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Estimation Efficiency Under Privacy Constraints
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Abstract— We investigate the problem of estimating a random
variable Y under a privacy constraint dictated by another
correlated random variable X . When X and Y are discrete,
we express the underlying privacy-utility tradeoff in terms of
the privacy-constrained guessing probability (PXY , ε), and the
maximum probability Pc(Y |Z) of correctly guessing Y given
an auxiliary random variable Z, where the maximization is
taken over all PZ|Y ensuring that Pc(X|Z) ≤ ε for a given
privacy threshold ε ≥ 0. We prove that (PXY , ·) is concave
and piecewise linear, which allows us to derive its expres-
sion in closed form for any ε when X and Y are binary.
In the non-binary case, we derive (PXY , ε) in the high-utility
regime (i.e., for sufficiently large, but nontrivial, values of ε)
under the assumption that Y and Z have the same alphabets.
We also analyze the privacy-constrained guessing probability for
two scenarios in which X , Y , and Z are binary vectors. When
X and Y are continuous random variables, we formulate the cor-
responding privacy-utility tradeoff in terms of sENSR(PXY , ε),
the smallest normalized minimum mean squared-error (mmse)
incurred in estimating Y from a Gaussian perturbation Z. Here,
the minimization is taken over a family of Gaussian perturba-
tions Z for which the mmse of f (X) given Z is within a factor
1−ε from the variance of f (X) for any non-constant real-valued
function f . We derive tight upper and lower bounds for sENSR
when Y is Gaussian. For general absolutely continuous random
variables, we obtain a tight lower bound for sENSR(PXY , ε) in
the high privacy regime, i.e., for small ε.

Index Terms— Data privacy, privacy-utility tradeoff, guessing
probability, Rényi’s entropy, minimum mean-squared error,
maximal correlation, Gaussian additive privacy mechanism.

I. INTRODUCTION

WE consider the following constrained estimation prob-
lem: given two correlated random variables X and Y ,

how accurately can Y be estimated from another correlated
random variable Z , while ensuring that the “information
leakage” about X is limited? More precisely, we seek to
design a randomized mechanism M which maps Y to an
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Fig. 1. The system block diagram.

auxiliary random variable Z such that the information leakage
from X to Z is limited, and the “estimation efficiency” of Y
given Z is maximal. This basic question arises often in
data privacy problems, where Alice wishes to disclose non-
private information Y to Bob as accurately as possible in
order to receive a payoff, but in such a way that her private
information X cannot be effectively inferred by Bob. For
instance, her browsing history might constitute the non-private
information which a social media website collects in order
to provide personalized recommendations. In an ideal world,
her browser should sanitize Y before its release in order to
avoid compromising her private information X (which may
for example include her political leanings). In this context,
her browser has access only to Y , but the potential correlation
between X and Y makes the sanitization of Y critical. Moti-
vated by this type of applications, we assume throughout the
paper that X , Y , and Z form a Markov chain in that order,
denoted by X �−− Y �−− Z .

Given the joint distribution PXY , Alice chooses a random
mapping M to generate the displayed data Z in such a way
that Bob can guess Y from Z as accurately as possible while
being unable to use Z to efficiently guess X . Note that M,
the so-called privacy filter, is completely determined by PZ |Y .
The system block diagram of this model is depicted in Fig. 1.

A quantitative answer to this problem requires: (i) an
appropriate measure L(X → Z) of information leakage from
X to Z ; and (ii) an appropriate measure S(Y |Z) of the estima-
tion efficiency of Y given Z . A quantitative and operationally
well-justified measure of information leakage has been long
sought to assess the performance of different mechanisms used
in practice. In this paper, we set S(Y |Z) = L(Y → Z) and
propose two measures of information leakage depending on
the support of X and Y .

Discrete case: When X ∈ X and Y ∈ Y are both discrete,
it is natural to define information leakage as Bob’s effi-
ciency in guessing X . Hence, we propose L(X → Z)

to be Pc(X |Z)
Pc(X) , where Pc(X) := maxx∈X PX (x) is the
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probability of correctly guessing X and

Pc(X |Z) :=
∑

z∈Z
PZ (z) max

x∈X
PX |Z (x |z)

=
∑

z∈Z
max
x∈X

PX (x)PZ |X (z|x), (1)

is the probability of correctly guessing X given Z . Note
that a large value of L(X → Z) corresponds to a small
probability of error in guessing X upon observing Z .
Although we only assume that Z , the alphabet of Z ,
has finite cardinality, we will show that any Z with
cardinality |Y| + 1 is sufficient for our purpose.

Continuous case: When X and Y are continuous random
variables with X = Y = R, we associate information
leakage with Bob’s efficiency in estimating X given Z .
Consequently, we define L(X → Z) to be var(X)

mmse(X |Z) ,

where var(X) := E[(X − E[X])2] is the variance of X
and mmse(X |Z) := E[(X −E[X |Z ])2] is the minimum
mean squared-error of X given Z .

Returning to the setup of Fig. 1, recall that in order to
receive a utility, Alice wishes to disclose her non-private
information Y to Bob. However, Y might be correlated with
her private information, represented by X . In order to quantify
the tradeoff between information display and privacy leakage,
we investigate the quantity

sup
PZ |Y :X�−−Y �−−Z

L(X→Z)≤ε

L(Y → Z). (2)

We seek to characterize this constrained optimization problem
in both the discrete and the continuous cases. It is worth
mentioning that the chosen information leakage functions are
special cases of leakage functions based on a large family of
general loss functions, see the discussion in [3, Sec. 6.2] and
references therein. For example, Hamming and squared-error
loss functions give rise to the proposed leakage functions in
the discrete and continuous cases, respectively.

In the discrete case, the optimization problem in (2) gives
rise to the following definition.

Definition 1: Let (X, Y ) be a pair of discrete random
variables with joint distribution PXY . We define the privacy-
constrained guessing function,

(PXY , · ) : [Pc(X), 1] → [0, 1],
by

(PXY , ε) := sup
PZ |Y :X�−−Y �−−Z

Pc(X |Z)≤ε

Pc(Y |Z). (3)

We write (ε) whenever PXY is clear from the context.
Let H∞(X) := − log Pc(X) be the Rényi entropy of

order ∞ and H∞(X |Z) := − log Pc(X |Z) be its conditional
version [4]. It follows that Pc(X |Z) = 2−H∞(X |Z) and
Pc(X) = 2−H∞(X). Then, is in correspondance with the
function g∞(PXY , · ) : R

+ → R
+ defined by

g∞(PXY , ε) := sup
PZ |Y :X�−−Y �−−Z

I∞(X;Z)≤ε

I∞(Y ; Z), (4)

where I∞(X; Z) := H∞(X) − H∞(X |Z) is Arimoto’s mutual
information of order ∞ [5]–[7]. Indeed, it is straightforward
to show that

g∞(PXY , ε) = log
(PXY , 2εPc(X))

Pc(Y )
. (5)

The above functional relationship allows us to translate results
for into results for g∞. Two functions closely related to
g∞ are the “rate-privacy function” [8], defined as in (4)
with I∞ replaced by Shannon’s mutual information, and the
“privacy funnel” [9] which is the dual representation of the
rate-privacy function. Consequently, g∞ can be thought of as
the rate-privacy function of order ∞.

In the machine learning literature, the information bottle-
neck (IB) method has been proposed by Tishby et al. [10]
to quantify a fundamental relevance-compression tradeoff.
Specifically, the IB method minimizes the “compression
rate” I (Y ; Z) subject to a relevance constraint given by
I (X; Z) ≥ R for some R ≥ 0. Thus, the IB problem is
conceptually the dual of the privacy funnel problem. Recently,
the privacy funnel and the IB function were unified in a single
geometric framework [11] which also encompasses the privacy
funnel of order ∞ (or equivalently g∞) and its dual which may
be called the IB function of order ∞. The relation between the
different properties of IB function (of order ∞) and the privacy
funnel (of order ∞) within this framework is the subject of
ongoing research.

It is important to note that Arimoto’s mutual information of
order ∞ differs from other notions of information leakage, for
example the ones studied in [8] and [12]-[14], in the fact that
I∞(X; Z) = 0 is not necessarily equivalent to X and Z being
independent. Indeed, if X ∼ Bernoulli(p) with p ∈ [ 1

2 , 1]
and PZ |X = BSC(α) with α ∈ [0, 1

2 ] (the binary symmetric
channel with crossover probability α), then Pc(X) = p and
Pc(X |Z) = pᾱ+max{ p̄ᾱ, αp}, where ā = 1−a. In this case,
it is straightforward to verify that Pc(X |Z) = Pc(X) if and
only if p ≥ ᾱ. Therefore, for 1

2 < ᾱ ≤ p < 1, I∞(X; Z) = 0
despite the fact that X and Z are not independent.

For continuous real-valued random variables X , Y , and Z ,
the optimization problem in (2) is hard and seems intractable
in general. In order to have a tractable model, we assume
that the displayed data Z is a Gaussian perturbation of Y ,
i.e., Z = Zγ := √

γ Y + NG, where γ ≥ 0 and NG ∼ N (0, 1)
is independent of (X, Y ). We thus consider the following
privacy-utility tradeoff, which is a dual representation of (2)
with the privacy constraint strengthened.

Definition 2: Let (X, Y ) be a pair of real-valued random
variables with joint density PXY . We define the strong esti-
mation noise-to-signal ratio sENSR(PXY , · ) : R

+ → R
+

by

sENSR(PXY , ε) := inf
γ≥0

mmse(Y |Zγ )

var(Y )
,

where the infimum is taken over all γ ≥ 0 such that

mmse( f (X)|Zγ ) ≥ (1 − ε)var( f (X))

whenever the function f : R → R is measurable and
0 < var( f (X)) < ∞.
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Fig. 2. Typical and its trivial lower bound, the chord connecting
(Pc(X), (Pc(X))) and (Pc(X |Y ), 1).

A. Main Contributions

We begin in Section II by investigating the salient properties
of . In Theorem 1, we show that the map (PXY , ·) is piece-
wise linear (Fig. 2). The proof relies on a geometric reformu-
lation of and a careful study of the directional derivatives in
the space of stochastic matrices. As a byproduct of Theorem 1,
a formula for the derivative of at Pc(X |Y ) is established
in (30). This formula, along with the concavity of , permits us
to obtain a tight upper bound for . In particular, when |X | =
|Y| = 2, this upper bound and the chord lower bound for
concave functions allow us to derive a closed form expression
for in Theorem 2. Moreover, it is also shown that, depend-
ing on the backward channel PX |Y , either a Z-channel or
a reverse Z-channel (Fig. 3) achieves (PXY , ε) for each ε.

We next consider a variant quantity which we define
analogously to except that Z is required to be supported
over Y . By definition, captures the fundamental trade-off
between privacy and utility in situations where enlarging the
alphabet is not possible. This is particularly relevant when
the displayed data might be used by parties not aware of the
implemented privatization scheme. The function may not be
concave and consequently the techniques developed to study
do not apply. Nevertheless, we can still study the functional
properties of in the high utility regime (i.e., for sufficiently
large privacy threshold ε), deriving a closed form expression
in Theorem 3.

We then specialize Theorem 3 to the binary vector case.
Here, Zn is revealed publicly and the goal is to guess Y n under
the privacy constraint Pc(Xn |Zn) ≤ εn . We consider two mod-
els for the pair of random vectors (Xn, Y n). In the first model
(Theorem 4), we assume that Xn consists of n independent
and identically distributed (i.i.d.) Bernoulli(p) samples with
p ∈ [ 1

2 , 1). In the second model (Theorem 5), we assume that
Xn comprises the first n samples of a first-order homogeneous
Markov process having a simple symmetric transition matrix.
We assume that in both cases Yk , k = 1, . . . , n, is the output
of a BSC(α), α ∈ [0, 1

2 ), whose input is Xk . We also study
in detail the problem of learning from a private distribution,
which corresponds to the special case X1 = · · · = Xn of
the second model (Proposition 3).

In the continuous case, we first show that the strong
privacy constraint in Definition 2 is equivalent to a con-
dition on the maximal correlation (also referred to as
the Hirschfeld-Gebelein-Rényi maximal correlation [15]–[17])
between X and Z . We then derive the value of sENSR for
the Gaussian case (Example 1) and obtain sharp lower and
upper bounds for general X and Gaussian Y in Theorem 7.
Finally, we establish in Lemma 2 a tight lower bound for
sENSR(PXY , ε) for general (X, Y ) in the high privacy regime
(i.e., sufficiently small ε).

B. Related Work

There have been several choices proposed for an appropriate
measure L of information leakage in the information theory
and computer science literature. Shannon’s mutual information
I (X; Z) (or equivalently the conditional entropy H (X |Z)),
while an intuitively reasonable choice, does not lead to an
arguably “operational” privacy guarantee and thus may not
satisfactorily serve as an appropriate information leakage
function, see [18] and [19]. Smith [18] discussed that the
guessing entropy [20] (defined as the expected number of
guesses required to guess X from Z ) cannot be adopted as
an information leakage function and then proposed Arimoto’s
mutual information of order ∞ as an appropriate notion of
information leakage. Operationally, I∞(X; Z) ≤ ε for suffi-
ciently small ε implies that it is nearly as hard for an adversary
observing Z to guess X as it is without Z . Braun et al. [21]
proposed the information leakage measures Pc(X |Z)−Pc(X)
and max I∞(X; Z), where the maximization is taken over all
priors PX . In [22], Barthe and Köpf studied the latter quantity
in the context of differential privacy [23].

Issa et al. [12] recently found an interesting operational
interpretation for I s∞(X; Z), Sibson’s mutual information of
order ∞ [7], [24]. Specifically, they showed that the require-
ment I s∞(X; Z) ≤ ε is equivalent to I∞(U ; Z) ≤ ε for all
auxiliary random variables U satisfying U �−− X �−− Z .
Consequently, this constraint guarantees that no randomized
function of X can be efficiently estimated from Z , which
leads to a strong privacy guarantee. In contrast, the privacy
requirement I∞(X; Z) ≤ ε only guarantees to keep X itself
private. Nonetheless, the latter requirement comes at a lower
utility cost, as illustrated by the following example. Suppose
that X and Y are binary and that Alice wishes to reveal
absolutely no information about X (i.e., perfect privacy) when
disclosing a sanitized version of Y . According to the privacy
constraint dictated by Sibson’s mutual information, perfect
privacy leads to the independence of X and Z . It can be
shown that for binary Y and X �−− Y �−− Z , inde-
pendence of X and Z implies independence of Y and Z
(see [8, Corollary 11]). Hence, perfect privacy under Sibson’s
mutual information results in trivial utility. However, as shown
in Theorem 2, a non-trivial utility might be achieved for the
perfect privacy requirement I∞(X; Z) = 0.

There exist other estimation-theoretic measures of
information leakage in the literature. For example,
Makhdoumi and Fawaz [25] proposed to use maximal
correlation ρm as a measure of information leakage. Later,
Calmon et al. [26, Th. 9] showed that if X and Z are discrete
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random variables, then Pc( f (X)|Z) − Pc( f (X)) ≤ ρm(X, Z)
for every function f , thus providing an interesting operational
interpretation for maximal correlation as a measure of
information leakage. Similarly, we show that

mmse( f (X)|Z) ≥ (1 − ρ2
m(X, Z))var( f (X))

for every measurable real-valued function f . This then pro-
vides an operational interpretation for the privacy guarantee
ρ2

m(X, Z) ≤ ε that we study in Section IV for X and Y
absolutely continuous random variables. We refer the readers
to [27] for a fairly comprehensive list of existing information
leakage measures.

The study of the privacy-utility tradeoff from an information
theoretic point of view was initiated by Yamamoto [28]
and further extended by several authors, see [8], [9], [13],
[29]–[33]. In relation with the present work, as already noted
the rate-privacy function g(PXY , ε) was introduced in [8] as
the maximum I (Y ; Z) over all privacy filters PZ |Y such that
I (X; Z) ≤ ε (the privacy funnel [9] is a dual representation
of g(PXY , ε)). Motivated by [14], a more operational privacy-
rate function g̃(PXY , ε) was introduced also in [8] by replacing
the privacy guarantee I (X; Z) ≤ ε with ρ2

m(X, Z) ≤ ε. It was
also shown that g(PXY , ε) can bound g̃(PXY , ε) from above.

C. Notation

Throughout, we use capital letters, e.g., X , to denote random
variables and lowercase letters, e.g., x , to denote their real-
izations. We use Xn to denote the vector (X1, X2, . . . , Xn).
We let Z(β) denote the Z-channel with crossover probability β.
For any a ∈ [0, 1], we write ā for 1−a. As already mentioned,
we let BSC(α) denote the binary symmetric channel with
crossover probability α; we also use X⊥⊥Z to indicate the
independence of random variables X and Z and we write
X �−− Y �−− Z when X and Z are conditionally independent
given Y (i.e., when X, Y, and Z form a Markov chain
in this order). Finally, for real-valued random variables X
and Z , the conditional variance of X given Z is given by
var(X |Z) := E[(X − E(X |Z))2|Z ].

D. Organization

The rest of the paper is organized as follows. We study the
discrete case in Section II. In particular, we determine in the
binary case and obtain a tight lower bound for for general
discrete alphabets in the high utility regime by studying .
In Section III, we specialize our results to study when Xn ,
Y n , and Zn are binary random vectors. In Section IV, we focus
on the continuous case and obtain sharp bounds on sENSR.
We summarize our findings in Section V. Finally, we point
out that all proofs in the paper are deferred to the appendix.

II. DISCRETE SCALAR CASE

In this section, we assume that X and Y are finite-alphabet
random variables taking values in X = {1, . . . , M} and
Y = {1, . . . , N}, respectively. Let P(x, y) with x ∈ X and
y ∈ Y be their joint distribution and pX and qY the marginal
distributions of X and Y , respectively. The goal here is to

maximize the information leakage from Y to Z (i.e., utility)
while ensuring that the information leakage from X to Z
(i.e., privacy leakage) remains bounded. As stated earlier,
we quantify the tradeoff between privacy and utility by means
of , as defined in (3).

A. Geometric Properties of

First, note that Pc(X |Y, Z) ≥ Pc(X |Z) ≥ Pc(X) for jointly
distributed random variables X , Y and Z . Therefore, from (3)
we have that Pc(Y ) ≤ (ε) ≤ 1 and that (ε) = 1 if and only
if ε ≥ Pc(X |Y ). Thus it is enough to study on the interval
[Pc(X), Pc(X |Y )].

An application of the Support Lemma [34, Lemma 15.4]
shows that it is enough to consider random variables Z
supported on Z = {1, . . . , N + 1}. Thus, the privacy filter
PZ |Y can be realized by an N × (N + 1) stochastic matrix
F ∈ MN×(N+1) , where MN×M denotes the set of all real-
valued N×M matrices. Let F be the set of all such matrices F .
Then both privacy P(P, F) = Pc(X |Z) and utility U(P, F) =
Pc(Y |Z) are functions of F ∈ F and can be written as

P(P, F) :=
N+1∑

z=1

max
1≤x≤M

N∑

y=1

P(x, y)F(y, z),

U(P, F) :=
N+1∑

z=1

max
1≤y≤N

q(y)F(y, z). (6)

In particular, we can express (ε) as

(ε) = sup
F∈F ,

P(P,F)≤ε

U(P, F). (7)

As before, we omit P in P(P, F) and U(P, F) when there is
no risk of confusion.

It is straightforward to verify that P and U are contin-
uous and convex on F . As a consequence, for every ε ∈
[Pc(X), Pc(X |Y )], there exists G ∈ F such that P(G) = ε
and U(G) = (ε). It is then direct to show that is
continuous on [Pc(X), Pc(X |Y )]. Using a proof technique
similar to [35, Th. 2.3], it can also be shown1 that the graph
of is the upper boundary of the two-dimensional convex
set {(P(F),U(F)) : F ∈ F} and thus is concave and
strictly increasing. The following theorem, which is the most
important and technically difficult result of this paper, states
that is a piecewise linear function, as illustrated in Fig. 2.

Theorem 1: The function : [Pc(X), Pc(X |Y )] → R
+

is piecewise linear, i.e., there exist K ≥ 1 and thresholds
Pc(X) = ε0 ≤ ε1 ≤ . . . ≤ εK = Pc(X |Y ) such that is
linear on [εi−1, εi ] for all i = 1, . . . , K .

The proof of this theorem, which is given in Appendix A,
relies on the geometrical formulation of . In particular, it is
proved that P and U , are piecewise linear functions on F .
Using this fact, we establish the existence of a piecewise linear

1Note that [35, Th. 2.3] deals with a similar problem where Pc(X |Z)
and Pc(Y |Z) are replaced by H (X |Z) and H (Y |Z), respectively. Just as
(H (X |Z), H (Y |Z)), the pair (Pc(X |Z),Pc(Y |Z)) can be written as a convex
combination of points in a two-dimensional set. In our setting, this set turns
out to be {(Pc(X 
), Pc(Y 
)) : Y 
 ∼ q 
 ∈ P(Y) and X 
 ∼ p
, where p
(x) =∑

y PX |Y (x|y)q 
(y)}. See [11] for a generalization of this argument.
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path of optimal filters in F . The proof technique allows us to
derive the slope of on [εi−1, εi ], given the family of optimal
filters at a single point ε ∈ [εi−1, εi ]. For example, since the
family of optimal filters at ε = Pc(X |Y ) is easily obtainable,
it is possible to compute on the last interval. We utilize this
observation in Section II-C to prove that in the binary case
is indeed linear.

B. Perfect Privacy

When ε = Pc(X), observing Z does not increase the
probability of guessing X . In this case we say that perfect
privacy holds. An interesting problem is to characterize when
non-trivial utility can be obtained under perfect privacy, that
is, to characterize when (Pc(X)) > Pc(Y ) holds. To the best
of our knowledge, a general necessary and sufficient condition
for this requirement is unknown.

Note that (Pc(X)) > Pc(Y ) is equivalent to g∞(0) > 0.
As opposed to the Shannon mutual information, I∞(X; Z) = 0
does not necessarily imply that X⊥⊥Z . In particular, the weak
independence2 argument from [8, Lemma 10] (see also [13])
cannot be applied for g∞. However, we have the following
result whose proof is given in Appendix B.

Proposition 1: Let (X, Z) be a pair of random variables
with X uniformly distributed. If I∞(X; Z) = 0, then X⊥⊥Z.

As a consequence of Proposition 1, when X and Y are
uniformly distributed, one can apply the weak independence
arguments from [8, Lemma 10] to obtain the following.

Corollary 1: If X and Y are uniformly distributed, then
g∞(0) > 0 if and only if X is weakly independent of Y .

When X is uniform, the privacy requirement I∞(X; Z) ≤ ε
guarantees that an adversary observing Z cannot efficiently
estimate any arbitrary randomized function of X . To see this,
consider a random variable U satisfying U �−− X �−− Z .
Then we have

Pc(U |Z) =
∑

z∈Z
max
u∈U

∑

x∈X
PU X (u, x)PZ |X (z|x)

≤
∑

z∈Z

[
max
x∈X

PZ |X (z|x)

][
max
u∈U

∑

x∈X
PU X (u, x)

]

= Pc(X |Z)Pc(U)

Pc(X)
,

which can be rearranged to yield I∞(U ; Z) ≤ I∞(X; Z).
It is worth mentioning that the data processing inequality
for I∞ [4] states that I∞(Z; U) ≤ I∞(Z; X). However,
I∞(Z; U) is not necessarily equal to I∞(U ; Z).

C. Binary Case

A channel W is called a binary input binary output channel
with crossover probabilities α and β, denoted by BIBO(α, β),
if W(·|0) = (ᾱ, α) and W(·|1) = (β, β̄). Note that if X ∼
Bernoulli(p) with p ∈ [ 1

2 , 1) and PY |X = BIBO(α, β) with
α, β ∈ [0, 1

2 ), then Pc(X) = p and

Pc(X |Y ) = max{ᾱ p̄, βp} + β̄ p.

2 X is said to be weakly independent of Z if the vectors {PX |Z (·|z) : z ∈ Z}
are linearly dependent [36].

Fig. 3. Optimal privacy mechanisms in Theorem 2. (a) αᾱ p̄2 < ββ̄ p2.
(b) αᾱ p̄2 ≥ ββ̄ p2.

In this case, if ᾱ p̄ ≤ βp then Pc(X |Y ) = p = Pc(X) and
hence (p) = 1. The following theorem, whose proof is given
in Appendix C, establishes the linear behavior of in the non-
trivial case ᾱ p̄ > βp.

Theorem 2: Let X ∼ Bernoulli(p) with p ∈ [ 1
2 , 1) and

PY |X = BIBO(α, β) with α, β ∈ [0, 1
2 ) such that ᾱ p̄ > βp.

Then, for any ε ∈ [p, ᾱ p̄ + β̄ p] = [Pc(X), Pc(X |Y )],

(ε) =
{

1 − ζ(ε)q, αᾱ p̄2 < ββ̄ p2,

1 − ζ̃ (ε)q̄, αᾱ p̄2 ≥ ββ̄ p2,

where q := qY (1) = α p̄ + β̄ p,

ζ(ε) := ᾱ p̄ + β̄ p − ε

β̄ p − α p̄
, and ζ̃ (ε) := ᾱ p̄ + β̄ p − ε

ᾱ p̄ − βp
. (8)

Furthermore, the Z-channel Z(ζ(ε)) and the reverse
Z-channel Z̃(ζ̃ (ε)) achieve (ε) when αᾱ p̄2 < ββ̄ p2 and
αᾱ p̄2 ≥ ββ̄ p2, respectively. The optimal privacy filters are
depicted in Fig. 3.

Note that the condition αᾱ p̄2 < ββ̄ p2 is equivalent to

PX |Y (1|1) > PX |Y (0|0),

and that PX |Y (0|0) > 1
2 whenever ᾱ p̄ > βp. Hence, intuitively

speaking, the event Y = 1 reveals more information about
X than the event Y = 0. Consequently, an optimal privacy
mechanism M needs to distort the event Y = 1.

Under the hypotheses of Theorem 2, there exists a
Z-channel for every ε ∈ [Pc(X), Pc(X |Y )] that achieves (ε).
A minor modification to the proof of Theorem 2 shows that the
Z-channel is the only binary privacy filter with this optimality
property for p ∈ ( 1

2 , 1). It is worth mentioning that in the
symmetric case (α = β) with uniform input (p = 1

2 ),
the channel BSC(0.5ζ(ε)) can be shown to also achieve (ε).

It is straightforward to show that 1−ζ(p)q > q̄ if and only
if p ∈ ( 1

2 , 1), and 1−ζ(p)q > q if and only if αᾱ p̄2 < ββ̄ p2.
Also, note that (p) = q when αᾱ p̄2 ≥ ββ̄ p2. In particular,
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we have the following necessary and sufficient condition for
the non-trivial utility under perfect privacy.

Corollary 2: Let X ∼ Bernoulli(p) with p ∈ [ 1
2 , 1) and

PY |X = BIBO(α, β) with α, β ∈ [0, 1
2 ) such that ᾱ p̄ > βp.

Then g∞(0) > 0 if and only if αᾱ p̄2 < ββ̄ p2 and p ∈ ( 1
2 , 1).

D. A Variant of

Thus far, we studied the privacy-constrained guessing proba-
bility (ε) where no constraint on the cardinality of the alpha-
bet of the displayed data Z is imposed (other than being finite).
Nevertheless, we know that it is sufficient to consider Z with
cardinality |Y|+1. However, as mentioned in the introduction,
it may be desirable to generate the displayed data on the same
alphabet as that of Y . In this section, we consider the case
where Z is constrained to satisfy |Z| = |Y|, which leads to
the following variant of , denoted by .

Definition 3: For arbitrary discrete random variables X
and Y supported on X and Y respectively, we define the
function : [Pc(X), Pc(X |Y )] → R

+ by

(ε) := sup
PZ |Y ∈Dε

Pc(Y |Z),

where

Dε := {
PZ |Y : Z = Y, X �−− Y �−− Z , Pc(X |Z) ≤ ε

}
.

Unlike , the definition of requires Z = Y . This
difference makes the tools from [35] unavailable. In particular,
the concavity and hence the piecewise linearity of do not
carry over to . However, we have the following theorem
for whose proof is given in Appendix D. For notational
convenience, we adopt the convention x

0 = +∞ for x > 0.
For (y0, z0) ∈ Y × Y , a channel W is said to be an N-ary Z-
channel with crossover probability γ from y0 to z0, denoted
by Zy0,z0(γ ), if the input and output alphabets are Y and
W(y|y) = 1 for y �= y0, W(z0|y0) = γ , and W(y0|y0) = γ̄ .
We also let 
(Pc(X |Y )) denote the left derivative of (·)
evaluated at ε = Pc(X |Y ).

Theorem 3: Let X and Y be discrete random variables.
If Pc(X) < Pc(X |Y ), then there exists εL ∈ (Pc(X), Pc(X |Y ))
such that is linear on [εL, Pc(X |Y )]. In particular, for every
ε ∈ [εL, Pc(X |Y )],

(ε) = 1 − (Pc(X |Y ) − ε) 
(Pc(X |Y )). (9)

Moreover, if qY (y) > 0 for all y ∈ Y and for each y ∈ Y there
exists (a unique) xy ∈ X such that PX |Y (xy|y) > PX |Y (x |y)
for all x �= xy, then


(Pc(X |Y )) = min
(y,z)∈Y×Y

qY (y)

PXY (xy, y) − PXY (xz, y)
. (10)

In addition, if (y0, z0) ∈ Y × Y attains the minimum in (10),
then there exists ε

y0,z0
L < Pc(X |Y ) such that Zy0,z0(ζ y0,z0(ε))

achieves (ε) for every ε ∈ [εy0,z0
L , Pc(X |Y )], where

ζ y0,z0(ε) = Pc(X |Y ) − ε

PXY (xy0, y0) − PXY (xz0, y0)
.

It is clear, from Definition 3, that (ε) ≤ (ε) for all
ε ∈ [Pc(X), Pc(X |Y )]. Hence, Theorem 3 provides a lower
bound for in the high utility regime.

Although (9) establishes the linear behavior of over
[εL, Pc(X |Y )] for general X and Y , a priori it is not clear how
to obtain 
(Pc(X |Y )). Under the assumptions of Theorem 3,
(10) expresses 
(Pc(X |Y )) as the minimum of finitely many
numbers, and a suitable Z-channel achieves for ε close
to Pc(X |Y ). As we will see in the following section, these
assumptions are rather general and allow us to derive a closed
form expression for in the high utility regime for some pairs
of binary random vectors (Xn , Y n) with Xn, Y n ∈ {0, 1}n .

III. BINARY VECTOR CASE

We next study privacy aware guessing for a pair of binary
random vectors (Xn , Y n). First note that since having more
side information only improves the probability of correct
guessing, one can write

Pc(Xn) ≤ Pc(Xn |Zn) ≤ Pc(Xn |Y n, Zn) = Pc(Xn |Y n)

for Xn �−− Y n �−− Zn and thus, we can restrict εn in the
following definition to [Pc(Xn), Pc(Xn |Y n))].

Definition 4: For a given pair of binary random vectors
(Xn, Y n), let n : [P1/n

c (Xn), P1/n
c (Xn |Y n)] → R

+ be the
function defined by

n(ε) := sup
PZn |Y n ∈Dn,ε

P1/n
c (Y n |Zn), (11)

where

Dn,ε := {PZn|Y n : Zn = {0, 1}n,

Xn �−− Y n �−− Zn, P1/n
c (Xn |Zn) ≤ ε}.

Note that this definition does not make any assumption
about the privacy filters PZn |Y n apart from Zn = {0, 1}n .
Nonetheless, this restriction makes the functional properties
of n different from those of .

We study n in the following two scenarios for (Xn, Y n):
(a1) X1, . . . , Xn are i.i.d. samples drawn from Bernoulli(p),
(a2) X1 ∼ Bernoulli(p) and Xk = Xk−1 ⊕ Uk for k =

2, . . . , n, where U2, . . . , Un are i.i.d. samples drawn
from Bernoulli(r) and independent of X1, and ⊕ denotes
mod 2 addition,

and in both cases, we assume that
(b) Yk = Xk ⊕ Vk for k = 1, . . . , n, where V1, . . . , Vn are

i.i.d. samples drawn from Bernoulli(α) and independent
of Xn .

We study n for (Xn, Y n) satisfying the assumptions (a1)
and (b) in Section III-A and for (Xn, Y n) satisfying the
assumptions (a2) and (b) in Section III-B. In the latter section,
we also study n in the special case r = 0 in more
detail.

A. I.I.D. Case

Here, we assume that (Xn, Y n) satisfy (a1) and (b) and apply
Theorem 3 to derive a closed form expression for n(ε) for
ε close to Pc(Xn |Y n). Additionally, we determine an optimal
filter in the same regime.

We begin by identifying the domain [Pc(Xn), Pc(Xn |Y n)]
of n in the following lemma, whose proof follows directly
from the definition of Pc.
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Fig. 4. The optimal mechanism for 2(ε) for ε ∈ [εL, ᾱ].

Lemma 1: Assume that (X1, Z1), . . . , (Xn, Zn) are inde-
pendent pairs of random variables. Then

Pc(Xn |Zn) =
n∏

k=1

Pc(Xk |Zk).

Thus, according to this lemma, if p ∈ [ 1
2 , 1) and α ∈ [0, p̄)

then Pc(Xn) = pn and Pc(Xn |Y n) = ᾱn . The following theo-
rem, whose proof is given in Appendix E, is a straightforward
consequence of Theorem 3. A channel W is said to be a 2n-
ary Z-channel with crossover probability γ , denoted by Zn(γ ),
if its input and output alphabets are {0, 1}n and it is Z1,0(γ ),
where 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

Theorem 4: Assume that (Xn, Y n) satisfy (a1) and (b) with
p ∈ [ 1

2 , 1) and α ∈ [0, 1
2 ) such that ᾱ > p. Then there exists

εL < ᾱ such that, for all ε ∈ [εL, ᾱ],
n
n(ε) = 1 − ζn(ε)q

n

where q := α p̄ + ᾱ p and

ζn(ε) := ᾱn − εn

(ᾱ p)n − (α p̄)n
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves n(ε) in
this interval.

The optimal privacy mechanism achieving 2(ε) is depicted
in Fig. 4. From an implementation point of view, the simplest
family of privacy mechanisms consists of those mechanisms
for which Zk is a noisy version of Yk for each k = 1, . . . , n.
Specifically, the family of mechanisms that generate Zk ,
given Yk , using a single BIBO channel W, and thus

PZn |Y n (zn|yn) =
n∏

k=1

W(zk |yk), (12)

for all yn, zn ∈ {0, 1}n . Now, let i
n(ε) = sup P1/n

c (Y n|Zn),
where the supremum is taken over all PZn |Y n satisfying (12)
and P1/n

c (Xn |Zn) ≤ ε. It is clear that i
n(ε) ≤ n(ε) for

all ε ∈ [P1/n
c (Xn), P1/n

c (Xn |Y n)]. The following proposition,
whose proof is given in Appendix F, shows that if we restrict
the privacy filter PZn |Y n to be memoryless, then the optimal
filter coincides with the optimal filter in the scalar case, which
in this case is Z(ζ(ε)) as defined in Theorem 2.

Proposition 2: Assume that (Xn, Y n) satisfy (a1) and (b)
with p ∈ [ 1

2 , 1) and α ∈ [0, 1
2 ) such that ᾱ > p. Then, for all

ε ∈ [p, ᾱ],
i
n(ε) = 1 − ζ(ε)q,

where q := α p̄ + ᾱ p and ζ(ε) := ᾱ p̄+ᾱ p−ε
ᾱ p−α p̄ .

Fig. 5. The graphs of 10(ε) (green solid curve), 2(ε) (red dashed curve),

and i
2(ε) = i

10(ε) (blue dotted line) given in Proposition 2 and Theorem 4
for i.i.d. (Xn , Y n) with X ∼ Bernoulli(0.6) and PY |X = BSC(0.2).

It must be noted that, despite the fact that (Xn, Y n) is
i.i.d., the memoryless privacy filter associated to i

n(ε) is not
optimal, as n(ε) is a function of n while i

n(ε) is not. The
following corollary, whose proof is given in Appendix G,
bounds the loss resulting from using a memoryless filter
instead of an optimal one for ε ∈ [εL, ᾱ]. Clearly, for n = 1,
there is no gap as 1(ε) = (ε) = i

1(ε).
Corollary 3: Let (Xn, Y n) satisfy (a1) and (b) with p ∈

[ 1
2 , 1) and α ∈ [0, 1

2 ) such that ᾱ > p. Let εL be as in

Theorem 4. If p > 1
2 and α > 0, then for ε ∈ [εL, ᾱ] and

sufficiently large n

n(ε) − i
n(ε) ≥ (ᾱ − ε)[�(1) − �(n)], (13)

where q = α p̄ + ᾱ p and

�(n) := qnᾱn−1

(ᾱ p)n − (α p̄)n
.

If p = 1
2 , then

i
n(ε) ≤ n(ε) ≤ i

n(ε) + α

2ᾱ
, (14)

for every n ≥ 1 and ε ∈ [εL, ᾱ].
Note that �(n) ↓ 0 as n → ∞. Thus (13) implies that,

as expected, the gap between the performance of the optimal
privacy filter and that of the optimal memoryless privacy
filter increases as n increases. This observation is numerically
illustrated in Fig. 5, where n(ε) is plotted as a function of
ε for n = 2 and n = 10. Moreover, (14) implies that when
p = 1

2 and α is small, n(ε) can be approximated by i
n(ε).

Thus, we can approximate the optimal filter Zn(ζn(ε)) with
a simple memoryless filter given by Zk = Yk ⊕ Wk , where
W1, . . . , Wn are i.i.d. Bernoulli(0.5ζ(ε)) random variables that
are independent of (Xn, Y n).

B. Markov Private Data

In this section, we assume that Xn comprises the first n
samples of a homogeneous first-order Markov process having a
symmetric transition matrix; i.e., (Xn, Y n) satisfy (a2) and (b).
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In practice, this may account for data that follows a pattern,
such as a password.

It is easy to see that under assumptions (a2) and (b),

Pr(Xn = xn) = p̄r̄ n−1
(

p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1
.

In particular, if r < 1
2 ≤ p, then a direct computation

shows that Pc(Xn) = pr̄n−1. The values of Pc(Xn |Y n) for
odd and even n are slightly different. For simplicity, in what
follows we assume that n is odd. In this case, as shown in
equation (64) in Appendix H,

Pc(Xn |Y n) = ᾱnr̄ n−1
(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k
. (15)

Theorem 3 established the optimality of a Z-channel Zy0,z0

for some y0, z0 ∈ {0, 1}n . In order to find a closed form
expression for n , it is necessary to find (y0, z0) which in
principle depends on the parameters (p, α, r). The following
theorem, whose proof is given in Appendix H, bounds n for
different values of (p, α, r).

Theorem 5: Assume that n ∈ N is odd and (Xn, Y n) satisfy
(a2) and (b) with p ∈ [ 1

2 , 1), α ∈ (0, 1
2 ), and ᾱ p̄ > αp.

If r
r̄ <

(
α
ᾱ

)n−1
, then there exists εL < Pc(Xn |Y n) such that

1 − ζn(ε) Pr(Y n = 1) ≤ n
n(ε) ≤ 1 − ζn(ε)α

n ,

for every ε ∈ [εL, Pc(Xn |Y n)], where

ζn(ε) := r̄
Pc(Xn |Y n) − εn

p(ᾱr̄)n − p̄(αr̄ )n
.

Furthermore, the 2n-ary Z-channel Zn(ζn(ε)) achieves the
lower bound in this interval.

The special case of r = 0 is of particular interest. Note that
when r = 0, then (a2) corresponds to X1 = · · · = Xn = θ ∈
{0, 1}. Here, Y n ∈ {0, 1}n are i.i.d. copies drawn from PY |θ =
Bernoulli(ᾱθαθ̄ ). The prior distribution of the parameter θ is
Bernoulli(p). The parameter θ is considered to be private and
Y n must be guessed as accurately as possible. This problem
can be viewed as a reverse version of privacy-aware learning
studied in [37]. The following proposition, whose proof is
given in Appendix I, provides a closed form expression for n
in the low privacy regime. Note that in this case, Pc(θ) = p
and the value of Pc(θ |Y n) is obtained from (15) by setting
r = 0.

Proposition 3: Assume that n is odd. Let θ ∼ Bernoulli(p)

with p ∈ [ 1
2 , 1) and Y n be n i.i.d. Bernoulli(ᾱθαθ̄ ) samples

with α ∈ (0, 1
2 ), ᾱ p̄ > αp and p < Pc(θ |Y n). Then, there

exists εL < Pc(θ |Y n) such that

max
PZn |Y n :Zn={0,1}n ,

Pc(θ |Zn)≤εn

Pc(Y
n |Zn) = 1 − ζn(ε)(pᾱn + p̄αn),

for every ε ∈ [εL, Pc(θ |Y n)] where

ζn(ε) = Pc(θ |Y n) − εn

pᾱn − p̄αn
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves n(ε) in
this interval.

IV. CONTINUOUS CASE

In this section, we assume that X and Y are real-valued
random variables having a joint density PXY and the filter
PZ |Y is realized by an independent additive Gaussian noise
random variable. In particular, the privacy filter’s output is

Zγ = √
γ Y + NG,

for some γ ≥ 0, where NG ∼ N (0, 1) is independent
of (X, Y ). The choice of additive Guassian mechanisms is due
to their implementation simplicity and mathematical tractabil-
ity. Nonetheless, additive non-Gaussian and more general non-
linear mechanisms might be natural in specific applications;
their investigation is left as a future work. The goal of this
section is to study sENSR, defined in Definition 2. To make
the notation simpler, we define the following.

Definition 5: Given a pair of absolutely continuous random
variables (X, Y ) with distribution PXY and ε ≥ 0, we say
that Zγ satisfies ε-strong estimation privacy, denoted as
Zγ ∈ 
(PXY , ε), if

1 − ε ≤ mmse( f (X)|Zγ )

var( f (X))
≤ 1, (16)

holds for every measurable function f : R → R with
0 < var( f (X)) < ∞. Similarly, Zγ is said to satisfy ε-weak
estimation privacy, denoted by Zγ ∈ ∂
(PXY , ε), if (16) holds
for identity function, i.e., f (x) = x.

Similar to privacy, the utility between Y and Zγ will
be measured in terms of mmse(Y |Zγ ), and hence sENSR
(Definition 2) quantifies the tradeoff between utility and pri-
vacy. In fact, sENSR can be equivalently written as

sENSR(PXY , ε) = inf
γ≥0:Zγ ∈
(PXY ,ε)

mmse(Y |Zγ )

var(Y )
.

We can analogously define the weak estimation noise-to-signal
ratio as

wENSR(PXY , ε) := inf
γ≥0:Zγ ∈∂
(PXY ,ε)

mmse(Y |Zγ )

var(Y )
.

Note that sENSR and wENSR are non-increasing since

(PXY , ε) ⊆ 
(PXY , ε
) and ∂
(PXY , ε) ⊆ ∂
(PXY , ε
) if
ε ≤ ε
. For the sake of brevity, we omit PXY in 
(PXY , ε),
∂
(PXY , ε), sENSR(PXY , ε), and wENSR(P, ε) when there
is no risk of confusion.

In what follows we derive equivalent conditions for Zγ ∈

(ε) and Zγ ∈ ∂
(ε), respectively. Recall that the (Pearson)
correlation coefficient of the random variables U and V is
defined as

ρ(U, V ) = cov(U, V )√
var(U)var(V )

provided that 0 < var(U), var(V ) < ∞. For a random
variable U , let SU be the set of all measurable functions
f : R → R such that 0 < var( f (U)) < ∞. Consider the
following.

Definition 6 [17], [38]: Let U and V be a pair of random
variables.
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i) The maximal correlation of U and V , denoted by
ρm(U, V ), is defined as

ρm(U, V ) := sup
( f,g)∈SU×SV

ρ( f (U), g(V )),

provided that 0 < var(U), var(V ) < ∞. If either SU ×
SV is empty (which happens precisely when either U or V
is constant almost surely), then we set ρm(U, V ) = 0.

ii) The one-sided maximal correlation3 between U and V ,
denoted by ηV (U), is defined as

ηV (U) := sup
g∈SV

ρ(U, g(V )),

provided that 0 < var(U) < ∞. If SV is empty, then we
set ηV (U) = 0.

Rényi [17] showed that η2
V (U) = var(E[U |V ])

var(U ) . Therefore,
the law of total variance implies

mmse(U |V )

var(U)
= E[var(U |V )]

var(U)
=1− var(E[U |V ])

var(U)
=1−η2

V (U).

(17)

It can also be shown that 0 ≤ ρm(U, V ) ≤ 1, where the lower
bound is achieved if and only if U and V are independent, and
the upper bound is achieved if and only if there exists a pair
of functions ( f, g) ∈ SU ×SV such that f (U) = g(V ) almost
surely [17]. It is well known that if (XG, YG) is a pair of jointly
Gaussian random variables with correlation coefficient ρ, then
ρ2

m(XG, YG) = ρ2(XG, YG), see [16] or [40] for a more recent
proof. Rényi [17] derived an equivalent characterization of
maximal correlation as

ρ2
m(U ; V ) = sup

f ∈SU

η2
V ( f (U)). (18)

The following theorem, whose proof is given in Appendix J,
provides an equivalent characterization of ε-strong estimation
privacy Zγ ∈ 
(ε).

Theorem 6: Let U and V be non-degenerate random vari-
ables and ε ∈ [0, 1]. Then

mmse( f (U)|V ) ≥ (1 − ε)var( f (U)),

for all f ∈ SU if and only if ρ2
m(U, V ) ≤ ε. In particular,

Zγ ∈ 
(ε) if and only if ρ2
m(X, Zγ ) ≤ ε.

From this theorem and (17), we can equivalently express
sENSR(ε) and wENSR(ε) as

sENSR(ε) = 1 − sup
γ≥0: ρ2

m(X,Zγ )≤ε

η2
Zγ

(Y ),

wENSR(ε) = 1 − sup
γ≥0: η2

Zγ
(X)≤ε

η2
Zγ

(Y ).

It is known that both η and ρm satisfy the data processing
inequality (see [14], [41]) and hence ηZγ (X) ≤ ηY (X) and
ρm(X, Zγ ) ≤ ρm(X, Y ). Therefore, we can restrict ε in
the definition of wENSR(ε) and sENSR(ε) to the intervals
[0, η2

Y (X)] and [0, ρ2
m(X, Y )], respectively. Unlike the discrete

case, it is clear that perfect privacy ε = 0 implies γ = 0.

3This name is taken from [39, Definition 7.4]. Originally, Rényi named this
quantity as the “correlation ratio” of U on V [17, eq. (6)].

Thus perfect privacy yields trivial utility; i.e., sENSR(0) = 1
and wENSR(0) = 1.

Note that γ �→ mmse(Y |Zγ ) is continuous and decreasing
on (0,∞) [42] and γ �→ ρ2

m(X, Zγ ) is left-continuous
and increasing on (0,∞) [43, Th. 2]. Thus we can define
γ ∗
ε := max{γ ≥ 0 : ρ2

m(X, Zγ ) ≤ ε} for which we

have sENSR(ε) = mmse(Y |Zγ ∗
ε
)

var(Y ) . The left-continuity of γ �→
ρ2

m(X, Zγ ) implies that ε �→ γ ∗
ε is right-continuous, and thus

ε �→ sENSR(ε) is right-continuous on (0, ρ2
m(X, Y )).

Example 1: Let (XG, YG) be jointly Gaussian random vari-
ables with mean zero and correlation coefficient ρ and let
Zγ = √

γ YG + NG. Since ρ2
m(XG, Zγ ) = ρ2(XG, Zγ ),

we have that

ρ2
m(XG, Zγ ) = ρ2 γ var(YG)

1 + γ var(YG)
,

and hence the mapping γ �→ ρ2
m(XG, Zγ ) is strictly increas-

ing. As a consequence, for 0 ≤ ε ≤ ρ2, the equation
ρ2

m(XG, Zγ ) = ε has a unique solution

γε := ε

var(YG)(ρ2 − ε)
,

and ρ2
m(XG, Zγ ) ≤ ε if and only if γ ≤ γε. On the other

hand,

mmse(YG|Zγ ) = var(YG)

1 + γ var(YG)
,

which shows that the map γ �→ mmse(YG|Zγ ) is strictly
decreasing. Therefore,

sENSR(ε) = mmse(YG|Zγε)

var(YG)
= 1 − ε

ρ2 . (19)

Clearly, for jointly Gaussian XG and YG, we have η2
Zγ

(XG) =
ρ2

m(XG, Zγ ) for any γ ≥ 0. Consequently, 
(ε) = ∂
(ε) and,
for 0 ≤ ε ≤ ρ2,

sENSR(ε) = wENSR(ε) = 1 − ε

ρ2 . (20)

Next, we obtain bounds on sENSR(ε) for the special case
of Gaussian non-private data YG. The proof of the following
result is given in Appendix K.

Theorem 7: Let X be jointly distributed with Gaussian YG.
Then,

1 − ε

ρ2(X, YG)
≤ sENSR(PXYG , ε) ≤ 1 − ε

ρ2
m(X, YG)

,

Combined with (20), this theorem shows that for a
Gaussian Y , a Gaussian XG minimizes sENSR(ε) among
all continuous random variables X having identical ρ(X, YG)
and maximizes sENSR(ε) among all continuous random
variables X having identical ρm(X, YG). These observations
establish another extremal property of Gaussian distribution
over AWGN channels, see e.g., [44, Th. 12] for another
example. This theorem also implies that

sENSR(PXGYG , ε) − sENSR(PXYG , ε) ≤ ε

ρ2(X, YG)

− ε

ρ2
m(X, YG)

,
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for Gaussian XG which satisfies ρ2
m(XG, YG) = ρ2

m(X, YG).
This demonstrates that if the difference ρ2

m(X, YG) −
ρ2(X, YG) is small, then sENSR(PXYG , ε) is very close to
sENSR(PXGYG , ε).

As stated before, for any given joint density PXY , perfect
privacy results in trivial utility, i.e., sENSR(0) = 1. Therefore,
it is interesting to study the approximation of sENSR(ε) for
sufficiently small ε, i.e., in the almost perfect privacy regime.
The next result, whose proof is given in Appendix L, provides
such an approximation and also shows that the lower bound
in Theorem 7 holds for general Y for ε in the almost perfect
privacy regime.

Lemma 2: We have that

lim sup
ε→0

1 − sENSR(ε)

ε
≤ 1

ρ2(X, Y )
.

V. CONCLUSION

We studied the problem of displaying Y under a pri-
vacy constraint with respect to another correlated random
variable X , where utility and privacy are measured in terms
of the probability of correctly guessing and minimum mean-
squared error in the discrete and continuous cases, respectively.

In the discrete case, we introduced the privacy-constrained
guessing function to quantify the fundamental tradeoff
between privacy and utility. We proved that is piecewise
linear for every X and Y . When X and Y are binary, this result
allowed us to obtain in closed form and to establish the
optimility of the Z -channel. We then defined analogously
to with the additional assumption that Z is supported over
the alphabet of Y , thereby providing a lower bound for . For
arbitrary X and Y , we derived in closed form in the high
utility regime and established the optimality of a generalized
Z -channel in this regime. Finally, we specialized our results
about to the vector case, where Xn , Y n , and Zn are assumed
to be binary random vectors. Overall, these results provide
tangible answers for the estimation theoretic privacy-utility
tradeoff problem and the performance of Z -channels in the
high utility regime.

In the continuous case, we proposed the estimation-noise-
to-signal ratio function sENSR to capture the fundamental
privacy-utility tradeoff with an intrinsic operational mean-
ing. In the special case of additive Gaussian privacy filters,
we showed that if Y is Gaussian, then a Gaussian X min-
imizes sENSR among all (X, Y ) with identical correlation
coefficients and maximizes sENSR among all (X, Y ) with
identical maximal correlations. We also obtained a tight lower
bound for sENSR for general absolutely continuous random
variables when ε is sufficiently small.

APPENDIX A
PROOF OF THEOREM 1

Before proving Theorem 1, we need to establish some
technical facts.

Consider the map H : F → [0, 1] × [0, 1] given by

H(F) = (P(F),U(F)),

with P(F) and U(F) defined in (6). For ease of notation, let
D = {

D ∈ MN×(N+1) : �D� = 1
}

where || · || denotes the
Euclidean norm in MN×(N+1) ≡ R

N(N+1) . For G ∈ F , let

D(G) = {D ∈ D : G + t D ∈ F for some t > 0} .

In graphical terms, D is the set of all possible directions in
MN×(N+1) and D(G) is the set of directions that make t �→
G + t D (t ≥ 0) stay locally in F .

Lemma 3: For every G ∈ F , the set D(G) is compact.
Proof: Let A = {(y, z) : Gy,z = 0} and B = {(y, z) :

Gy,z = 1}. It is straightforward to verify that

D(G) = A ∩ B ∩ C ∩ D,

where

A =
⋂

(y,z)∈A

{
D ∈ MN,(N+1) : Dy,z ≥ 0

}
,

B =
⋂

(y,z)∈B

{
D ∈ MN,(N+1) : Dy,z ≤ 0

}
,

C =
{

D ∈ MN,(N+1) :
N+1∑

z=1

Dy,z = 0, y = 1, . . . , N

}
.

Observe that since sets A, B, C and D are closed, so is
D(G). Since D is bounded, we have that D(G) is bounded
as well. In particular, D(G) is closed and bounded and thus
compact.

Lemma 4: Let G ∈ F be given and define θ : D(G) → R

by

θ (D) := sup{t ≥ 0 | G + t D ∈ F}.
The function θ is continuous on D(G).

Proof: Let ri(F) and rb(F) denote the relative interior
and relative boundary of F , respectively. In what follows,
we assume that G ∈ rb(F). The proof for G ∈ ri(F) follows
the same steps and the details are left to the reader. The
proof of the lemma is by contradiction. Assume that there
exists a sequence (Dn)n≥0 ⊂ D(G) such that Dn → D0
but θ (Dn) �→ θ (D0) as n → ∞. Since F is bounded,
the sequence (θ (Dn))n≥1 is necessarily bounded. Therefore,
there must exist a subsequence (Dnk )k≥1 such that

lim
k→∞ θ (Dnk ) = r �= θ (D0). (21)

By the maximality of θ (D), we have that G+θ (D)D ∈ rb(F)
for all D ∈ D(G). Notice that F is a convex polytope defined
by the intersection of finitely many hyperplanes. In particular,
G + θ (D)D belongs to one of the supporting hyperplanes
of F . Furthermore, the maximality of θ (D) can be used
once again to show that G + θ (D)D belongs to a supporting
hyperplane of F that does not contain G. Since there are
finitely many supporting hyperplanes of F , there exists a
further subsequence (Dn


k
)k≥1 and a hyperplane H such that

G + θ (Dn

k
)Dn


k
∈ H for all k ≥ 1 and G /∈ H . Since H and

F are closed sets, we conclude that

lim
k→∞ G + θ (Dn


k
)Dn


k
= G + r D0 ∈ H ∩ F .
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By the maximality of θ (D0) and (21), we have θ (D0) > r .
Since H is a hyperplane and G /∈ H , it is easy to verify that

{G + t D0 : t ∈ [0, θ (D0)]} ∩ H = {G + r D0}. (22)

In particular, (22) implies that G and G + θ (D0)D0 are on
opposite sides of H . Since G ∈ F and H is a supporting
hyperplane of F , we conclude that G + θ (D0)D0 /∈ F . This
contradicts the fact that G + θ (D)D ∈ rb(F) ⊂ F for all
D ∈ D(G).

The following lemma shows the local linear nature of the
mapping H. Let [G1, G2] = {λG1 + (1 − λ)G2 : λ ∈ [0, 1]}.

Lemma 5: For every G ∈ F , there exists δ > 0 such that
F �→ H(F) is linear on [G, G + δD] for every D ∈ D(G).

Proof: Let P = [P(x, y)]x∈X ,y∈Y be the joint probability
matrix of X and Y , and Q the diagonal matrix with q1, . . . , qN

as diagonal entries where qy = Pr(Y = y) for y ∈ Y . For G ∈
F let θ : D(G) → R be as defined in Lemma 4. The definition
of D(G) clearly implies that θ (D) > 0 for all D ∈ D(G).
For x ∈ X , z ∈ Z , and D ∈ D(G), consider the function
f (D)
x,z : R → R given by

f (D)
x,z (t) := [PG](x, z) + t[P D](x, z), (23)

where PG (resp., P D) is the product of matrices P
and G (resp., P and D). Note that P(G + t D) =∑

z∈Z maxx∈X f (D)
x,z (t) for all t ∈ [0, θ (D)] (see (6)). Let

az = max
x∈X

[PG](x, z),

Mz = {x ∈ X : [PG](x, z) = az}, and

b(D)
z = max

x∈Mz

[P D](x, z). (24)

Let t(D)
x,z := − az−[PG](x,z)

b(D)
z −[P D](x,z)

whenever [P D](x, z) �= b(D)
z , and

t(D)
x,z = ∞ otherwise. Notice that f (D)

x,z (t(D)
x,z ) = az + t(D)

x,z b(D)
z .

Since t(D)
x,z �= 0 for all x /∈ Mz ,

t(D) := min
z∈Z

min
x /∈Mz

min{|t(D)
x,z |, θ (D)} > 0.

It is easy to see that az + tb(D)
z = maxx∈X f (D)

x,z (t) for all
t ∈ [0, t(D)]. In particular,

P(G + t D) =
N+1∑

z=1

max
x∈X

f (D)
x,z (t) =

N+1∑

z=1

az + t
N+1∑

z=1

b(D)
z

= P(G) + tb(D), (25)

for every D ∈ D(G) and t ∈ [0, t(D)], where b(D) :=∑N+1
z=1 b(D)

z . Consequently, P is linear on [G, G + t(D)D].
By Lemma 4, θ : D(G) → R is continuous and bounded.
Hence, the map D �→ min{|t(D)

x,z |, θ (D)} (x /∈ Mz) is also
continuous. In particular, the map D �→ t(D) is continuous.
By compactness of D(G) established in Lemma 3, we con-
clude that δP := minD∈D(G) t(D) > 0. Thus, P is linear on
[G, G + δP D] for every D ∈ D(G).

For y ∈ Y , z ∈ Z , and D ∈ D(G), consider the function
g(D)

y,z : R → R given by

g(D)
y,z (t) = [QG](y, z) + t[QD](y, z).

Fig. 6. Typical functions f (D)
x,z (x = {1, 2, 3, 4}) for a given z ∈ Z and

D ∈ D(G). In this example, we have Mz = {3, 4} and az +tb(D)
z = f (D)

4,z (t).

Notice that t(D)
2,z = ∞ and t(D)

3,z = t(D)
4,z = 0.

Observe that U(G + t D) = ∑
z∈Z maxy∈Y g(D)

y,z (t) for all t ∈
[0, θ (D)] (see (6)). Similarly to (24), let

αz = max
y∈Y

[QG](y, z),

Nz = {y ∈ Y : [QG](y, z) = αz}, and

β(D)
z = max

y∈Nz

[QD](y, z).

Using a similar argument that resulted in (25), it can be shown
that there exists δU > 0 such that

U(G + t D) =
N+1∑

z=1

g(D)
yz,z(t) =

N+1∑

z=1

αz + t
N+1∑

z=1

β(D)
z

= U(G) + tβ(D), (26)

for every D ∈ D(G) and t ∈ [0, δU ], where β(D) :=∑N+1
z=1 β

(D)
z . Consequently, U is linear on [G, G + δU D] for

every D ∈ D(G). Therefore, F �→ H(F) = (P(F),U(F))
is linear on [G, G + δD] for every D ∈ D(G), where
δ = min(δP , δU ).

We say that a filter F ∈ F is optimal if U(F) = (P(F)).
If F is an optimal filter and P(F) = ε, we say that F
is optimal at ε. The following result is a straightforward
application of the concavity of , and thus its proof is omitted.

Lemma 6: For G ∈ F , let δ > 0 be as in Lemma 5. If there
exist D ∈ D(G) and 0 < t1 < t2 ≤ δ such that G, G + t1 D
and G + t2 D are optimal filters, then G + t D is an optimal
filter for each t ∈ [0, δ].

A function [Pc(X), Pc(X |Y )] � ε �→ Fε ∈ F is called a
path of optimal filters if P(Fε) = ε and U(Fε) = (ε) for
every ε ∈ [Pc(X), Pc(X |Y )]. As mentioned in Section II-A,
for every ε there exists Fε such that P(Fε) = ε and U(Fε) =

(ε), i.e., a path of optimal filters always exists. In the rest
of this section we establish the existence of a piecewise linear
path of optimal filters.

Lemma 7: For every ε ∈ [Pc(X), Pc(X |Y )), there exists
Fε ∈ F and D ∈ D(Fε) such that Fε is an optimal filter at ε,
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P(Fε + δD) > ε, and Fε + t D is an optimal filter for each
t ∈ [0, δ] with δ > 0 as in Lemma 5 for Fε .

Proof: Let K = 2(Pc(X |Y ) − ε)−1. For every n, m > K ,
let Gn,m be an optimal filter at ε + 1

n + 1
m . For every n > K ,

the set {Gn,m : m > K } is an infinite set. Since F is compact,
{Gn,m : m > K } has at least one accumulation point, say Gn .
Let (Gn,mk )k≥1 ⊂ {Gn,m : m > K } be a subsequence with
limk Gn,mk = Gn . By continuity of P , U , and , we have that

P(Gn) = lim
k→∞P(Gn,mk ) = ε + 1

n
,

U(Gn) = lim
k→∞U(Gn,mk ) = lim

k→∞ (P(Gn,mk )) = (P(Gn)),

i.e., Gn is an optimal filter at ε + 1
n . By the same arguments

as before, the set {Gn : n > K } has at least one accumulation
point, say Fε , and this accumulation point is an optimal filter
at ε. Let δ > 0 be as in Lemma 5 for Fε . By construction
of Fε , there exists n1 > K such that �Gn1 − Fε� < δ

2 . The
filter Gn1 can be written as Gn1 = Fε + t1 D1 with t1 ∈ (0, δ

2 )
and D1 ∈ D(Fε). Recall that, by (25) and (26), for every
D ∈ D(Fε) and t ∈ [0, δ],
P(Fε+t D) = ε + tb(D) and U(Fε + t D) = (ε) + tβ(D).

Notice that the maps D �→ b(D) and D �→ β(D) are
continuous. Since P(Gn1) = ε + 1

n1
> ε, we conclude that

b(D1) > 0 and, in particular, P(Fε + δD1) > ε.
Let (Gn1,mk )k≥1 ⊂ {Gn1,m : m > K } be such that

limk Gn1,mk = Gn1 . For k large enough, we can write
Gn1,mk = Fε + θk Ek with θk ∈ [0, δ] and Ek ∈ D(Fε). Since
θk → t1 and Ek → D1 as k → ∞, there exists n2 > K such
that θn2 < δ

2 and |b(En2 ) − b(D1)| < b(D1)

2 . Let t2 := θn2 and
D2 := En2 . Clearly, t2 < δ

2 and 1
2 b(D1) < b(D2) < 2b(D1).

These inequalities yield P(Fε + δD1) > P(Fε + t2 D2) and
P(Fε +δD2) > P(Fε + t1 D1). Thus, there exist s1, s2 ∈ [0, δ]
such that P(Fε + t2 D2) = P(Fε + s1 D1) and P(Fε + t1 D1) =
P(Fε + s2 D2). In particular,

ε + t2b(D2) = ε + s1b(D1) and ε + t1b(D1) = ε + s2b(D2).

(27)

By the optimality of Gn1 = Fε + t1 D1 and Gn1,mn2
=

Fε + t2 D2,

U(Fε + t2 D2) = (ε) + t2β
(D2)

≥ (ε) + s1β
(D1) = U(Fε + s1 D1),

and

U(Fε + t1 D1) = (ε) + t1β
(D1)

≥ (ε) + s2β
(D2) = U(Fε + s2 D2).

By the equations in (27), the above inequalities are in fact
equalities. In particular, Fε , Fε + t1 D1 and Fε + s1 D1 are
optimal filters. Invoking Lemma 6, we conclude that Fε + t D1
is an optimal filter for all t ∈ [0, δ].

Using an analogous proof, we can also prove the following
lemma.

Lemma 8: For every ε ∈ (Pc(X), Pc(X |Y )], there exists
Fε ∈ F and D ∈ D(Fε) such that Fε is an optimal filter

at ε, P(Fε + δD) < ε, and Fε + t D is an optimal filter for
each t ∈ [0, δ] with δ > 0 as in Lemma 5 for Fε .

We are in position to prove Theorem 1.
Proof of Theorem 1: For notational simplicity, we define

S := Pc(X) and T := Pc(X |Y ). In light of Lemmas 7 and 8,
for every ε ∈ (S, T ) there exist optimal filters Fε and Gε at ε,
δε > 0, Dε ∈ D(Fε), and Eε ∈ D(Gε) such that Fε + t Dε and
Gε + t Eε are optimal filters for each t ∈ [0, δε], and P(Gε +
δε Eε) < ε < P(Fε + δε Dε). Note that δε = min{δFε , δGε },
where δFε and δGε are the constants obtained in Lemma 5
for filters Fε and Gε, respectively. For every ε ∈ (S, T ),
let Vε = (P(Fε + δε Eε),P(Gε + δε Dε)). Similarly, there
exist

a) an optimal filter FS at S, δS > 0, and DS ∈ D(FS) such
that FS + t DS is an optimal filter for each t ∈ [0, δS] and
P(FS + δS DS) > S;

b) an optimal filter GT at T , δT > 0, and ET ∈ D(GT ) such
that GT + t ET is an optimal filter for each t ∈ [0, δT ]
and P(GT + δT ET ) < T .

Let VS = [S,P(FS + δS DS)) and VT = (P(GT + δT ET ), T ].
The family {Vε : ε ∈ [S, T ]} forms an open cover of [S, T ]
(in the subspace topology). By compactness, there exist S =
ε0 < · · · < εl = T such that {Vε0, . . . , Vεl } forms an open
cover for [S, T ]. For each i ∈ {0, . . . , l − 1}, the mapping

[εi ,P(Fεi + δεi Dεi )) � ε �→ Fεi + ε − εi

b(Dεi )
Dεi ∈ F , (28)

is clearly linear. Similarly, for each i ∈ {1, . . . , l}, the mapping

(P(Gεi + δεi Eεi ), εi ] � ε �→ Gεi + ε − εi

b(Eεi )
Eεi ∈ F , (29)

is also linear. Notice that P
(

Fεi + ε−εi

b(Dεi ) Dεi

)
= ε =

P
(

Gεi + ε−εi

b(Eεi ) Eεi

)
. Since {Vε0, . . . , Vεl } forms an open

cover for [S, T ], the mappings in (28) and (29) implement
a piecewise linear path of optimal filters.

The proof provided in this appendix establishes the exis-
tence of δ∗ > 0, an optimal filter F∗ at T := Pc(X |Y ), and
D∗ ∈ D(F∗) such that P(F∗ + δ∗D∗) < T (or equivalently
b(D∗) < 0) and

(ε) = 1 + (ε − T )
β(D∗)

b(D∗) ,

for every ε ∈ [T + δ∗b(D∗), T ]. This then implies that


(T ) = min
F∈F

P(F)=T

min
D∈D(F)

b(D)<0

β(D)

b(D)
. (30)

APPENDIX B
PROOF OF PROPOSITION 1

Since X is uniformly distributed in {1, . . . , M},

− log Pc(X) = log M = H (X).
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By the definition of I∞(X; Z), we have that

I∞(X; Z) = log

(
Pc(X |Z)

Pc(X)

)

= H (X) + log

⎛

⎝
∑

z∈Z
PZ (z) max

x∈X
PX |Z (x |z)

⎞

⎠

≥ H (X) +
∑

z∈Z
PZ (z) max

x∈X
log PX |Z (x |z),

where the inequality follows from Jensen’s inequality. Clearly,
for each z ∈ Z ,

max
x∈X

log PX |Z (x |z) ≥
∑

x∈X
PX |Z (x |z) log PX |Z (x |z)

= −H (X |Z = z).

Therefore,

I∞(X; Z) ≥ H (X) −
∑

z∈Z
PZ (z)H (X |Z = z) = I (X; Z).

Since I∞(X; Z) = 0, we conclude that I (X; Z) = 0 and
thus X⊥⊥Z .

APPENDIX C
PROOF OF THEOREM 2

We first note that since is concave on [Pc(X), Pc(X |Y )],
its right derivative exists at ε = Pc(X |Y ). Therefore, we have
by concavity

(ε) ≤ 1 − (Pc(X |Y ) − ε) 
(Pc(X |Y )), (31)

for all ε ∈ [p, Pc(X |Y )]. In Lemma 9 below, we show that


(Pc(X |Y )) = q

β̄ p − α p̄
1{αᾱ p̄2<ββ̄ p2}

+ q̄

ᾱ p̄ − βp
1{αᾱ p̄2≥ββ̄ p2}.

Thus, (31) becomes

(ε) ≤
{

1 − ζ(ε)q, αᾱ p̄2 < ββ̄ p2,

1 − ζ̃ (ε)q̄, αᾱ p̄2 ≥ ββ̄ p2.
(32)

To finish the proof of Theorem 2 we show that the Z-channel
Z(ζ(ε)) and the reverse Z-channel Z̃(ζ̃ (ε)) achieve (31) and
(32), when αᾱ p̄2 < ββ̄ p2 and αᾱ p̄2 ≥ ββ̄ p2, respectively.

For αᾱ p̄2 < ββ̄ p2, consider the filter

PZ |Y =
[

1 0
ζ(ε) 1 − ζ(ε)

]
.

Notice that

PX Z =
[

p̄(ᾱ + αζ(ε)) p̄α(1 − ζ(ε))

p(β + β̄ζ(ε)) pβ̄(1 − ζ(ε))

]
, and

PY Z =
[

q̄ 0
qζ(ε) q(1 − ζ(ε))

]
. (33)

It is straightforward to verify that p̄(ᾱ + αζ(ε)) ≥
p(β + β̄ζ(ε)). As a consequence, Pc(X |Z) = ε. Since
αᾱ p̄2 < ββ̄ p2, we have that q̄

q > ζ(ε). Thus, Pc(Y |Z) =
1 − ζ(ε)q .

For αᾱ p̄2 ≥ ββ̄ p2, consider the filter

PZ |Y =
[

1 − ζ̃ (ε) ζ̃ (ε)
0 1

]
.

Notice that

PX Z =
[

p̄ᾱ(1 − ζ̃ (ε)) p̄(α + ᾱζ̃ (ε))

pβ(1 − ζ̃ (ε)) p(β̄ + βζ̃ (ε))

]
, and

PY Z =
[

q̄(1 − ζ̃ (ε)) q̄ ζ̃ (ε)
0 q

]
. (34)

Recall that ᾱ p̄ > βp and also observe that p(β̄ + βζ̃ (ε)) ≥
p̄(α + ᾱζ̃ (ε)). As a consequence, Pc(X |Z) = ε. The fact that
αᾱ p̄2 ≥ ββ̄ p2 implies q ≥ q̄ ζ̃ (ε). Therefore, Pc(Y |Z) =
1 − ζ̃ (ε)q̄ .

Lemma 9: Let X ∼ Bernoulli(p) with p ∈ [ 1
2 , 1)

and PY |X ∼ BIBO(α, β) with α, β ∈ [0, 1
2 ) such that

ᾱ p̄ > βp. Then 
(Pc(X |Y )) = q
β̄ p−α p̄

1{αᾱ p̄2<ββ̄ p2} +
q̄

ᾱ p̄−βp 1{αᾱ p̄2≥ββ̄ p2}.
Proof: As before, let T := Pc(X |Y ). We begin the

proof by noticing that the Z-channels defined in (33) and (34)
provide a lower bound on (ε) as follows:

(ε) ≥ 1 − ζ(ε)q1{αᾱ p̄2<ββ̄ p2} − ζ̃ (ε)q̄1{αᾱ p̄2≥ββ̄ p2}. (35)

By concavity of , this inequality implies


(T ) ≤ q

β̄ p − α p̄
1αᾱ p̄2<ββ̄ p2 + q̄

ᾱ p̄ − βp
1αᾱ p̄2≥ββ̄ p2 .

The rest of the proof is devoted to establishing the reverse
inequality. To this end, we use the variational formula for


(T ) given in (30). Let P = [P(x, y)]x,y∈{0,1} be the joint
probability matrix of X and Y . Without loss of generality we
can assume Z = {z1, z2, z3}. It follows from (25) and (26)
that for every F ∈ F ⊂ M2×3 there exists δ > 0 such that

P(F + t D) = P(F) + tb(D), and

U(F + t D) = U(F) + tβ(D), (36)

for every t ∈ [0, δ] and D ∈ D(F), where
b(D) = ∑3

i=1 maxx∈Mzi
[P D](x, zi ) and β(D) =∑3

i=1 maxy∈Nzi
q(y)D(y, zi ) with

Mzi =
{

x ∈ {0, 1} : (P F)(x, zi ) = max
x 
∈{0,1}

(P F)(x 
, zi )
}
,

Nzi =
{

y ∈ {0, 1} : q(y)F(y, zi) = max
y
∈{0,1}

q(y 
)F(y 
, zi )
}
.

Up to permutation of columns, which corresponds to per-
muting the elements of Z , the set of filters F ∈ F such that
P(F) = T equals
{[

1 0 0
0 u v

]
: 0 < v ≤ u

u + v = 1

} ⋃ {[
0 u v
1 0 0

]
: 0 < v ≤ u

u + v = 1

}

⋃ {[
1 0 0
0 1 0

]}
. (37)

To compute 
(T ) using formula (30) we need to compute
β(D) and b(D) for each D ∈ D(F) with F of the form
described in (37).



ASOODEH et al.: ESTIMATION EFFICIENCY UNDER PRIVACY CONSTRAINTS 1525

Let F =
[

1 0 0
0 u v

]
for some 0 < v ≤ u and u + v = 1.

A direct computation shows that

P F =
[
ᾱ p̄ uα p̄ vα p̄
βp uβ̄ p vβ̄ p

]
. (38)

In particular, Mz1 = {0}, Mz2 = {1}, and Mz3 = {1}. For
every D ∈ D(F), the matrix P D is equal to
[
ᾱ p̄D11 + α p̄D21 ᾱ p̄D12 + α p̄D22 ᾱ p̄D13 + α p̄D23

βpD11 + β̄ pD21 βpD12 + β̄ pD22 βpD13 + β̄ pD23

]
,

and hence b(D) = ᾱ p̄D11 + α p̄D21 + βpD12 + β̄ pD22 +
βpD13 + β̄ pD23. Notice that, for 1 ≤ i ≤ 3, we have that
Di1 + Di2 + Di3 = 0. In particular, b(D) = (ᾱ p̄ − βp)D11 +
(α p̄ − β̄ p)D21. Consider the matrices,

[
q̄ 0
0 q

]
F =

[
q̄ 0 0
0 qu qv

]
,

and
[

q̄ 0
0 q

]
D =

[
q̄ D11 q̄ D12 q̄ D13
q D21 q D22 q D33

]
,

from which we obtain Nz1 = {0}, Nz2 = {1}, Nz3 = {1}, and
therefore, β(D) = q̄ D11 + q D22 + q D23 = q̄ D11 − q D21. In
what follows we use the simple fact that ax+y

bx+y ≥ min
{ a

b , 1
}

for a, b > 0 and x, y ≥ 0 with x + y > 0. For notational
simplicity, let η := q̄

q and ζ := ζ(p), where ζ(·) is defined
in (8).

From the form of F , it is clear that −D11 ≥ 0 and D21 ≥ 0.
If b(D) < 0, then D11 and D21 cannot be simultaneously zero,
and hence

β(D)

b(D)
= q

β̄ p − α p̄

−ηD11 + D21

−ζ D11 + D21

≥ q

β̄ p − α p̄
min

{
η

ζ
, 1

}

=
{ q

β̄ p−α p̄
, αᾱ p̄2 < ββ̄ p2,

q̄
ᾱ p̄−βp , αᾱ p̄2 ≥ ββ̄ p2.

In particular, we obtain that

min
D∈D(F)

b(D)<0

β(D)

b(D)
≥
{ q

β̄ p−α p̄
, αᾱ p̄2 < ββ̄ p2,

q̄
ᾱ p̄−βp , αᾱ p̄2 ≥ ββ̄ p2.

(39)

The case F =
[

0 u v
1 0 0

]
for 0 < v ≤ u and u + v = 1 is

analogous.

Now, let F =
[

1 0 0
0 1 0

]
. By (38) with u = 1 and v = 0,

we obtain that Mz1 = {0}, Mz2 = {1}, and Mz3 = {0, 1}.
In a similar way, Nz1 = {0}, Nz2 = {1}, and Nz3 = {0, 1}.
Hence

b(D) = ᾱ p̄D11 + α p̄D21 + βpD12 + β̄ pD22

+ max{ᾱ p̄D13 + α p̄D23, βpD13 + β̄ pD23},
β(D) = q̄ D11 + q D22 + max{q̄ D13, q D23}.

We therefore need to consider the following cases:

Case I: ᾱ p̄D13 + α p̄D23 ≤ βpD13 + β̄ pD23 and q̄ D13 ≤
q D23. The computation in this case reduces to the

computation for F =
[

1 0 0
0 u v

]
.

Case II: ᾱ p̄D13 + α p̄D23 ≤ βpD13 + β̄ pD23 and q̄ D13 >
q D23. Notice that these conditions imply that ζ D13 ≤
D23 < ηD13, and therefore this case requires ζ < η
(or equivalently, αᾱ p̄2 < ββ̄ p2). This yields

b(D) = (ᾱ p̄ − βp)D11 + (α p̄ − β̄ p)D21,

and

β(D) = q D22 − q̄ D12.

Hence, we have

β(D)

b(D)
= q

β̄ p − α p̄

D22 − ηD12

ζ D11 − D21
.

By the form of F , we have that −D11, D12, D21 ≥ 0.
The inequalities ζ < η and ζ D13 ≤ D23 imply that
D22−ηD12
ζ D11−D21

≥ 1, and hence

β(D)

b(D)
≥ q

β̄ p − α p̄
1{αᾱ p̄2<ββ̄ p2}. (40)

Case III: ᾱ p̄D13 + α p̄D23 > βpD13 + β̄ pD23 and
q̄ D13 ≤ q D23. Notice that these conditions imply that
ηD13 ≤ D23 < ζ D13, and hence this case requires
ζ > η (or equivalently, αᾱ p̄2 > ββ̄ p2). In this case,
we have

b(D) = (βp − ᾱ p̄)D12 + (β̄ p − α p̄)D22,

and

β(D) = q̄ D11 − q D21.

Therefore,

β(D)

b(D)
= q̄

ᾱ p̄ − βp

D11 − η−1 D21

−D12 + ζ−1 D22
.

By the form of F , we have that −D22, D12, D21 ≥ 0.
The inequalities ζ−1 < η−1 and ζ D13 > D23 imply
that D11−η−1 D21

−D12+ζ−1 D22
> 1, and hence

β(D)

b(D)
>

q̄

ᾱ p̄ − βp
1{αᾱ p̄2>ββ̄ p2}. (41)

Case IV: ᾱ p̄D13 + α p̄D23 > βpD13 + β̄ pD23 and q̄ D13 >
q D23. Notice that these two inequalities imply that
D23 < min{ζ, η}D13. For this case we have that

b(D) = (βp − ᾱ p̄)D12 + (β̄ p − α p̄)D22,

and

β(D) = q D22 − q̄ D12.

Hence, we have

β(D)

b(D)
= q

β̄ p − α p̄

ηD12 − D22

ζ D12 − D22
.
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By the form of F , we have that −D22, D12 ≥ 0.
As before, we conclude that

β(D)

b(D)
≥ q

β̄ p − α p̄
min

{
η

ζ
, 1

}

=
{ q

β̄ p−α p̄
, αᾱ p̄2 < ββ̄ p2,

q̄
ᾱ p̄−βp , αᾱ p̄2 ≥ ββ̄ p2.

(42)

Combining (39), (40), (41), and (42), we obtain

min
F∈F

P(F)=T

min
D∈D(F)

b(D)<0

β(D)

b(D)
≥
{

q
β̄ p−α p̄

, αᾱ p̄2 < ββ̄ p2,
q̄

ᾱ p̄−βp , αᾱ p̄2 ≥ ββ̄ p2,

as desired.

APPENDIX D
PROOF OF THEOREM 3

Recall that X = {1, . . . , M} and Y = Z = {1, . . . , N},
P = [P(x, y)](x,y)∈X×Y is the joint probability matrix of
X and Y , and the marginals are pX (x) = Pr(X = x) and
qY (y) = Pr(Y = y) for every x ∈ X and y ∈ Y . Similar to ,
the function admits the alternative formulation

(ε) = sup
F∈F : P(F)≤ε

U(F),

where F is the set of all stochastic matrices F ∈ MN×N ,

P(F) =
∑

z∈Z
max
x∈X

(P F)(x, z),

and

U(F) =
∑

z∈Z
max
y∈Y

qY (y)F(y, z).

We let D = {D ∈ MN×N : �D� = 1} and, for each F ∈ F ,
we define

D(F) := {
D ∈ D : F + t D ∈ F for some t > 0

}
.

Before proving Theorem 3, we need to establish some tech-
nical lemmas. Notice that the proofs of Lemmas 3 and 5 do
not depend on the alphabets X , Y , and Z . Therefore, D(F)
is compact for any F ∈ F and also we obtain the following
lemma.

Lemma 10: Let H : F → [0, 1] × [0, 1] be the mapping
given by H(F) = (P(F),U(F)). For every F ∈ F , there
exists δ > 0 such that H is linear on [F, F + δD] for every
D ∈ D(F).

The convex analysis tools used to study heavily rely on
the fact that |Z| = |Y|+1. Hence, they are unavailable in this
case, and thus we need an alternative approach to establish the
desired functional properties of .

Lemma 11: If Pc(X) < Pc(X |Y ), then is continuous at
Pc(X |Y ).

Proof: Without loss of generality, we will assume that
qY (1) > 0. Let D∗ ∈ D(IN ) be given by

D∗ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
λ −λ 0 · · · 0
λ 0 −λ · · · 0
...

...
...

. . .
...

λ 0 0 · · · −λ

⎤
⎥⎥⎥⎥⎥⎦

,

where λ = (2(N − 1))−1/2. As in the proof of Lemma 5, one
can show that there exist δ1 > 0 and (xz)z∈Z ⊂ X such that
for every t ∈ [0, δ1],

P(IN + t D∗) =
∑

z∈Z
max
x∈X

(P(IN + t D∗))(x, z)

=
∑

z∈Z
(P(IN + t D∗))(xz, z). (43)

In this case, we have that

P(IN + t D∗) = P(x1, 1) + tλ
N∑

z=2

P(x1, z)

+ (1 − tλ)

N∑

z=2

P(xz, z)

=
∑

z∈Z
P(xz, z)

− tλ

⎛

⎝
∑

z∈Z
P(xz, z) − P(x1, z)

⎞

⎠ .

Note that Pc(X |Y ) = P(IN ) = ∑
z∈Z P(xz , z). Hence,

P(IN + t D∗) = Pc(X |Y ) − tλσ, (44)

where σ = ∑
z∈Z(P(xz, z)− P(x1, z)). Setting t = 0 in (43),

we have that P(xz , z) ≥ P(x, z) for all (x, z) ∈ X × Z .
If P(xz, z) = P(x1, z) for all z ≥ 1, then

Pc(X |Y ) =
∑

z∈Z
P(x1, z) = pX (x1) ≤ Pc(X),

which contradicts the hypothesis of the lemma. Therefore,
there exists z ∈ Z such that P(xz , z) > P(x1, z) and hence
σ > 0. Similarly, there exists δ2 > 0 such that for every
t ∈ [0, δ2],

U(IN + t D∗) = qY (1) + (1 − tλ)

N∑

z=2

qY (z)

= 1 − tλ(1 − qY (1)). (45)

Let δ = min(δ1, δ2). From (44) and (45), we have for every
t ∈ [0, δ]

1 − tλ(1 − qY (1)) ≤ (Pc(X |Y ) − tλσ) ≤ 1. (46)

In particular,

lim
ε→Pc(X |Y )

(ε) = lim
t→0

(Pc(X |Y ) − tλσ) = 1 = (Pc(X |Y )),

i.e., is continuous at Pc(X |Y ).
We say that F ∈ F is an optimal filter at ε if U(F) =
(ε) and P(F) ≤ ε. As opposed to , the concavity of

is unknown and hence the existence of an optimal filter at ε
with P(F) = ε is not immediate. Nonetheless, since P and
U are continuous functions, there exists an optimal filter F at
ε (with P(F) ≤ ε) for every ε ∈ [Pc(X), Pc(X |Y )]. For any
F ∈ F and δ > 0, let B(F, δ) = {G ∈ F : �G − F� < δ}.

Lemma 12: Let δ > 0 be as in Lemma 10 for IN , i.e., U
and P are linear on [IN , IN + δD] for every D ∈ D(IN ).
If Pc(X) < Pc(X |Y ) and qY (y) > 0 for all y ∈ Y , then there



ASOODEH et al.: ESTIMATION EFFICIENCY UNDER PRIVACY CONSTRAINTS 1527

exists εL < Pc(X |Y ) such that for every ε ∈ [εL, Pc(X |Y )]
there exists an optimal filter Fε at ε with Fε ∈ B(IN , δ).

Proof: Let F1 = {F ∈ F : U(F) = 1} and let B =⋃
F∈F1 B(F, δ). The proof is based on the following claim.
Claim. There exists εL < Pc(X |Y ) such that if F is an

optimal filter at ε with ε ≥ εL, then F ∈ B.
Proof of the claim. The proof is by contradiction. Assume

that for every ε < Pc(X |Y ) there exists an optimal
filter Gε
 at ε
 ∈ [ε, Pc(X |Y )) with Gε
 /∈ B. Since
is a non-decreasing function, we have that U(Gε
) =

(ε
) ≥ (ε). Let K := (Pc(X |Y ) − Pc(X))−1. For
each n > K , let Fn = GPc(X |Y )−1/n �∈ B. Since F\B
is compact, there exist {n1 < n2 < · · · } and F ∈ F\B
such that Fnk → F as k → ∞. By continuity of U
and at Pc(X |Y ), established in Lemma 11, we have

1 ≥ U(F) = lim
k→∞U(Fnk )

≥ lim
k→∞ (Pc(X |Y ) − n−1

k ) = (Pc(X |Y )) = 1.

In particular, we have that F ∈ F1 ⊂ B, which
contradicts the fact that F ∈ F\B.

The assumption qY (y) > 0 for every y ∈ Y implies that
F ∈ F1 if and only if F is a permutation matrix, i.e., F can
be obtained by permuting the columns of IN . In particular,
the mapping G �→ G F−1 is a bijection between B(F, δ) and
B(IN , δ) which preserves P and U , i.e., P(G) = P(G F−1)
and U(G) = U(G F−1) for every G ∈ B(F, δ). As men-
tioned earlier, there exists an optimal filter Fε at ε for every
ε ∈ [Pc(X), Pc(X |Y )]. By the claim, Fε , for ε ≥ εL,
belongs to B and, in particular, Fε ∈ B(F, δ) for some
F ∈ F1. By the aforementioned properties of the bijection
G �→ G F−1, the filter Fε F−1 is an optimal filter at ε with
Fε F−1 ∈ B(IN , δ).

Now we are in position to prove Theorem 3.
Proof of Theorem 3: If qY (y) = 0 for some y ∈ Y ,

the effective cardinality of the alphabet of Y is |Y|−1 and thus
(ε) equals (ε) for every ε ∈ [Pc(X), Pc(X |Y )]. In this case,
is piecewise linear and (9) follows trivially by Theorem 1.

In what follows, we assume that qY (y) > 0 for all y ∈ Y .
Let δ > 0 and ε


L < Pc(X |Y ) be as in Lemma 12. For
each ε ∈ [ε


L, Pc(X |Y )), let Gε be an optimal filter at ε with
Gε ∈ B(IN , δ) whose existence was established in Lemma 12.
Let tε ∈ [0, δ] and Dε ∈ D(IN ) be such that Gε = IN + tε Dε

for every ε ∈ [ε

L, Pc(X |Y )). As in (25) and (26) in the proof

of Lemma 5, for every t ∈ [0, δ] and D ∈ D(IN ),

P(IN + t D) = Pc(X |Y ) + tb(D)

U(IN + t D) = 1 + tβ(D), (47)

where

b(D) =
∑

z∈Z
max

x∈Mz

(P D)(x, z)

β(D) =
∑

z∈Z
q(z)D(z, z), (48)

where Mz = {x ∈ X : P(x, z) ≥ P(x 
, z) for all x 
 ∈ X }.
Since P(F) ≤ Pc(X |Y ) for all F ∈ F , it is immediate that
b(D) ≤ 0 for every D ∈ D(IN ). Moreover, since P(Gε) ≤ ε,

we have that b(Dε) < 0 for all ε ∈ [ε

L, Pc(X |Y )). By definition

of D(IN ), it is clear that if D ∈ D(IN ), then we have
D(y, y) ≤ 0 for all y ∈ Y , which together with the fact that
�D� = 1 for all D ∈ D(IN ), implies that β(D) < 0 for all
D ∈ D(IN ). We first establish the following intuitive claim.

Claim. Let ε

L < Pc(X |Y ) be as defined in Lemma 12.

Then, there exists an optimal filter Gε at ε for each
ε ∈ [ε


L, Pc(X |Y )] such that P(Gε) = ε and U(Gε) = (ε).
Proof of Claim. The filter Gε = IN + tε Dε is optimal at ε

for every ε ∈ [ε

L, Pc(X |Y )). To reach contradiction,

assume that there exists ε0 < ε such that P(Gε) = ε0.
According to (47), we obtain Pc(X |Y ) + tεb(Dε) =
ε0 < ε and hence

tε >
Pc(X |Y ) − ε

−b(Dε)
=: t 
.

Now consider the filter IN +t 
 Dε . Since t 
 ≤ δ, we have
from (47) that P(IN + t 
 Dε) = ε and

(ε)
(a)= 1 + tεβ

(Dε)
(b)
< U(IN + t 
Dε) = 1 + t 
β(Dε),

where (a) is due to the optimality of Gε and (b) fol-
lows from the negativity of β(Dε). The above inequality
contradicts the maximality of (ε). This implies that
P(Gε) = ε which, according to (47), yields

(ε) = 1 − (Pc(X |Y ) − ε)
β(Dε)

b(Dε)
, (49)

for all ε ∈ [ε

L, Pc(X |Y )).

Now fix ε
 ∈ [ε

L, Pc(X |Y )] with ε ≤ ε
. On the one hand,

according to (49), we know that

(ε
) = 1 − (Pc(X |Y ) − ε
)
β(Dε
)

b(Dε
)
. (50)

On the other hand, we obtain from (47) that 0 ≤ Pc(X |Y )−ε

−b(Dε) ≤

tε and hence

P
(

IN + Pc(X |Y ) − ε


−b(Dε)
Dε

)
= ε
, (51)

U
(

IN + Pc(X |Y ) − ε


−b(Dε)
Dε

)
= 1 − (Pc(X |Y ) − ε
)β

(Dε)

b(Dε)
.

(52)

Comparing (50) and (52), we conclude that

1−(Pc(X |Y )−ε
)
β(Dε
)

b(Dε
)
= (ε
)≥1 − (Pc(X |Y ) − ε
)

β(Dε)

b(Dε)
,

and hence the function ε �→ β(Dε)

b(Dε) is non-increasing

over [ε

L, Pc(X |Y )). Therefore, since β(Dε)

b(Dε) > 0, the limit

limε→Pc(X |Y )−
β(Dε)

b(Dε) =: A exists.
Let K = (Pc(X |Y ) − ε


L)−1. For each n > K , let Fn =
GPc(X |Y )− 1

n
. Write Fn = IN + tn Dn with tn ∈ [0, δ] and

Dn ∈ D(IN ). Since D(IN ) is compact, there exist {n1 < n2 <
· · · } and D∗ ∈ D(IN ) such that Dnk → D∗ as k → ∞.
By continuity of the mappings D �→ b(D) and D �→ β(D),
we have that b(Dnk ) → b(D∗) and β(Dnk ) → β(D∗) as k → ∞.

Claim. We have that b(D∗) < 0 and, in particular,

A = β(D∗)

b(D∗) .
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Proof of Claim. Recall that F ∈ F1 if and only if F is
a permutation matrix. In particular, F1 is finite with
|F1| = N !. Recall that b(D∗) ≤ 0. Assume that

b(D∗) = 0. Since β(Dnk )

b(Dnk ) → A ∈ [0,∞) and b(Dnk ) →
b(D∗) = 0 as k → ∞, we have that β(Dnk ) → 0 and
hence β(D∗) = 0. This implies that U(IN + t D∗) = 1
for all t ∈ [0, δ], i.e., IN + t D∗ ∈ F1 for all t ∈ [0, δ].
This contradicts the fact that F1 is finite.

The claim implies that for ε ∈ [Pc(X |Y ) + δb(D∗), Pc(X |Y )],
P
(

IN + Pc(X |Y ) − ε

−b(D∗) D∗
)

= ε,

U
(

IN + Pc(X |Y ) − ε

−b(D∗) D∗
)

= 1 − (Pc(X |Y ) − ε)A.

Recall that β(D∗)

b(D∗) = A ≤ β(Dε)

b(Dε) for all ε ∈ [ε

L, Pc(X |Y )).

Let εL := max{ε

L, Pc(X |Y ) + δb(D∗)}. Then for all ε ∈

[εL, Pc(X |Y )]

(ε) ≥ 1 − (Pc(X |Y ) − ε)
β(D∗)

b(D∗)

≥ 1 − (Pc(X |Y ) − ε)
β(Dε)

b(Dε)
= (ε), (53)

where the equality follows from (49). This proves that is
linear on ε ∈ [εL, Pc(X |Y )].

Recall that β(D) < 0 for all D ∈ D(IN ). Clearly, (53)
implies that


(Pc(X |Y )) = min
D∈D(IN )

β(D)

b(D)
. (54)

If b(D) = 0 for some D ∈ D(IN ), the term β(D)

b(D) is defined to
be +∞. Notice that this convention agrees with the fact that if
b(D) = 0 then D cannot be an optimal direction. Furthermore,

for every D
 ∈ D(IN ) such that 
(Pc(X |Y )) = β(D
)
b(D
) , there

exists εL < Pc(X |Y ) (depending on D
) such that

IN + Pc(X |Y ) − ε

−b(D
) D
 (55)

achieves (ε) for every ε ∈ [εL, Pc(X |Y )]. In addition,
assume that for each y ∈ Y there exists (a unique) xy ∈ X such
that PX |Y (xy|y) > PX |Y (x |y), for all x �= xy . In particular,
Mz = {xz} for every z ∈ Z and hence (48) becomes

b(D) =
∑

z∈Z
(P D)(xz , z) and β(D) =

∑

z∈Z
qY (z)D(z, z),

for every D ∈ D(IN ). Using the fact that
∑

z∈Z D(y, z) = 0
for all y ∈ Y , we obtain

b(D) = −
∑

y∈Y

∑

z �=y

(P(xy, y) − P(xz, y))D(y, z),

and

β(D) = −
∑

y∈Y

∑

z �=y

qY (y)D(y, z).

Therefore, for every D ∈ D(IN ),

β(D)

b(D)
=

∑
y∈Y

∑
z �=y qY (y)D(y, z)

∑
y∈Y

∑
z �=y(P(xy, y) − P(xz , y))D(y, z)

. (56)

Since
∑

k ak xk∑
k bk xk

≥ mink
ak
bk

for ak > 0 and bk, xk ≥ 0 with∑
k xk > 0, we obtain from (56) that for every D ∈ D(IN )

β(D)

b(D)
≥ min

(y,z)∈Y×Z
qY (y)

P(xy, y) − P(xz, y)
.

Equation (54) implies that


(Pc(X |Y )) ≥ min
(y,z)∈Y×Z

qY (y)

P(xy, y) − P(xz , y)
.

Assume that (y0, z0) attains the above minimum. We note that
one can easily show from (46) that 0 ≤ 
(ε) ≤ 1−qY (1)

σ < ∞,
for some σ > 0. Hence, we have y0 �= z0. Now, consider the
direction D∗ such that

D∗(y, z) =

⎧
⎪⎨

⎪⎩

λ, y = y0, z = z0

−λ, y = z = y0

0, otherwise,

where λ = 2−1/2. Equation (56) implies then that

β(D∗)

b(D∗) = qY (y0)

P(xy0, y0) − P(xz0 , y0)
,

and hence


(Pc(X |Y )) ≤ qY (y0)

P(xy0 , y0) − P(xz0 , y0)

= min
(y,z)∈Y×Z

qY (y)

P(xy, y) − P(xz, y)
.

As a consequence,


(Pc(X |Y )) = min
(y,z)∈Y×Z

qY (y)

P(xy, y) − P(xz , y)
.

Moreover, (55) implies that there exists ε
y0,z0
L < Pc(X |Y )

such that IN + Pc(X |Y )−ε
−b(D∗) D∗ achieves (ε) for every

ε ∈ [εy0,z0
L , Pc(X |Y )]. Note that

IN + Pc(X |Y ) − ε

−b(D∗) D∗ = Zy0,z0(ζ y0,z0(ε)),

where ζ y0,z0(ε) = Pc(X |Y )−ε
P(xy0 ,y0)−P(xz0 ,y0)

.

APPENDIX E
PROOF OF THEOREM 4

Let P = [P(xn, yn)]xn,yn∈{0,1}n denotes the joint probability
matrix of Xn and Y n and q(yn) = Pr(Y n = yn) for yn ∈
{0, 1}n . Let 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). We will
show that (Xn, Y n) satisfies the hypotheses of Theorem 3 with
y0 = 1 and z0 = 0.

Under the assumptions (a1) and (b), it is straightforward to
verify that

P(xn, yn) = (ᾱ p̄)n
n∏

k=1

(
p

p̄

)xk (α

ᾱ

)xk⊕yk
, (57)

for every xn, yn ∈ {0, 1}n . By assumption, Pc(Xn) = pn <
ᾱn = Pc(Xn |Y n). It is also straightforward to verify that
q(yn) > 0 for all y ∈ {0, 1}n. Since ᾱ p̄ > αp, we have
from (57) that

Pr(Xn = zn, Y n = zn) > Pr(Xn = xn, Y n = zn),
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for all xn �= zn . In the notation of Theorem 3, xn
zn = zn for

all zn ∈ {0, 1}n . Note that

min
yn,zn∈{0,1}n

q(yn)

P(xn
yn , yn) − P(xn

zn , yn)

= min
yn∈{0,1}n

q(yn)

P(yn, yn) − min
zn �=yn

P(zn, yn)
.

It is easy to show that minzn �=yn P(zn, yn) =
(αp)n ∏n

k=1

(
p
p̄

)−yk
and that the minimum is attained

by zn = (ȳ1, ȳ2, . . . , ȳn). As a consequence,

min
yn,zn∈{0,1}n

q(yn)

P(xn
yn , yn) − P(xn

zn , yn)

= min
yn∈{0,1}n

∑
xn∈{0,1}n

n∏
k=1

(
p
p̄

)xk−yk (α
ᾱ

)xk⊕yk

1 −
(

pα
p̄ᾱ

)n
�−2

yn

= min
yn∈{0,1}n

n∏
k=1

[
( p

p̄ )−yk (α
ᾱ )yk + ( p

p̄ )1−yk (α
ᾱ )1−yk

]

1 −
(

pα
p̄ᾱ

)n
�−2

yn

,

where �yn = ∏n
k=1

(
p
p̄

)yk
. Observe that the denominator is

maximized when yn = 1. Using the fact that p ≥ 1
2 ≥ p̄,

one can show that the numerator is minimized when yn = 1.
In particular,

min
yn,zn∈{0,1}n

q(yn)

P(xn
yn , yn) − P(xn

zn , yn)
= (α p̄ + ᾱ p)n

(ᾱ p)n − (α p̄)n
,

and the minimum is attained by (yn
0 , zn

0) = (1, 0).
Therefore (Xn, Y n) satisfies the hypotheses of Theorem 3

with (yn
0 , zn

0) = (1, 0). Thus, there exists ε

L < ᾱn such that

for every ε ∈ [ε

L, ᾱn ]

(ε) = 1 − ᾱn − ε

(ᾱ p)n − (α p̄)n
qn.

Moreover, Z1,0(ζ y0,z0(ε)) achieves (ε) for every
ε ∈ [ε


L, ᾱn ], where

ζ y0,z0(ε) = ᾱn − ε

(ᾱ p)n − (α p̄)n
.

Recall that (ε) = n
n(ε

1/n) and let εL = (ε

L)1/n . Therefore,

n
n(ε) = 1 − ζn(ε)qn for all ε ∈ [εL, ᾱ] which is attained by

the Z-channel Zn(ζn(ε)), where ζn(ε) := ζ y0,z0(εn).

APPENDIX F
PROOF OF PROPOSITION 2

For any privacy filter satisfying (12), (Xn, Zn) and (Y n, Zn)
are i.i.d. By Lemma 1, we have Pc(Xn |Zn) = (Pc(X |Z))n and
Pc(Y n|Zn) = (Pc(Y |Z))n where (X, Y, Z) has the common
distribution of {(Xk, Yk , Zk)}n

k=1. In particular,

i
n(ε) = sup

P1/n
c (Xn |Zn)≤ε

P1/n
c (Y n|Zn) = sup

Pc(X |Z)≤ε

Pc(Y |Z),

where the first supremum assumes (12) and the second supre-
mum is implicitly constrained to Z = {0, 1}. The result then
follows from Theorem 2.

APPENDIX G
PROOF OF COROLLARY 3

Assume that p > 1
2 . By Theorem 4, for every ε ∈ [εL, ᾱ]

we have n(ε) = [
Anε

n + Bn
]1/n , where An = qn

(ᾱp)n−(α p̄)n

and Bn = 1 − ᾱnqn

(ᾱp)n−(α p̄)n . In particular,



n(ε) = An

(
ε

n(ε)

)n−1

,




n(ε) = (n − 1)

An Bn
n+1
n (ε)

(
ε

n(ε)

)n−2

. (58)

Since p > 1
2 and α > 0, we have Bn → 1 as n → ∞. Let

N0 ≥ 1 be such that Bn ≥ 0 for all n ≥ N0. In this case,
we have that 



n(ε) ≥ 0 for all ε ∈ [εL, ᾱ] and n ≥ N0.
In particular, n is convex on [εL, ᾱ]. As a consequence, for
all ε ∈ [εL, ᾱ] and n ≥ N0

n(ε) ≥ 1 − (ᾱ − ε) 

n(ᾱ).

Since i
n(ε) = 1(ε) = 1 − (ᾱ − ε) 


1(ᾱ) for all ε ∈ [p, ᾱ],
the above inequality implies that

n(ε) − i
n(ε) ≥ (ᾱ − ε)( 


1(ᾱ) − 

n(ᾱ))

for all ε ∈ [εL, ᾱ] and n ≥ N0. The result follows from (58).
Now, assume that p = 1

2 . In this case, we have for all
ε ∈ [εL, ᾱ]

n(ε) =
(

εn − αn

ᾱn − αn

)1/n

and i
n(ε) = ε − α

ᾱ − α
.

Let �n : [ 1
2 , ᾱ] → R be given by �n(ε) = n(ε) − i

n(ε).
Claim. The function �n is decreasing on [ 1

2 , ᾱ].
Proof of Claim. We shall show that �


n(ε) ≤ 0 for all ε ∈
[ 1

2 , ᾱ]. A straightforward computation shows that

�

n(ε) = 1

[
1 − (

α
ε

)n](n−1)/n

1

[ᾱn − αn]1/n
− 1

ᾱ − α
.

This function is clearly decreasing, and so it is enough
to show that �


n( 1
2 ) ≤ 0. Note that �


n( 1
2 ) ≤ 0 if and

only if
(
1 − α

ᾱ

)n

1 − (
α
ᾱ

)n ≤ [1 − (2α)n]n−1. (59)

Observe that (1− α
ᾱ )n

1−( α
ᾱ )n ≤ (

1 − α
ᾱ

)n−1. Using the fact

that 4αᾱ ≤ 1, it is straightforward to verify that (59)
holds.

Since �n is decreasing over [ 1
2 , ᾱ], we obtain for all

ε ∈ [εL, ᾱ]

0 ≤ n(ε) − i
n(ε) ≤ �n

(
1

2

)
= 1

2

[(
1 − (2α)n

ᾱn − αn

)1/n

− 1

]
.

Since 1 − (2α)n ≤ 1 − (α
ᾱ

)n , it is straightforward to show that
�n
( 1

2

) ≤ α
2ᾱ , which completes the proof.
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APPENDIX H
PROOF OF THEOREM 5

As before, let P = [P(xn, yn)]xn,yn∈{0,1}n denote the joint
probability matrix of Xn and Y n and let q(yn) = Pr(Y n = yn)
for yn ∈ {0, 1}n. We first show that (Xn, Y n) satisfies the
hypotheses of Theorem 3, and thus we can use (10) to obtain
bounds on 
(Pc(Xn |Y n)). ((Note that Pc(Xn) < Pc(Xn |Y n)
by the assumption.))

Assumptions (a2) and (b) imply that, for all xn, yn ∈ {0, 1}n

P(xn, yn) = (ᾱr̄)n p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1
ϒ(xn, yn), (60)

where ϒ(xn, yn) = ∏n
k=2

( r
r̄

)xk⊕xk−1
(

α
ᾱ

)xk⊕yk and the product
equals one if n = 1. Since α > 0, it is clear that q(yn) > 0
for all yn ∈ {0, 1}n . Let N0(zn) = |{1 ≤ k ≤ n : zk = 0}|
and N1(zn) = |{1 ≤ k ≤ n : zk = 1}| for any binary
vector zn ∈ {0, 1}n . Recall that n is odd, so either N0(zn) <
N1(zn) or N0(zn) > N1(zn). The following lemma shows that
for every yn ∈ {0, 1}n there exists (a unique) xn

yn ∈ {0, 1}n

such that P(xn
yn , yn) > P(xn, yn) for all xn �= xn

yn .
Lemma 13: Let (Xn, Y n) be as in the hypothesis of

Theorem 5. Then, we have for any yn ∈ {0, 1}n

P(xn, yn) ≤
{

(ᾱr̄)n p̄
r̄

(
α
ᾱ

)N1(yn)
, if N0(yn) > N1(yn),

(ᾱr̄)n p
r̄

(
α
ᾱ

)N0(yn)
, if N0(yn) < N1(yn),

for all xn ∈ {0, 1}n with equality if and only if xn = 0 or
xn = 1, respectively.

To prove this lemma, we will make use of the following
fact.

Claim. Let yn ∈ {0, 1}n be given. If xn ∈ {0, 1}n maximizes
P(xn, yn), then x1 = x2 = · · · = xn .

Proof of Claim: We prove the result using backward
induction. To do so, we assume that the maximizer xn satisfies
xn = xn−1 = · · · = xl for 2 ≤ l ≤ n. It is sufficient to show
that xn = · · · = xl = xl−1. In light of (60), we have

P(xn, yn) = Al−1

(r

r̄

)xl⊕xl−1
n∏

k=l

(α

ᾱ

)xl⊕yk
, (61)

where4

Al−1 = (ᾱr̄)n p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1
ϒ(x�−1, y�−1).

Notice that Al−1 depends only on x1, . . . , xl−1. By the induc-
tion hypothesis, we have xl = · · · = xn . In particular, xn

equals either

x̃ n := {x1, . . . , xl−1, x̄l−1, . . . , x̄l−1︸ ︷︷ ︸
n−l+1

},

or

x̂ n := {x1, . . . , xl−1, xl−1, . . . , xl−1︸ ︷︷ ︸
n−l+1

}.

By (61), we have that

P(x̃ n, yn) = Al−1
r

r̄

n∏

k=l

(α

ᾱ

)1−xl−1⊕yk
,

4When l ≤ 3, we use the convention that
∏l−1

k=2

( r
r̄

)xk ⊕xk−1
( α
ᾱ

)xk ⊕yk = 1.

and

P(x̂ n, yn) = Al−1

n∏

k=l

(α

ᾱ

)xl−1⊕yk
.

By the assumptions on r and α, we have

r

r̄

n∏

k=l

(α

ᾱ

)1−xl−1⊕yk ≤ r

r̄
<
(α

ᾱ

)n−1

≤
(α

ᾱ

)n−l+1 ≤
n∏

k=l

(α

ᾱ

)xl−1⊕yk
,

which shows that P(x̃ n, yn) < P(x̂ n, yn) and hence xn = x̂ n .
In other words, xl−1 = xl = · · · = xn . This completes the
induction step.

Proof of Lemma 13: By the above claim, for any given
yn ∈ {0, 1}n , the maximizer xn ∈ {0, 1}n of P(xn, yn) is either
xn = 0 or xn = 1, for which we have

P(0, yn) = (ᾱr̄)n p̄

r̄

(α

ᾱ

)N1(yn)
, (62)

P(1, yn) = (ᾱr̄)n p

r̄

(α

ᾱ

)N0(yn)
. (63)

Assume N0(yn) > N1(yn) and recall that αp < ᾱ p̄. In this
case,

p
(α

ᾱ

)N0(yn) ≤ αp

ᾱ

(α

ᾱ

)N1(yn)
< p̄

(α

ᾱ

)N1(yn)
,

which implies P(0, yn) > P(1, yn), and hence xn = 0 is
the only maximizer. If N0(yn) < N1(yn), then

(
α
ᾱ

)N0(yn)
>(

α
ᾱ

)N1(yn). Since p ≥ p̄, we conclude that

p
(α

ᾱ

)N0(yn)
> p̄

(α

ᾱ

)N1(yn)
.

Consequently, P(1, yn) > P(0, yn) and hence xn = 1 is the
only maximizer.

Note that

Pc(Xn |Y n) =
∑

yn∈{0,1}n

max
xn∈{0,1}n

P(xn, yn)

(a)=
∑

yn:N0(yn)>N1(yn)

P(0, yn)

+
∑

yn:N0(yn)<N1(yn)

P(1, yn)

(b)= ᾱnr̄ n−1
(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k
, (64)

where (a) is due to Lemma 13 and (b) comes from (62)
and (63).

In order to be able to use Theorem 3, we first need to show
that Pc(Xn) < Pc(Xn |Y n). Note that 1 = ∑n

k=0

(n
k

)
αn ᾱn−k
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and hence ᾱn ∑n
k=0

(n
k

) (
α
ᾱ

)k = 1. We can therefore write

1

ᾱn
=

n∑

k=0

(
n

k

)(α

ᾱ

)k

=
(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k
(

1 +
(α

ᾱ

)n−2k
)

≤
(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k (
1 + α

ᾱ

)

<

(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k
(

1 + p̄

p

)

= 1

p

(n−1)/2∑

k=0

(
n

k

)(α

ᾱ

)k
, (65)

which implies that Pc(Xn) < Pc(Xn |Y n).
Now that all the hypotheses of Theorem 3 are shown to

be satisfied, we can use (10) to study 
(Pc(Xn |Y n)). The
following lemma is important in bounding 
(Pc(Xn |Y n)).

Lemma 14: Let (Xn, Y n) be as in the hypothesis of
Theorem 5. Then, for all yn ∈ {0, 1}n,

q(yn) ≥ αn .

Proof: From (60), we have

P(xn, yn) = (ᾱr̄)n p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1
ϒn(xn, yn)

≥
(α

ᾱ

)n
(ᾱr̄)n p̄

r̄

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1

= αnr̄ n p̄

r̄

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1
.

Summing over all xn ∈ {0, 1}n, we obtain

q(yn) ≥ αnr̄ n−1 p̄
∑

xn∈{0,1}n

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1.
(66)

On the other hand, it is straightforward to verify that

1 =
∑

x∈{0,1}n

Pr(Xn = xn)

= r̄ n−1 p̄
∑

xn∈{0,1}n

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1
. (67)

Plugging (67) into (66), the result follows.
By (10) and the previous lemma,


(Pc(Xn |Y n)) ≥ min
yn,zn∈{0,1}n

αn

P(xn
yn , yn) − P(xn

zn , yn)
.

Since both xn
yn and xn

zn are either 0 or 1, we have to maximize

ϑ :=
{

(ᾱr̄)n p̄
r̄

(
α
ᾱ

)N1(yn) − (ᾱr̄)n p
r̄

(
α
ᾱ

)N0(yn)
, if yn ∈R0,

(ᾱr̄)n p
r̄

(
α
ᾱ

)N0(yn) − (ᾱr̄)n p̄
r̄

(
α
ᾱ

)N1(yn)
, if yn /∈R0,

where R0 = {yn ∈ {0, 1}n : N0(yn) > N1(yn)}. Clearly, ϑ is
maximized when yn = 1 and thus


(Pc(Xn |Y n)) ≥ r̄αn

p(ᾱr̄)n − p̄(αr̄)n
.

By (9) and the fact that n
n(ε) = (εn),

n
n(ε) ≤ 1 − r̄

Pc(Xn |Y n) − εn

p(ᾱr̄)n − p̄(αr̄ )n
αn,

where Pc(Xn |Y n) is computed in (64).
The lower bound follows from considering the direction

D̃ ∈ D(I2n), whose entries are all zero except D̃(1, 0) = λ
and D̃(1, 1) = −λ for λ = 2−1/2. In particular, plugging D̃
into (56), we obtain an upper bound for 
(Pc(Xn |Y n)) and
thus a lower bound for (ε) for the desired range of ε. Note
that the filter I2n +ζn(ε)D̃ corresponds to the 2n-ary Z-channel
Zn(ζn(ε)).

APPENDIX I
PROOF OF PROPOSITION 3

Since r = 0, the joint distribution PθY n can be
equivalently written as the joint probability matrix P =
[P(xn, yn)]xn,yn∈{0,1}n with x1 = x2 = · · · = xn = θ .
As in the proof of Theorem 5, the hypotheses of Theorem 3
are fulfilled. In particular,


(Pc(θ |Y n)) = min
yn,zn∈{0,1}n

q(yn)

P(xn
yn , yn) − P(xn

zn , yn)
. (68)

In this case, (60) becomes

P(0, yn) = p̄ᾱn
(α

ᾱ

)N1(yn)
,

and

P(1, yn) = pᾱn
(α

ᾱ

)N0(yn)
.

In particular,


(Pc(θ |Y n)) = min
yn,zn∈{0,1}n

pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

P(xn
yn , yn) − P(xn

zn , yn)
.

Lemma 13 implies that both xn
yn and xn

zn are either 0 or 1.
If N0(yn) > N1(yn), then

pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

P(xn
yn , yn) − P(xn

zn , yn)

≥ pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

p̄ᾱn
(

α
ᾱ

)N1(yn) − pᾱn
(

α
ᾱ

)N0(yn)
,

with equality if and only if N1(zn) > N0(zn). It is not hard
to show that

pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

p̄ᾱn
(

α
ᾱ

)N1(yn) − pᾱn
(

α
ᾱ

)N0(yn)
≥ p̄ + p

(
α
ᾱ

)n

p̄ − p
(

α
ᾱ

)n , (69)
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with equality if and only if yn = 0. Similarly, if N1(yn) >
N0(yn), then

pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

P(xn
yn , yn) − P(xn

zn , yn)

≥ pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

pᾱn
(

α
ᾱ

)N0(yn) − p̄ᾱn
(

α
ᾱ

)N1(yn)
,

with equality if and only if N0(zn) > N1(zn). As before,

pᾱn
(

α
ᾱ

)N0(yn) + p̄ᾱn
(

α
ᾱ

)N1(yn)

p̄ᾱn
(

α
ᾱ

)N1(yn) − pᾱn
(

α
ᾱ

)N0(yn)
≥ p + p̄

(
α
ᾱ

)n

p − p̄
(

α
ᾱ

)n , (70)

with equality if and only if yn = 1. From (69) and (70),
we conclude that


(Pc(θ |Y n)) = p + p̄
(

α
ᾱ

)n

p − p̄
(

α
ᾱ

)n = pᾱn + p̄αn

pᾱn − p̄αn
,

and y0 = 1 and z0 = 0 achieve the minimum in (68). From the
last part of Theorem 3 the optimality of the 2n-ary Z-channel
Zn(ζn(ε)) is evident.

APPENDIX J
PROOF OF THEOREM 6

From (17) and (18) we obtain that

inf
f ∈SU

mmse( f (U)|V )

var( f (U))
=1− sup

f ∈SU

η2
V ( f (U))=1−ρ2

m(U, V ).

From the previous equation it is clear that ρ2
m(U, V ) ≤ ε if

and only if

mmse( f (U)|V ) ≥ (1 − ε)var( f (U)),

for all f ∈ SU . By (16), we obtain Zγ ∈ 
(ε) if and only if
ρ2

m(X, Zγ ) ≤ ε.

APPENDIX K
PROOF OF THEOREM 7

Without loss of generality, assume E(X) = E(YG) = 0.
Since YG is Gaussian, (17) implies that

sENSR(ε) = inf
γ :ρ2

m(X,Zγ )≤ε

mmse(YG|Zγ )

var(YG)

= 1 − sup
γ :ρ2

m (X,Zγ )≤ε

ρ2
m(YG; Zγ ). (71)

A straightforward computation leads to

ρ2
m(YG, Zγ ) = ρ2(YG, Zγ ) = γ var(YG)

1 + γ var(YG)
, (72)

ρ2
m(X, Zγ ) ≥ ρ2(X, Zγ ) = ρ2(X, YG)ρ2

m(YG, Zγ ).

The preceding inequality and (71) imply

sENSR(ε) ≥ 1 − sup
γ :ρ2

m (X,Zγ )≤ε

ρ2
m(X, Zγ )

ρ2(X, YG)
≥ 1 − ε

ρ2(X, YG)
,

which proves the lower bound.
The strong data processing inequality for maximal corre-

lation [8, Lemma 6] states that ρ2
m(X, Zγ ) ≤ ρ2

m(X, YG)

ρ2
m(YG, Zγ ). In particular, if ρ2

m(YG, Zγ ) ≤ ε
ρ2

m (X,Y )
, then

ρ2
m(X, Zγ ) ≤ ε. Therefore, (71) implies

sENSR(ε) ≤ 1 − sup
γ :ρ2

m (YG,Zγ )≤ ε

ρ2
m (X,YG)

ρ2
m(YG; Zγ )

= 1 − ε

ρ2
m(X, YG)

,

where the last equality follows from the continuity of
γ �→ ρ2

m(YG, Zγ ), established in (72), finishing the proof of
the upper bound.

APPENDIX L
PROOF OF LEMMA 2

Let

γ ∗
ε := max{γ ≥ 0 : ρ2

m(XG, Zγ ) ≤ ε}. (73)

Recall that

ρ2
m(X, Zγ ) ≥ ρ2(X, Zγ ) = γρ2(X, Y )var(Y )

1 + γ var(Y )
. (74)

Since ε → 0, we can assume that ε < ρ2(X, Y ). Thus,
from (74) we obtain

γ ∗
ε ≤ ε

var(Y )(ρ2(X, Y ) − ε)
. (75)

In particular, γ ∗
ε → 0 as ε → 0. Since γ �→ mmse(Y |Zγ )

is decreasing, we have that sENSR(ε) = mmse(Y |Zγ ∗
ε
).

Therefore, the first-order approximation of sENSR(·) around
zero yields

sENSR(ε) = 1 + γ ∗
ε

var(Y )

d

dγ ∗
ε

mmse(Y |Zγ ∗
ε
)
∣∣∣
ε=0

+ o(γ ∗
ε )

(a)= 1 − var(Y )γ ∗
ε + o(γ ∗

ε )
(b)≥ 1 − ε

ρ2(X, Y )
+ o(ε)

where (a) follows from the fact that d
dγ mmse(Y |Zγ ) =

−E[var2(Y |Zγ )] [42, Prop. 9] and (b) follows from (75).
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