1. This example illustrates the necessity of introducing Tj|i as a companion to Tj|i.

Suppose C4 = {c1, c2, c3, c4} = {0000, 0101, 0110, 0111}. Let PX4(c1) =
q2

2+q2+q−2 , PX4(c2) =

PX4(c3) =
1

2+q2+q−2 and PX4(c4) =
q−2

2+q2+q−2 . Then, y4 = 0111 satisfies

PX4,Y4 (c1, y4)︸ ︷︷ ︸
q2

(2+q2+q−2)
p4q1

= max
r∈[4]\{1}

PX4,Y4(cr, y4) = PX4,Y4 (c2, yn)︸ ︷︷ ︸
1

(2+q2+q−2)
p4q3

= PX4,Y4 (c3, y4)︸ ︷︷ ︸
1

(2+q2+q−2)
p4q3

> PX4,Y4 (c4, y4)︸ ︷︷ ︸
q−2

(2+q2+q−2)
p4q4

, (24)

where the probabilities PXn ,Yn(xn, yn) are written in the form

PXn ,Yn(xn, yn) = PXn(xn)PYn |Xn(yn|xn) = PXn(xn)pnqn−d(xn ,yn). (25)

Note that the first equality in (24) indicates 0111 ∈ T1 and the last two equalities and the right-most
inequality jointly imply I1(0111) = {2, 3}. In light of Proposition 1, this 0111 must lie in one
and only one of {Tj|1

⋃
Tj|1}j∈[4]\{1} as shown in Tables A1 and A2 of Appendix A. Since there

exist no integers h in I1(0111) fulfilling d(c1, 0111|S1,h) < |S1,h|, this 0111 belongs to Tj|1 with
j = minr∈I1(0111) = 2. Recall that in [1], an element in Nj|1 can be obtained if flipping a zero of
yn ∈ Tj|1 can make it further away from c1 but closer to cj. However, for y4 = 0111 in this example
if we flip the only zero to one, it gets further away from both c1 and ch for any h = 2, 3, 4. Therefore,
the bit-flipping manipulation fails.

With y4 = 0111, we also have

PX4,Y4 (c2, y4)︸ ︷︷ ︸
1

(2+q2+q−2)
p4q3

= max
r∈[4]\{2}

PX4,Y4(cr, y4) = PX4,Y4 (c1, y4)︸ ︷︷ ︸
q2

(2+q2+q−2)
p4q

= PX4,Y4 (c3, yn)︸ ︷︷ ︸
1

(2+q2+q−2)
p4q3

> PX4,Y4 (c4, y4)︸ ︷︷ ︸
1

(2+q2+q−2)
p4q4

, (26)

where the first equality indicates 0111 ∈ T2 and the remaining parts in (26) jointly imply that
I2(0111) = {1, 3}. Proposition 1 then states that this 0111 lies in one and only one of {Tj|2⋃

Tj|2}j∈[4]\{2}. Since 1 ∈ I2(0111) = {1, 3} and d(c2, 0111|S2,1) = 0 < |S2,1| = 2, we have
0111 ∈ T1|2 according to (22a). Thus, we can flip a bit in 0111 to get further away from c2 and
closer to cj simultaneously. More specifically, the bit-flipping manipulation produces either 0110 or
0011, which lies in N1|2 as y4 = 0111 is in T1|2. Therefore, we can associate the element in T1|2
with an element in N1|2 via a single flipping operation. For completeness, a full list of the sets Ti,
Ni, Tj|i, Tj|i and Nj|i for i ∈ [4] and j ∈ [4] \ {i}, is given in Appendix A.
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Proof of Proposition 1. First, we note that by the definitions in (22a) and (23), {Tj|i}j∈[M]\{i}
are disjoint and so is {Tj|i}j∈[M]\{i}. Additionally, (23) implies Tj|i

⋂
Th|i = ∅ for arbitrary

j, h ∈ [M] \ {i}. Furthermore, according to Definitions 1 and 2, for any yn ∈ Ti, we have
either yn ∈ Th|i or yn ∈ Th|i for some h ∈ [M] \ {i}. Consequently, {Tj|i

⋃
Tj|i}j∈[M]\{i}

forms a partition of Ti.
On the other hand, the inequality in (22b) prevents multiple inclusions of an element

from the previous collections. Therefore, {Nj|i}j∈[M]\{i} are a collection of disjoint subsets
of Ni.

Remark 3. When channel inputs are uniformly distributed as considered in [1], it follows that

Ii(yn) =
{

h ∈ [M] \ {i} : d(ci, yn) = d(ch, yn) = max
r∈[M]\{i}

d(cr, yn)
}

, (27)

and d(ci, yn|Si,j) =
|Si,j |

2 < |Si,j| for every j ∈ Ii(yn). Therefore, (22a) is reduced to

Tj|i =

{
yn ∈ Ti : j = min

r∈Ii(yn)
r
}

, (28)

and

Tj|i = ∅. (29)

We then have the following two remarks. First, we note that the Tj|i newly defined via (22a) and
reduced to (28) in the regime considered in [1] is more restrictive than the Tj|i introduced in [1]
(Equation (16a)). As a consequence, {Tj|i}j∈[M]\{i} forms a partition of Ti in this paper while
those introduced in [1] (Equation (16a)) are a disjoint covering of Ti under uniform channel inputs.
Second, (29) shows that [1] does not need to consider a companion Tj|i to Tj|i, but this paper does.

Based on Proposition 1, we continue the derivation from (17) and obtain:

δn

bn
≤

∑i∈[M] PXn ,Yn

(
ci,
⋃

j∈[M]\{i}(Tj|i
⋃

Tj|i)
)

∑i∈[M] PXn ,Yn

(
ci,
⋃

j∈[M]\{i}Nj|i

) (30)

=
∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci, Tj|i

)
+ ∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci, Tj|i

)
∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci,Nj|i

) , (31)

where (31) holds because {Tj|i}j∈[M]\{i} and {Tj|i}j∈[M]\{i} are disjoint, and the same ap-
plies to {Nj|i }j∈[M]\{i}. An additional upper bound for (31) requires the verification of
the inequality:

∑
i∈[M]

∑
j∈[M]\{i}

PXn ,Yn
(
ci, Tj|i

)
≤ ∑

j∈[M]
∑

i∈[M]\{j}
PXn ,Yn

(
cj, Ti|j

)
, (32)

which is an immediate consequence of the proposition to be proven in the next section
(Proposition 2), stating that

yn ∈ Tj|i and h ∈ Ii(yn)⇒ yn ∈ T`|h for some

` ∈ Ih(yn) and PXn ,Yn(ci, yn) = PXn ,Yn(ch, yn). (33)

3.2. Verification of (32)

Recall that the main technique used in [1] is to associate every element in Ti with
a corresponding element in Ni via the bit-flipping manipulation. By this bit-flipping
association, the probability ratio of the elements and corresponding elements respectively
in Ti and Ni can be evaluated. However, as Example 1 indicates, for an element in Tj|i,
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the bit-flipping association no longer works. This reveals the challenge of generalizing
the results in [1] from uniform channel inputs to arbitrarily distributed channel inputs. A
solution is to subdivide the elements in Ti into two groups {Tj|i}j∈[M]\{i} and {Tj|i}j∈[M]\{i},
where the bit-flipping association to {Nj|i}j∈[M]\{i} works for the former group but not
for the latter. The inequality in (32) can then be used to exclude the latter group with an
upper bound:

δn

bn
≤

∑i∈[M] ∑j∈[M]\{i} PXn ,Yn
(
ci, Tj|i

)
+ ∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci, Tj|i

)
∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci,Nj|i

) (34)

≤ 2
∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci, Tj|i

)
∑i∈[M] ∑j∈[M]\{i} PXn ,Yn

(
ci,Nj|i

) . (35)

Since uniform channel inputs as considered in [1] guarantee (29), it can be seen
from (35) that the multiplicative factor of 2 can be reduced to 1 as observed in Remark 1.
For general arbitrary channel inputs, we have the factor of 2 since the set Tj|i may not be
empty. The validity of (32) can be confirmed by the next proposition.

Proposition 2. Suppose yn ∈ Tj|i. Then, for every h ∈ Ii(yn), we have

yn ∈ T`|h for some ` ∈ Ih(yn) and PXn ,Yn(ci, yn) = PXn ,Yn(ch, yn). (36)

Proof. Suppose yn ∈ Tj|i. Then, d(ci, yn|Si,h) = |Si,h| for every h ∈ Ii(yn). We therefore
have:

PXn ,Yn(ci, yn) = PXn ,Yn(ch, yn) = max
r∈[M]\{i}

PXn ,Yn(cr, yn). (37)

We can rewrite (37) as

PXn ,Yn(ch, yn) = PXn ,Yn(ci, yn) = max
r∈[M]\{h}

PXn ,Yn(cr, yn), (38)

implying yn ∈ Th and i ∈ Ih(yn). Noting that d(ch, yn|Sh,i) = 0 < |Sh,i| because
d(ci, yn|Si,h) = |Si,h| and Sh,i = Si,h, we conclude that the smallest integer ` ∈ Ih(yn)
satisfying d(ch, yn|Sh,`) < |Sh,`| exists, and therefore yn ∈ T`|h.

Remark 4. Two observations can be made based on Proposition 2. First, Proposition 2 indicates
that every yn ∈ Tj|i must appear at least once in the sum ∑h∈[M] ∑`∈[M]\{h} PXn ,Yn

(
ch, T`|h

)
,

contributing the same probability mass PXn ,Yn(ch, yn) as PXn ,Yn(ci, yn). Second, Proposition 2
also implies that every yn ∈ Tj|i cannot be contained in

(⋃
h∈[M]

⋃
r∈[M]\{h} Tr|h

)
\ Tj|i. This

observation can be substantiated as follows. For every h ∈ Ii(yn), Proposition 2 implies yn ∈ T`|h
for some ` ∈ Ih(yn) and hence Definition 2 immediately gives yn 6∈ Tr|h for all r ∈ [M] \ {h}.
For h 6∈ Ii(yn), we have yn 6∈ Th and therefore yn 6∈ Tr|h ⊆ Th for all r ∈ [M] \ {h} as
pointed out in Remark 2. As a result, every yn ∈ Tj|i appears exactly once in the sum ∑h∈[M]

∑r∈[M]\{h} PXn ,Yn
(
ch, Tr|h

)
. Combining the two observations leads to:

∑
i∈[M]

∑
j∈[M]\{i}

∑
yn∈Tj|i

PXn ,Yn
(
ci, yn) ≤ ∑

j∈[M]
∑

`∈[M]\{j}
∑

yn∈T`|j
PXn ,Yn

(
cj, yn). (39)

To flesh out the above inequality, we give the next example.

Example 2. Proceeding from Example 1, we observe from Tables A1 and A2 in Appendix A that
0111 is contained in T2|1, T1|2 and T1|3. Hence, it appears once in the sum ∑j∈[4] ∑i∈[4]\{j}
PXn ,Yn

(
cj, Ti|j

)
while it contributes twice in the sum ∑j∈[4] ∑i∈[4]\{j} PXn ,Yn

(
cj, Ti|j

)
. We then

confirm from (A35) that:
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∑
i∈[4]

∑
j∈[4]\{i}

PX4,Y4
(
ci, Tj|i

)
≥ ∑

i∈[4]
∑

j∈[4]\{i}
PX4,Y4

(
ci, Tj|i

)
. (40)

We continue the derivation from (35) and obtain

δn

bn
≤ 2

∑i∈[M] ∑j∈[M]\{i}:Tj|i 6=∅ PXn ,Yn
(
ci, Tj|i

)
∑i∈[M] ∑j∈[M]\{i}:Tj|i 6=∅ PXn ,Yn

(
ci,Nj|i

) (41)

≤ 2 max
i∈[M] and j∈[M]\{i}:Tj|i 6=∅

PXn ,Yn
(
ci, Tj|i

)
PXn ,Yn

(
ci,Nj|i

) , (42)

where we add the restriction Tj|i 6= ∅ in (41) to exclude the cases of zero dividing by zero
in (42), and (42) follows the ratio-sum inequality in (18).

In the next section, we introduce a number of delicate decompositions of non-empty
Tj|i and an equal number of disjoint subsets of Nj|i to facilitate the bit-flipping association
of the pairs.

3.3. Atomic Decomposition of Non-Empty Tj|i and the Corresponding Disjoint Subsets of Nj|i
To simplify the exposition, we assume without loss of generality that c1 is the all-zero

codeword (It is known that we can simultaneously flip the same position of all codewords
to yield a new code of equal performance over the BSC. Thus, via a number of flipping
manipulations, we can transform any code to a code of equal performance with the first
codeword being all-zero.) Below we present the proof for i = 1. The proof for general i > 1
follows annalagously.

Since c1 is the all-zero codeword, S1,j is the set containing the indices of the non-
zero components of cj. To facilitate the investigation of the structure of cj relative to the
remaining codewords {cr}r∈[M]\{1,j}, we first partition S1,j into 2M−2 subsets according to
whether each index in S1,j is in S1,2, . . ., S1,j−1, S1,j+1, . . ., S1,M or not, as follows:

S (m)
1,j ,

( j−1⋂
r=2
Sr;λr

)⋂( M⋂
r=j+1

Sr;λr

)⋂
S1,j for m , 1 +

j−1

∑
r=2

λr · 2r−2 +
M

∑
r=j+1

λr · 2r−3, (43)

where Sr;1 , S1,r and Sr;0 , [n] \ S1,r = Sc
1,r, and each λr ∈ {0, 1}. An example of the

partition is given below.

Example 3. Suppose C4 = {00000, 11001, 01111, 01101}. For j = 3 and S1,j = {2, 3, 4, 5}, we
obtain 24−2 = 4 subsets as

S (m)
1,3 =


S (1)1,3 = Sc

1,2
⋂ Sc

1,4
⋂ S1,3 = {4}, if (λ4, λ2) = (0, 0);

S (2)1,3 = S1,2
⋂ Sc

1,4
⋂ S1,3 = ∅, if (λ4, λ2) = (0, 1);

S (3)1,3 = Sc
1,2
⋂ S1,4

⋂ S1,3 = {3}, if (λ4, λ2) = (1, 0);

S (4)1,3 = S1,2
⋂ S1,4

⋂ S1,3 = {2, 5}, if (λ4, λ2) = (1, 1).

(44)

As c1 is the all-zero codeword, the components of cr with indices in S (m)
1,j can now be

unambiguously identified and must all equal λr. As a result,

d
(

c1, cr

∣∣∣S (m)
1,j

)
=

{∣∣S (m)
1,j

∣∣, λr = 1;

0, λr = 0.
(45)
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Example 4. Proceeding from Example 3, we have

d
(

c1, c2

∣∣∣S (1)1,3

)
= 0 because λ2 = 0;

d
(

c1, c2

∣∣∣S (2)1,3

)
= |S (2)1,3 | = 0 because λ2 = 1;

d
(

c1, c2

∣∣∣S (3)1,3

)
= 0 because λ2 = 0;

d
(

c1, c2

∣∣∣S (4)1,3

)
= |S (4)1,3 | = 2 because λ2 = 1,

(46)

and 

d
(

c1, c4

∣∣∣S (1)1,3

)
= 0 because λ4 = 0;

d
(

c1, c4

∣∣∣S (2)1,3

)
= 0 because λ4 = 0;

d
(

c1, c4

∣∣∣S (3)1,3

)
= |S (3)1,3 | = 1 because λ4 = 1;

d
(

c1, c4

∣∣∣S (4)1,3

)
= |S (4)1,3 | = 2 because λ4 = 1.

(47)

It should be emphasized that S (m)
1,j in this paper is defined differently from that in [1].

While the one defined in [1] partitions S1,j only according to codewords with indices less
than j, the one defined in this paper considers all other M− 2 codewords in the partition
manipulation, and hence the order of codewords becomes irrelevant.

Next, to decompose Tj|1, we further define a sequence of incremental sets:

S
(m)

1,j ,
m⋃

h=1

S (h)1,j , m ∈ [2M−2], (48)

and set S
(0)

1,j , ∅. Let `1,j , |S1,j| and `
(m)
1,j , |S (m)

1,j | respectively denote the sizes of S1,j

and S
(m)

1,j and note that 0 = `
(0)
1,j ≤ `

(1)
1,j ≤ `

(2)
1,j ≤ · · · ≤ `

(2M−2)
1,j = `1,j.

The idea behind the partition of Tj|1 into `1,j subsets, indexed by k ∈ [`1,j − 1]
⋃{0}, is

as follows. Pick one yn ∈ Tj|1. We start by examining whether d(c1, yn|S (1)
1,j ) is strickly less

than `
(1)
1,j − 1. If the answer is negative, we continue examining whether d(c1, yn|S (2)

1,j ) is

strictly less than `
(2)
1,j − 1. Proceed until we reach the smallest m such that d(c1, yn|S (m)

1,j ) <

`
(m)
1,j − 1 holds. Setting k to be equal to k = d(c1, yn|S (m)

1,j ), we assign this yn to the subset

Tj|1(k). Notably, there exists no such number m ∈ [2M−2] that satisfies d(c1, yn|S (m)
1,j ) <

`
(m)
1,j − 1 if and only if d(c1, yn|S1,j) = `1,j − 1; in this case, we find the smallest m satisfying

S
(m)

1,j = S1,j and assign this element to Tj|1(`1,j − 1) as d(c1, yn|S (m)
1,j ) = `1,j − 1. For

ease of describing the above algorithmic partition process, we introduce a mapping from
k ∈ [`1,j − 1]

⋃{0} to m ∈ [2M−2] as follows:

ηk ,

min
{

m ∈ [2M−2] : k < `
(m)
1,j − 1

}
, 0 ≤ k < `1,j − 1;

min
{

m ∈ [2M−2] : k = `
(m)
1,j − 1

}
, k = `1,j − 1.

(49)

We can see that for 0 ≤ k < `1,j − 1, we have `
(ηk−1)
1,j − 1 ≤ k < `

(ηk)
1,j − 1. Therefore, if

yn ∈ Tj|1 is assigned to Tj|1(k) for some k < `1,j − 1, we must have

`
(ηk−1)
1,j − 1 ≤ d

(
c1, yn∣∣S (ηk−1)

1,j
)
≤ d

(
c1, yn∣∣S (ηk)

1,j
)
= k < `

(ηk)
1,j − 1. (50)
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On the other hand, if yn ∈ Tj|1 is collected in Tj|1(`1,j − 1), then S
(ηk)

1,j = S1,j and

`
(ηk−1)
1,j − 1 ≤ d

(
c1, yn∣∣S (ηk−1)

1,j
)
≤ d

(
c1, yn∣∣S (ηk)

1,j
)
= `1,j − 1. (51)

A formal definition of Tj|1(k) is given next, where the corresponding subsetsNj|1(k) ofNj|1
are also introduced.

Definition 3. Define for k = 0, 1, . . ., `1,j − 1,


Tj|1(k) ,

{
yn ∈ Tj|1 : `(ηk−1)

1,j − 1 ≤ d
(
c1, yn∣∣S (ηk−1)

1,j
)

and d
(
c1, yn∣∣S (ηk)

1,j
)
= k

}
;

Nj|1(k) ,
{

yn ∈ Nj|1 : `(ηk−1)
1,j = d

(
c1, yn∣∣S (ηk−1)

1,j
)

and d
(
c1, yn∣∣S (ηk)

1,j
)
= k + 1

}
,

(52a)

(52b)

where ηk is defined in (49).

With Definition 3, we have the following proposition.

Proposition 3. For non-empty Tj|1, the following two properties hold.

(i) {Tj|1(k)}k∈[`1,j−1]
⋃{0} forms a partition of Tj|1;

(ii) {Nj|1(k)}k∈[`1,j−1]
⋃{0} is a collection of disjoint subsets of Nj|1.

Proof. It can be seen from the definitions of {Tj|1(k)}k∈[`1,j−1]
⋃{0} and {Nj|1(k)}k∈[`1,j−1]

⋃{0}
that they are collections of mutually disjoint subsets of Tj|1 andNj|1, respectively. It remains
to argue that every element in Tj|1 belongs to Tj|1(k) for some k ∈ [`1,j − 1]

⋃{0}. Noting
that the element yn in Tj|1 satisfies d(c1, yn|S1,j) ≤ `1,j − 1, we differentiate two cases:

d(c1, yn|S1,j) ≤ `1,j − 2 and d(c1, yn|S1,j) = `1,j − 1. For the former case, d(c1, yn|S (m)
1,j ) <

`
(m)
1,j − 1 must hold for m = ηk; hence, this yn will be contained in Tj|1(k). For the latter case,

yn will be included in Tj|1(`1,j − 1). The proof is thus completed.

In light of Proposition 3, we can apply the ratio-sum inequality to obtain

PXn ,Yn(c1, Tj|1)

PXn ,Yn(c1,Nj|1)
≤

∑
`1,j−1

k=0:Tj|1(k) 6=∅ PXn ,Yn
(
c1, Tj|1(k)

)
∑
`1,j−1

k=0:Tj|1(k) 6=∅ PXn ,Yn
(
c1,Nj|1(k)

) (53)

≤ max
k∈[`1,j−1]

⋃{0}:Tj|1(k) 6=∅

PXn ,Yn
(
c1, Tj|1(k)

)
PXn ,Yn

(
c1,Nj|1(k)

) . (54)

We continue to construct a fine partition of Tj|1(k) and the corresponding disjoint
subsets of Nj|1(k) in Proposition 4 after giving the next definition.

Definition 4. Define for un ∈ Tj|1(k),
Tj|1(u

n; k) ,
{

yn ∈ Tj|1(k) : d
(
un, yn

∣∣∣(S (ηk)
1,j

)c)
= 0

}
;

Nj|1(u
n; k) ,

{
yn ∈ Nj|1(k) : d

(
un, yn

∣∣∣(S (ηk)
1,j )c) = 0

}
,

(55a)

(55b)

where ηk is given in (49).

Note from Definition 4 that for one element un in non-empty Tj|1(k), we can find a

group of elements that have identical bit components to un with indices in (S
(ηk)

1,j )c. We
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denote this group as Tj|1(un; k). We continue this grouping manipulation until all elements
in Tj|1(k) are exhausted as summarized below.

Proposition 4. For non-empty Tj|1(k), there exists a representative subset Uj|1(k) ⊆ Tj|1(k) such
that the following two properties hold.

(i)
{
Tj|1(un; k)

}
un∈Uj|1(k)

forms a (non-empty) partition of Tj|1(k);

(ii)
{
Nj|1(un; k)

}
un∈Uj|1(k)

is a collection of (non-empty) disjoint subsets of Nj|1(k).

Since the above proposition can be self-validated via its sequential selection manipula-
tion of each un from Tj|1(k), we omit the proof. Interested readers can find the details in [1]
(Section III-C).

From Proposition 4, using again the ratio-sum inequality, we obtain that for non-empty
Tj|1(k),

PXn ,Yn
(
c1, Tj|1(k)

)
PXn ,Yn

(
c1,Nj|1(k)

) ≤
∑un∈Uj|1(k) PXn ,Yn

(
c1, Tj|1(un; k)

)
∑un∈Uj|1(k) PXn ,Yn

(
c1,Nj|1(un; k)

) (56)

≤ max
un∈Uj|1(k)

PXn ,Yn
(
c1, Tj|1(un; k)

)
PXn ,Yn

(
c1,Nj|1(un; k)

) . (57)

Noting that the above result can be similarly conducted for general i > 1, we combine
(42), (54) and (57) to conclude that

δn

bn
≤ 2 max

i∈[M] and j∈[M]\{i}:Tj|i 6=∅
max

k∈[`i,j−1]
⋃{0}:Tj|i(k) 6=∅

max
un∈Uj|i(k)

PXn ,Yn
(
ci, Tj|i(un; k)

)
PXn ,Yn

(
ci,Nj|i(un; k)

) . (58)

The final task is to evaluate PXn ,Yn
(
ci, Tj|i(un; k)

)
/PXn ,Yn

(
ci,Nj|i(un; k)

)
in order to charac-

terize a linear upper bound for δn/bn.

3.4. Characterization of a Linear Upper Bound for δn/bn

We again focus on i = 1 with c1 being the all-zero codeword for simplicity. The
definitions of Tj|1(un; k) in (55a) and Nj|1(un; k) in (55b) indicate that when dealing with
the ratio PXn ,Yn(c1, Tj|1(un; k))/PXn ,Yn(c1,Nj|1(un; k)), we only need to consider those bits

with indices in S
(ηk)

1,j because the remaining bits of all tuples in Tj|1(un; k) and Nj|1(un; k)
have identical values as un. Note that all |Tj|1(un; k)| elements in Tj|1(un; k) have exactly k

ones with indices in S
(ηk)

1,j , and all |Nj|1(un; k)| elements in Nj|1(un; k) have exactly k + 1

ones with indices in S
(ηk)

1,j , we can immediately infer that

PXn ,Yn(c1, Tj|1(un; k))
PXn ,Yn(c1,Nj|1(un; k))

=
PXn(c1) · PYn |c1

(Tj|1(un; k)|c1)

PXn(c1) · PYn |c1
(Nj|1(un; k)|c1)

=
(1− p)

p
·
|Tj|1(un; k)|
|Nj|1(un; k)| . (59)

The cardinalities of Tj|1(un; k) and Nj|1(un; k) then decide the ratio in (59) as verified in the
next proposition, based on which the proof of Theorem 2 can be completed from (58).

Proposition 5. For un ∈ Tj|1(k), we have

PXn ,Yn(c1, Tj|1(un; k))
PXn ,Yn(c1,Nj|1(un; k))

≤ (1− p)
p

n. (60)
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Proof. Recall from (22a), (52a) and (55a) that yn ∈ Tj|1(un; k) ⊆ Tj|1(k) ⊆ Tj|1 if and only if


PXn ,Yn(c1, yn)=PXn ,Yn(cj, yn)= max

h∈[M]\{1}
PXn ,Yn(xn

(h), yn) and d(c1, yn|S1,j)< |Si,j|;

`
(ηk−1)
1,j − 1 ≤ d

(
c1, yn∣∣S (ηk−1)

1,j
)

and d
(
c1, yn∣∣S (ηk)

1,j
)
= k;

d
(
un, yn∣∣(S (ηk)

1,j )c) = 0.

(61a)

(61b)

(61c)

Thus, the number of elements in Tj|1(un; k) is exactly the number of channel outputs yn

fulfilling the above three conditions. We then examine the number of yn satisfying (61b)
and (61c). Noting that these yn have either `(ηk−1)

1,j − 1 ones or `(ηk−1)
1,j ones with indices in

S
(ηk−1)

1,j , we know that there are at most

( `
(ηk−1)
1,j

`
(ηk−1)
1,j − 1

)( `
(ηk)
j − `

(ηk−1)
1,j

k− (`
(ηk−1)
1,j − 1)

)
+

(`(ηk−1)
1,j

`
(ηk−1)
1,j

)(`(ηk)
j − `

(ηk−1)
1,j

k− `
(ηk−1)
1,j

)
(62)

of yn tuples satisfying (61b) and (61c). Disregarding (61a), we get that the number of
elements in Tj|1(un; k) is upper-bounded by (62).

On the other hand, from (22b), (52b) and (55b), we obtain that wn ∈ Nj|1(un; k) ⊆
Nj|1(k) ⊆ Nj|1 if and only if



PXn ,Yn(c1, wn) · q2 = PXn ,Yn(cj, wn);

PXn ,Yn(c1, wn) · q2 6= PXn ,Yn(cr, wn) for r ∈ [j− 1] \ {1};

`
(ηk−1)
1,j = d

(
c1, wn∣∣S (ηk−1)

1,j
)

and d
(
c1, wn∣∣S (ηk)

1,j
)
= k + 1;

d
(
un, wn∣∣(S (ηk)

1,j )c) = 0.

(63a)

(63b)

(63c)

(63d)

We then claim that any wn satisfying (63c) and (63d) directly validate (63a) and (63b). Note
that the validity of the claim, which we prove in Appendix B, immediately implies that the
number of elements in Nj|1(un; k) can be determined by (63c) and (63d), and hence

|Nj|1(u
n; k)| =

( `
(ηk)
j − `

(ηk−1)
1,j

k + 1− `
(ηk−1)
1,j

)
. (64)

Under this claim, (62) and (64) result in

|Tj|1(un; k)|
|Nj|1(un; k)| ≤

(
`
(ηk−1)
1,j

`
(ηk−1)
1,j −1

)(
`
(ηk)
j −`(ηk−1)

1,j

k−(`(ηk−1)
1,j −1)

) + (
`
(ηk−1)
1,j

`
(ηk−1)
1,j

)(
`
(ηk)
j −`(ηk−1)

1,j

k−`(ηk−1)
1,j

)

(
`
(ηk)
j −`(ηk−1)

1,j

k+1−`(ηk−1)
1,j

)

(65)

= `
(ηk−1)
1,j +

k + 1− `
(ηk−1)
1,j

`
(ηk)
j − k

(66)

≤ `
(ηk−1)
1,j +

`
(ηk)
j − `

(ηk−1)
1,j

1
(67)

≤ n, (68)

where (67) holds because k ≤ `
(ηk)
j − 1 by (49), and (68) follows from `

(ηk)
1,j ≤ `1,j ≤ n. The

proof of the proposition is thus completed by (59) and (68).
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4. Conclusions

In this paper, we analyzed the error probability of block codes sent over the mem-
oryless BSC under an arbitrary (not necessarily uniform) input distribution and used in
conjunction with (optimal) MAP decoding. We showed that decoder ties do not affect the
error exponent of the probability of error, thus extending a similar result recently estab-
lished in [1] for uniformly distributed channel inputs. This result was obtained by proving
that the relative deviation of the error probability from the probability of error grows no
more than linearly in blocklength when no MAP decoding ties occur, directly implying
that decoder ties have only a sub-exponential effect on the error probability as blocklength
grows without bound. Future work includes further extending this result for more general
channels used under arbitrary input statistics, such as non-binary symmetric channels
(Note that the result of Theorem 1 can be extended for non-binary (q-ary, q > 2) codes sent
over q-ary symmetric memoryless channels under a uniform input distribution; see [25]
(Theorem 2).) and binary non-symmetric channels. Studying how to sharpen the upper
bound derived in (10) for “sufficiently good” codes as highlighted in Remark 1 and for
codes with small blocklengths are other worthwhile future directions.
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Appendix A. Supplement to Example 1

Under distribution

PX4(c1) =
q2

2 + q2 + q−2 (A1)

PX4(c2) = PX4(c3) =
1

2 + q2 + q−2 (A2)

PX4(c4) =
q−2

2 + q2 + q−2 (A3)

over the code C4 = {c1, c2, c3, c4} = {0000, 0101, 0110, 0111}, we obtain:

T1 =

{
y4 ∈ {0, 1}4 : PX4,Y4(c1, y4) = max

r∈[4]\{1}
PX4,Y4(cr, y4)

}
(A4)

=

{
y4 ∈ {0, 1}4 :

PX4(c1)

qd(c1,y4)
= max

(
PX4(c2)

qd(c2,y4)
,

PX4(c3)

qd(c3,y4)
,

PX4(c4)

qd(c4,y4)

)}
(A5)

=

{
y4 ∈ {0, 1}4 : d(c1, y4)− 2 = min

(
d(c2, y4), d(c3, y4), d(c4, y4) + 2

)}
(A6)

=
{

0101, 0110, 0111, 1101, 1110, 1111
}

, (A7)

where (A5) follows from (25), and

Tj|1 ,
{

y4 ∈ T1 : j = min
r∈I1(y4):d(c1,y4|S1,r)<|S1,r |

r
}

= ∅ for j = 2, 3, 4, (A8)
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and

Tj|1 ,
{

y4 ∈ T1

∖( ⋃
h∈[4]\{1}

Th|1

)
: j = min

r∈I1(yn)
r
}

(A9)

=


{0101, 0111, 1101, 1111}, j = 2;
{0110, 1110}, j = 3;
∅, j = 4.

(A10)

The above derivations are verified via Table A1. Continuing with the same setting,
we obtain

T2 =

{
y4 ∈ {0, 1}4 : PX4,Y4(c2, y4) = max

r∈[4]\{2}
PX4,Y4(cr, y4)

}
(A11)

=

{
y4 ∈ {0, 1}4 :

PX4(c2)

qd(c2,y4)
= max

(
PX4(c1)

qd(c1,y4)
,

PX4(c3)

qd(c3,y4)
,

PX4(c4)

qd(c4,y4)

)}
(A12)

=

{
y4 ∈ {0, 1}4 : d(c2, y4) = min

(
d(c1, y4)− 2, d(c3, y4), d(c4, y4) + 2

)}
(A13)

=
{

0101, 0111, 1101, 1111
}

, (A14)

Tj|2 ,
{

y4 ∈ T2 : j = min
r∈I2(y4):d(c2,y4|S2,r)<|S2,r |

r
}

=

{
T2, j = 1;
∅, j = 3, 4

(A15)

and

Tj|2 ,
{

y4 ∈ T2

∖( ⋃
h∈[4]\{1}

Th|2

)
: j = min

r∈I2(yn)
r
}

= ∅ for j = 1, 3, 4, (A16)

where the above derivations are also confirmed via Table A1. Based on Table A1, we
further have

T3 =

{
y4 ∈ {0, 1}4 : PX4,Y4(c3, y4) = max

r∈[4]\{3}
PX4,Y4(cr, y4)

}
(A17)

=

{
y4 ∈ {0, 1}4 :

PX4(c3)

qd(c3,y4)
= max

(
PX4(c1)

qd(c1,y4)
,

PX4(c2)

qd(c2,y4)
,

PX4(c4)

qd(c4,y4)

)}
(A18)

=

{
y4 ∈ {0, 1}4 : d(c3, y4) = min

(
d(c1, y4)− 2, d(c2, y4), d(c4, y4) + 2

)}
(A19)

=
{

0110, 0111, 1110, 1111
}

, (A20)

Tj|3 ,
{

y4 ∈ T3 : j = min
r∈I3(y4):d(c3,y4|S3,r)<|S3,r |

r
}

=

{
T3, j = 1;
∅, j = 2, 4,

(A21)

and

Tj|3 ,
{

y4 ∈ T3

∖( ⋃
h∈[4]\{3}

Th|3

)
: j = min

r∈I3(yn)
r
}

= ∅ for j = 1, 2, 4. (A22)

Furthermore, we establish from Table A1 that

T4 =

{
y4 ∈ {0, 1}4 : PX4,Y4(c4, y4) = max

r∈[4]\{4}
PX4,Y4(cr, y4)

}
(A23)
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=

{
y4 ∈ {0, 1}4 :

PX4(c4)

qd(c4,y4)
= max

(
PX4(c1)

qd(c1,y4)
,

PX4(c2)

qd(c2,y4)
,

PX4(c3)

qd(c3,y4)

)}
(A24)

=

{
y4 ∈ {0, 1}4 : d(c4, y4) + 2 = min

(
d(c1, y4)− 2, d(c2, y4), d(c3, y4)

)}
(A25)

= ∅, (A26)

Tj|4 ,
{

y4 ∈ T4 : j = min
r∈I4(y4):d(c4,y4|S4,r)<|S4,r |

r
}

= ∅ for j = 1, 2, 3, (A27)

and

Tj|4 ,
{

y4 ∈ T4

∖( ⋃
h∈[4]\{4}

Th|4

)
: j = min

r∈I4(yn)
r
}

= ∅ for j = 1, 2, 3. (A28)

After summarizing all sets derived above in Table A2, we remark that{
T2|1 ⊆ T1|2 and PX4,Y4(c1, y4) = PX4,Y4(c2, y4) for every y4 ∈ T2|1;
T3|1 ⊆ T1|3 and PX4,Y4(c1, y4) = PX4,Y4(c2, y4) for every y4 ∈ T3|1.

(A29)

Note that {Tj|i}i∈[M],j∈[M]\{i} are disjoint as confirmed in Remark 4 such that every element
yn ∈ Tj|i appears only once in the following summation:

∑
i∈[4]

∑
j∈[4]\{i}

PX4,Y4
(
ci, Tj|i

)
= PX4,Y4

(
c1, 0101

)
+ PX4,Y4

(
c1, 0110

)
+PX4,Y4

(
c1, 0111

)
+ PX4,Y4

(
c1, 1101

)
+PX4,Y4

(
c1, 1110

)
+ PX4,Y4

(
c1, 1111

)
(A30)

=
p4q2

2 + q2 + q−2

(
q2 + q2 + q + q + q + 1

)
(A31)

=
p4q2

2 + q2 + q−2

(
2q2 + 3q + 1

)
. (A32)

Additionally,

∑
i∈[4]

∑
j∈[4]\{i}

PX4,Y4
(
ci, Tj|i

)
= PX4,Y4

(
c2, 0101

)
+ PX4,Y4

(
c2, 0111

)
+ PX4,Y4

(
c2, 1101

)
+PX4,Y4

(
c2, 1111

)
+ PX4,Y4

(
c3, 0110

)
+ PX4,Y4

(
c3, 0111

)
+PX4,Y4

(
c3, 1110

)
+ PX4,Y4

(
c3, 1111

)
(A33)

=
p4

2 + q2 + q−2

(
q4 + q3 + q3 + q2 + q4 + q3 + q3 + q2) (A34)

= ∑
i∈[4]

∑
j∈[4]\{i}

PX4,Y4
(
ci, Tj|i

)
+

p4q2

2 + q2 + q−2

(
q + 1

)
. (A35)

Finally, we have

N1 =

{
y4 ∈ {0, 1}4 :

PX4(c1)

qd(c1,y4)
< max

(
PX4(c2)

qd(c2,y4)
,

PX4(c3)

qd(c3,y4)
,

PX4(c4)

qd(c4,y4)

)}
(A36)

=

{
y4 ∈ {0, 1}4 : d(c1, y4)− 2 > min

(
d(c2, y4), d(c3, y4), d(c4, y4) + 2

)}
(A37)

= ∅, (A38)
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N2 =

{
y4 ∈ {0, 1}4 : d(c2, y4) > min

(
d(c1, y4)− 2, d(c3, y4), d(c4, y4) + 2

)}
= {0, 1}4 \ T2, (A39)

N3 =

{
y4 ∈ {0, 1}4 : d(c3, y4) > min

(
d(c2, y4), d(c1, y4)− 2, d(c4, y4) + 2

)}
= {0, 1}4 \ T3, (A40)

N4 =

{
y4 ∈ {0, 1}4 : d(c4, y4) + 2 > min

(
d(c2, y4), d(c3, y4), d(c1, y4)− 2

)}
= {0, 1}4, (A41)

Nj|1 = ∅ for j = 2, 3, 4, (A42)

Nj|2 =

{
y4 ∈ N2 : PX4,Y4(c2, y4) · q = PX4,Y4(cj, y4) · 1

q

and PX4,Y4(cj, y4) 6= PX4,Y4(cr, y4) for r ∈ [j− 1] \ {2}
}

(A43)

=

{
y4 ∈ N2 :

PX4(c2)

qd(c2,y4)−1
=

PX4(cj)

qd(cj ,y4)+1
and

PX4(cj)

qd(cj ,y4)
6= PX4(cr)

qd(cr ,y4)

for r ∈ [j− 1] \ {2}
}

(A44)

=



{
y4 ∈ N2 :

PX4 (c2)

qd(c2,y4)−1
=

PX4 (c1)

qd(c1,y4)+1

}
, j = 1;{

y4 ∈ N2 :
PX4 (c2)

qd(c2,y4)−1
=

PX4 (c3)

qd(c3,y4)+1
and

PX4 (c3)

qd(c3,y4)
6= PX4 (c1)

qd(c1,y4)

}
, j = 3;{

y4 ∈ N2 :
PX4 (c2)

qd(c2,y4)−1
=

PX4 (c4)

qd(c4,y4)+1
and

PX4 (c4)

qd(c4,y4)
6= PX4 (cr)

qd(cr ,y4)

for r ∈ [3] \ {2}
}

, j = 4

(A45)

=



{
y4 ∈ N2 : d(c2, y4) = d(c1, y4)

}
, j = 1;{

y4 ∈ N2 : d(c2, y4) = d(c3, y4) + 2 and d(c2, y4) 6= d(c1, y4)

}
, j = 3;{

y4 ∈ N2 : d(c2, y4) = d(c4, y4) + 4, d(c2, y4) 6= d(c1, y4)

and d(c2, y4) 6= d(c3, y4) + 2
}

, j = 4

=


{

0001, 0100, 0011, 0110, 1001, 1100, 1011, 1110
}

, j = 1;{
0010, 1010

}
, j = 3;

∅, j = 4,

(A46)

Nj|3 =

{
y4 ∈ N3 : PX4,Y4(c3, y4) · q = PX4,Y4(cj, y4) · 1

q

and PX4,Y4(cj, y4) 6= PX4,Y4(cr, y4) for r ∈ [j− 1] \ {3}
}

(A47)
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=

{
y4 ∈ N3 :

PX4(c3)

qd(c3,y4)−1
=

PX4(cj)

qd(cj ,y4)+1
and

PX4(cj)

qd(cj ,y4)
6= PX4(cr)

qd(cr ,y4)

for r ∈ [j− 1] \ {3}
}

(A48)

=



{
y4 ∈ N3 :

PX4 (c3)

qd(c3,y4)−1
=

PX4 (c1)

qd(c1,y4)+1

}
, j = 1;{

y4 ∈ N3 :
PX4 (c3)

qd(c3,y4)−1
=

PX4 (c2)

qd(c2,y4)+1
and

PX4 (c2)

qd(c2,y4)
6= PX4 (c1)

qd(c1,y4)

}
, j = 2;{

y4 ∈ N3 :
PX4 (c3)

qd(c3,y4)−1
=

PX4 (c4)

qd(c4,y4)+1
and

PX4 (c4)

qd(c4,y4)
6= PX4 (cr)

qd(cr ,y4)

for r ∈ [3] \ {3}
}

, j = 4

(A49)

=



{
y4 ∈ N3 : d(c3, y4) = d(c1, y4)

}
, j = 1;{

y4 ∈ N3 : d(c3, y4) = d(c2, y4) + 2 and d(c3, y4) 6= d(c1, y4)

}
, j = 3;{

y4 ∈ N3 : d(c3, y4) = d(c4, y4) + 4, d(c3, y4) 6= d(c1, y4)

and d(c3, y4) 6= d(c2, y4) + 2
}

, j = 4

=


{

0010, 0100, 0011, 0101, 1010, 1100, 1011, 1101
}

, j = 1;{
0001, 1001

}
, j = 3;

∅, j = 4,

(A50)

Nj|4 =

{
y4 ∈ N4 : PX4,Y4(c4, y4) · q = PX4,Y4(cj, y4) · 1

q

and PX4,Y4(cj, y4) 6= PX4,Y4(cr, y4) for r ∈ [j− 1] \ {4}
}

(A51)

=

{
y4 ∈ N4 :

PX4(c4)

qd(c4,y4)−1
=

PX4(cj)

qd(cj ,y4)+1
and

PX4(cj)

qd(cj ,y4)
6= PX4(cr)

qd(cr ,y4)
for r ∈ [j− 1]

}

=



{
y4 ∈ N4 :

PX4 (c4)

qd(c4,y4)−1
=

PX4 (c1)

qd(c1,y4)+1

}
, j = 1;{

y4 ∈ N4 :
PX4 (c4)

qd(c4,y4)−1
=

PX4 (c2)

qd(c2,y4)+1
and

PX4 (c2)

qd(c2,y4)
6= PX4 (c1)

qd(c1,y4)

}
, j = 2;{

y4 ∈ N4 :
PX4 (c4)

qd(c4,y4)−1
=

PX4 (c3)

qd(c3,y4)+1
and

PX4 (c3)

qd(c3,y4)
6= PX4 (cr)

qd(cr ,y4)

for r ∈ [2]
}

, j = 3

(A52)

=



{
y4 ∈ N4 : d(c4, y4) = d(c1, y4)− 2

}
, j = 1;{

y4 ∈ N4 : d(c4, y4) = d(c2, y4) and d(c4, y4) 6= d(c1, y4)− 2
}

, j = 2;{
y4 ∈ N4 : d(c4, y4) = d(c3, y4), d(c4, y4) 6= d(c1, y4)− 2

and d(c4, y4) 6= d(c2, y4)

}
, j = 3

(A53)

= ∅ for j = 1, 2, 3. (A54)
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Table A1. Measures used in Example 1.

d(0000, y4)− 2 d(0101, y4) d(0110, y4) d(0111, y4) + 2 I1(y4) I2(y4) I3(y4) I4(y4)

y4 = 0000 −2 2 2 5 ∅ ∅ ∅ ∅

y4 = 0001 −1 1 3 4 ∅ ∅ ∅ ∅
y4 = 0010 −1 3 1 4 ∅ ∅ ∅ ∅
y4 = 0100 −1 1 1 4 ∅ ∅ ∅ ∅
y4 = 1000 −1 3 3 6 ∅ ∅ ∅ ∅

y4 = 0011 0 2 2 3 ∅ ∅ ∅ ∅
y4 = 0101 0 0 2 3 {2} {1} ∅ ∅
y4 = 0110 0 2 0 3 {3} ∅ {1} ∅
y4 = 1001 0 2 4 5 ∅ ∅ ∅ ∅
y4 = 1010 0 4 2 5 ∅ ∅ ∅ ∅
y4 = 1100 0 2 2 5 ∅ ∅ ∅ ∅

y4 = 0111 1 1 1 2 {2, 3} {1, 3} {1, 2} ∅
y4 = 1011 1 3 3 4 ∅ ∅ ∅ ∅
y4 = 1101 1 1 3 4 {2} {1} ∅ ∅
y4 = 1110 1 3 1 4 {3} ∅ {1} ∅

y4 = 1111 2 2 2 3 {2, 3} {1, 3} {1, 2} ∅

Table A2. List of Ti, Ni, Tj|i, Tj|i and Nj|i for i ∈ [4] and j ∈ [4] \ {i} in Example 1.

T1
{

0101, 0110, 0111, 1101, 1110, 1111
}

N1 ∅
T2

{
0101, 0111, 1101, 1111

}
N2 {0, 1}4 \ T2

T3
{

0110, 0111, 1110, 1111
}

N3 {0, 1}4 \ T3
T4 ∅ N4 {0, 1}4

T2|1 ∅ T2|1 {0101, 0111, 1101, 1111} N2|1 ∅
T3|1 ∅ T3|1 {0110, 1110} N3|1 ∅
T4|1 ∅ T4|1 ∅ N4|1 ∅

T1|2 {0101, 0111, 1101, 1111} T1|2 ∅ N1|2
N2 \
{0000, 0010, 1000, 1010}

T3|2 ∅ T3|2 ∅ N3|2 {0010, 1010}
T4|2 ∅ T4|2 ∅ N1|2 ∅

T1|3 {0110, 0111, 1110, 1111} T1|3 ∅ N1|3
N3 \
{0000, 0001, 1000, 1001}

T2|3 ∅ T2|3 ∅ N2|3 {0001, 1001}
T4|3 ∅ T4|3 ∅ N4|3 ∅

T1|4 ∅ T1|4 ∅ N1|4 ∅
T2|4 ∅ T2|4 ∅ N2|4 ∅
T3|4 ∅ T3|4 ∅ N3|4 ∅

Appendix B. The Proof of the Claim Supporting Proposition 5

We validate the claim that (63c) and (63d) imply (63a) and (63b) via the construction
of an auxiliary vn ∈ Nj|1(un; k) from un ∈ Tj|1(un; k). This auxiliary vn will be defined

differently according to whether d
(
c1, un

∣∣S (ηk−1)
1,j

)
equals `(ηk−1)

1,j or `(ηk−1)
1,j − 1 as follows.

(i) d(c1, un|S (ηk−1)
1,j ) = `

(ηk−1)
1,j : In this case, un has no zero components with indices in

S
(ηk−1)

1,j . Moreover, d(c1, un|S (ηk)
1,j ) = k ≤ `

(ηk)
j − 1 indicates that

un has at least one zero component with its index in S
(ηk)

1,j \S
(ηk−1)

1,j = S (ηk)
1,j . (A55)

Therefore, we flip arbitrarily a zero component of un with its index in S (ηk)
1,j to construct

a vn such that

d(c1, vn) = d(c1, un) + 1 and d(cj, vn) = d(cj, un)− 1, (A56)
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which implies

PXn ,Yn(c1, vn) = PXn ,Yn(c1, un) · 1
q

and PXn ,Yn(cj, vn) = PXn ,Yn(cj, un) · q. (A57)

Then, vn must fulfill (63a), (63c) and (63d) (with wn replaced by vn) as un satisfies
(61a), (61b) and (61c). We next declare that vn also fulfills (63b) and will prove this
declaration by contradiction.
Proof of the declaration: Suppose there exists a r ∈ [j− 1] \ {1} satisfying

PXn ,Yn(c1, vn) · q2 = PXn ,Yn(cr, vn). (A58)

We then recall from (45) that d(c1, cr|S(ηk)
1,j ) is either 0 or |S(ηk)

1,j |. Thus, (A58) can be dis-

proved by differentiating two subcases: (1) d(c1, cr|S(ηk)
1,j ) = 0, and (2) d(c1, cr|S(ηk)

1,j ) =

|S(ηk)
1,j | (Since `

(ηk−1)
1,j < `

(ηk)
1,j as can be seen from (50) and (51), we have |S(ηk)

1,j | =

`
(ηk)
1,j − `

(ηk−1)
1,j > 0, i.e., S(ηk)

1,j non-empty) .
In Subcase (1), vn that is obtained by flipping a zero component of un with index
in S (ηk)

1,j must satisfy d(c1, vn) = d(c1, un) + 1 and d(cr, vn) = d(cr, un) + 1, which is
equivalent to

PXn ,Yn(c1, vn) · q = PXn ,Yn(c1, un) and PXn |Yn(cr|vn) · q = PXn |Yn(cr|un). (A59)

Then, (A58) implies
PXn ,Yn(c1, un) · q2 = PXn ,Yn(cr, un). (A60)

Hence,
PXn ,Yn(c1, un) < PXn ,Yn(cr, un) ≤ max

h∈[M]\{1}
PXn ,Yn(xn

(h), un). (A61)

A contradiction to the fact that un ∈ Tj|1(un; k) satisfies (61a) (with yn replaced by un)
is obtained.
In Subcase (2), we note that d(c1, cr|S (ηk)

1,j ) = |S (ηk)
1,j | implies S (ηk)

1,j ⊆ S1,r. Therefore,
(A55) leads to

d(c1, un|S1,r) < |S1,r|. (A62)

The flipping manipulation on un results in d(c1, vn) = d(c1, un) + 1 and d(cr, vn) =
d(cr, un)− 1, which is equivalent to

PXn ,Yn(c1, vn) · q = PXn ,Yn(c1, un) and PXn ,Yn(cr, vn) = PXn ,Yn(cr, un) · q. (A63)

Therefore, (A58) implies

PXn ,Yn(c1, un) = PXn ,Yn(cr, un), (A64)

which together with maxh∈[M]\{1} PXn ,Yn(ch, un) = PXn ,Yn(c1, un) and (A62) result in
un ∈ Tr|1 because r < j. This contradicts un ∈ Tj|1. Accordingly, vn must also fulfill
(63b); hence, vn ∈ Nj|1(un; k). This completes the proof of the declaration.
With this auxiliary vn, we are ready to prove that every wn satisfying (63c) and (63d)
also validates (63a) and (63b). Toward this end, we need to prove

PXn ,Yn(cr, wn) = PXn ,Yn(cr, vn) for all r ∈ [M]. (A65)
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Note that 
d
(
wn, vn∣∣S (ηk−1)

1,j
)
= 0;

d
(
cr, wn∣∣S (ηk)

1,j
)
= d

(
cr, vn∣∣S (ηk)

1,j
)

for all r ∈ [M];

d
(
wn, vn∣∣(S (ηk−1)

1,j )c = 0,

(A66a)

(A66b)

(A66c)

where (A66a) holds because both vn and wn satisfy (63c), implying that all components
of vn and wn with indices in S

(ηk−1)
1,j are equal to one; (A66b) holds because when

considering only those portions with indices in (non-empty) S (ηk)
1,j , cr gives either all

ones or all zeros according to (45), and both wn and vn have exactly k + 1− `
(ηk−1)
1,j

ones according to (63c); and (A66c) is valid since both vn and wn satisfy (63d). Based
on (A66a)–(A66c), we remark that d(cr, wn) = d(cr, vn) for all r ∈ [M], which implies
PYn |Xn(wn|cr) = PYn |Xn(vn|cr) (equivalently, PXn ,Yn(cr, wn) = PXn ,Yn(cr, vn)) for all
r ∈ [M]).

(ii) d(c1, un|S (ηk−1)
1,j ) = `

(ηk−1)
1,j − 1: In this case, there is only one zero component of

un with its index in S
(ηk−1)

1,j . Suppose the index of such zero component lie in

S (h)1,j ⊆ S
(ηk−1)

1,j , where h ≤ ηk − 1. The flipping manipulation to un leads to vn, which

has all one components with respect to S
(ηk−1)

1,j . Then, vn must fulfill (63a), (63c), and
(63d) as un satisfies (61a), (61b), and (61c). With the components of cr with respect to
(non-empty) S (h)1,j being either all zeros or all ones, the same contradiction argument
between (A58) and (A64), with ηk replaced by h, can disprove the validity of (A58)
for this vn and for any r ∈ [j − 1] \ {1}. Therefore, vn also fulfills (63b), implying
vn ∈ Nj|1(un; k). With this auxiliary vn, we can again verify (A66a)–(A66c) via the
same argument. The claim that wn satisfying (63c) and (63d) validates (63a) and (63b)
is thus confirmed.
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